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Abstract

Realistically—and equitably—modeling the dynamics of group-level disparities
in machine learning remains an open problem. In particular, we desire models
that do not suppose inherent differences between artificial groups of people—but
rather endogenize disparities by appeal to unequal initial conditions of insular
subpopulations. In this paper, agents each have a real-valued feature X (e.g., credit
score) informed by a “true” binary label Y representing qualification (e.g., for a
loan). Each agent alternately (1) receives a binary classification label Ŷ (e.g., loan
approval) from a Bayes-optimal machine learning classifier observing X and (2)
may update their qualification Y by imitating successful strategies (e.g., seek a
raise) within an isolated group G of agents to which they belong. We consider
the disparity of qualification rates Pr(Y = 1) between different groups and how
this disparity changes subject to a sequence of Bayes-optimal classifiers repeatedly
retrained on the global population. We model the evolving qualification rates
of each subpopulation (group) using the replicator equation, which derives from
a class of imitation processes. We show that differences in qualification rates
between subpopulations can persist indefinitely for a set of non-trivial equilibrium
states due to uniformed classifier deployments, even when groups are identical in
all aspects except initial qualification densities. We next simulate the effects of
commonly proposed fairness interventions on this dynamical system along with a
new feedback control mechanism capable of permanently eliminating group-level
qualification rate disparities. We conclude by discussing the limitations of our
model and findings and by outlining potential future work.

1 Introduction

Algorithmic prediction is increasingly used for socially consequential decisions and may determine
individual access to information, education, employment, credit, housing, medical treatment, freedom
from incarceration, or freedom from military targeting [1–5]. This situation raises technical challenges
and ethical concerns, particularly regarding the dynamics of systemic inequalities and attendant harms
to society [6–8]. Nonetheless, realistically—and equitably—modeling the dynamics of disparity in
machine learning remains an open problem.

Research historically considered the fairness of algorithmic predictions in terms of statistical
(in)consistencies [9] (e.g., across groups [10–16] or between similar individuals [10, 11]), pref-
erence guarantees [17–19], or causal considerations [19, 20] but ignored the response of a population
to new prediction policies. For instance, the proportions of potential loan applicants in each group
that will seek higher wages, falsify income, or forego application might change if banks use new
policies to approve or deny loans, possibly counteracting fair intent. We refer this class of fairness
definitions as normative present fairness.
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Efforts to model such population response [21–31]and the autonomous dynamical systems arising
from mutual recursion with myopically updating prediction policies [21–29] have intensified, but it
has remained to plausibly explain persistent disparities under group-independent prediction policies—
i.e., those that do not discriminate on the basis of group membership—without assuming a setting that
is structurally imbalanced between groups. Our paper contributes to these efforts and considers the
long-term consequences of machine learning on inter-group disparities when a sequence of classifiers
induces dynamics within the rates of strategy adoption in each group. Upon adopting a dynamical
framework, we note that yet another operationalization of fairness arises: the asymptotic equality of
latent variables (i.e., those causally responsible for outcome disparities) between groups. This notion
of long-term fairness need not be consistent with normative present fairness, which may actively
combat it, highlighting a tension between ends and means for fairness considerations.

1.1 Our contributions

Herein, we describe an equitable model of population response: one which does not suppose
inherent differences between groups of people but endogenizes disparities by appeal to unequal initial
conditions, accounting for group-specific environmental conditions as dynamical variables. We reform
our notion of “groups” (i.e., subpopulations) to appeal to natural boundaries of information exchange
rather than artificially imposed classes of people. We thus offer a potentially more meaningful way
to group individuals in discussions of fairness, asserting that, when considering such networks of
peer exchange, “sensitive attributes” such as race, sex, color, etc. might not correspond to meaningful
divisions of people, which depend on social context. Finally, we recognize fairness interventions as
dynamical control policies that (un)intentionally select the future trajectories of a given system. We
therefore allow ourselves to consider interventions that explicitly incorporate feedback from dynamical
variables—rather than relying on fixed, prescriptive modifications of predictor loss functions.

Our first contribution is to propose a model of classifier-induced group-level strategy adoption that is
(1) equitable, i.e., free from structurally asymmetric assumptions as described above, (2) capable of
explaining persistent disparities under Bayes-optimal, group-independent policies, and (3) derivable
from plausible, localized information exchange between individuals. Specifically, we appeal to the
replicator equation, an established model for evolutionary phenomena without mutation, to model
how competing strategies for qualification (which determine true machine learning labels {0, 1},
affecting agent utilities) replicate within groups (i.e., isolated subpopulations that differ only in size
and initial proportions of qualified individuals). We ground statements with a running example
involving loan applications (elaborated upon in Section 2.2) for which qualification (label Y = 1),
interpreted as being in the public interest, implies future repayment of a loan for an applicant with
feature profile X . As we avoid assuming inherent differences between groups, we consider the
label-conditioned feature distribution Pr(X | Y = y) as group-independent and define qualification
disparity in terms of differences in group qualification rates Pr(Y = 1). We formulate our model
in Section 2, emphasizing that only the profile of strategies in each subpopulation is subject to
evolution—narrowly qualified by the competition between strategies for replicative success—rather
than the subpopulations themselves. The persistence of disparity is thus attributed to classifier policy.

Our second contribution, in Section 3, is a rigorous examination of the dynamical system formed by
the replicator equation and an updating, group-independent, Bayes-optimal classifier policy, including
a characterization of its equilibrium states with linear stability analysis. We identify the set of stable
interior states of the system as a stable hyperplane and show that any initial state with non-zero total
qualification disparity, defined in Section 3, will continue to exhibit non-zero disparity asymptotically
if the state attracts to the stable hyperplane (Theorem 10). In this sense, we claim that qualification
rate disparity persists indefinitely for this setting.

Our final contribution, in Section 4 is to consider a dynamics-aware fairness intervention based
on feedback control that parametrically violates classifier group-independence (and therefore, in
our setting, equalized odds [12–14] and envy-freeness [17, 18]) to achieve long-term fairness. We
use simulation to contrast this feedback control policy to a group-independent classifier; a policy
subject to demographic parity [10, 11]; and “laissez-faire”, group-specific policies. We conclude by
discussing the limitations of our model and our findings and by outlining potential future work.

1.2 Related work

Our work chiefly contributes to the literature on fairness in machine learning but also builds on prior
work on “statistical discrimination”. The most relevant publications are those that have highlighted
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the importance of studying the dynamics and long-term consequences of machine learning, fairness
constraints, and models of population response. In particular, Liu et al. [30] use Markov transitions
to model agent responses to classification without considering classifier retraining; D’Amour et al.
[22] and Zhang et al. [23] reapply Markov transitions to agent attributes in the presense of classifier
retraining; Zhang et al. [32] model agents’ decisions of whether to engage with classification based
on perceived accuracy and intra-group disparity; Coate and Loury [21], Hu and Chen [27], and Liu
et al. [26] considered economical “best-response” models to agent labels with classifier updates; and
Heidari et al. [24] considered an imitation-based model of social learning in which agents choose
between the strategies of other agents to maximize utility and minimize effort. Tang et al. [33] also
studied the delayed and accumulated impacts of past deployed policies, but did not study the fairness
implication of such impacts. Similarly, literature on “fair bandit/reinforcement learning" [34–36] has
largely focused on technical aspects of imposing normative present fairness in a sequential setting.

Our proposed model synthesizes prior conceptual innovations: First, Coate and Loury [21], Hu and
Chen [27], and Ensign et al. [37] each considered incomplete information available to a classifier as a
means to equitably endogenize persistent predictor bias, but did not consider incomplete information
available to individual agents. Second, the class of response functions considered by Mouzannar et al.
[28] allows group-level strategic responses to depend on existing qualification rates and may be used
to endogenize persistent disparity under group-independent policies; the cited work does not explore
this direction, but, like us, the authors assume “groups are ex-ante equal in all respect except for
their qualification profiles...and any potential coupling between groups can only happen through the
different and interacting selection rates induced by the policies” [28, p. 362]. Atop this foundation,
we provide a plausible mechanism of imitation, motivated by incomplete information available to
individual agents, to justify replicator dynamics as a special case of such response functions, and we
extend a dynamical analysis for a classifier forced to contend with misclassification errors.

To support our use of the replicator equation to model group-level responses to classification, we
cite the imitation-based derivation(s) of the replicator equation by Björnerstedt and Weibull [38]; the
characterization of evolutionarily stable strategies conducted by Taylor and Jonker [39]; the analogy
of memes as attributed to Dawkins [40]; and the extensive application of the replicator equation in
game-theoretic contexts as explored by Friedman and Sinervo [41].

2 Formulation

We defer all proofs and provide them in Appendix B of the supplementary material.

We consider countably many agents, n ≥ 2 groups, and a single classifier. Until Section 2.2, our
setting matches that of Coate and Loury [21] but treats n groups and a more granular classifier
utility function. We ground statements with a running example: a regional bank (classifier) serving
several isolated communities (groups, subpopulations) by offering standardized loans for which every
individual (agent) applies. Alternative examples include hiring decisions [21] or college admissions.

Agents belong to groups, interpreted in Section 2.2 and consistent with isolated communities in our
running example, with known relative frequencies µg ∈ (0, 1). We vectorize these frequencies as µ.

G := {1, 2, ..., n}; ∀g ∈ G, µg := Pr(G = g);
∑
g∈G

µg = 1; µ := (µ1, µ2, ..., µn) (1)

For all statements of probability, we assign uniform probability mass to each agent.

In addition to relative size µg, each group has a qualification rate sg ∈ (0, 1), which we vectorize
as our state variable s. We denote the global qualification rate as s:

sg := Pr(Y = 1 | G = g); s := (s1, s2, ..., sn); s :=
∑
g∈G

µgsg = 〈µ, s〉 (2)

Assumption 1. No community is completely (un)qualified; ∀g, sg ∈ (0, 1).

In our banking example, a qualified (Y = 1) individual will repay a loan in full if accepted (Ŷ = 1),
and we presume this outcome to be desirable. The fraction of qualified individuals in community g is
represented by sg . Assumption 1 states that no community is completely (un)qualified, and, because
µg ∈ (0, 1), neither is the total population, i.e., s ∈ (0, 1).

3



Table 1: Agent-specific variables forming a Markov chain.

Variable Meaning Domain Realizations

G group G = {1, 2, ..., n} g, h, i, j
Y qualification {0, 1} i.e., {unqualified, qualified} y
X feature (−∞,∞) x

Ŷ classification {0, 1} i.e., {reject, accept} ŷ

The featureX of an agent qualified as (Y = y) is sampled according to a probability density function
qy . In our banking example, we may interpret X as a “credit score” known to the bank.

qy(x) := pX(x | Y = y); y ∈ {0, 1} (3)

Assumption 2. The qualification-conditioned distribution of features qy(x) is group-independent.

Assumption 2 ensures that qualified individuals are statistically indistinguishable in terms of feature
X across different communities—as are unqualified individuals. Given an agent’s qualification Y ,
learning G gives no additional information about X .
Assumption 3. qy is differentiable and strictly positive for each y. The values of X are ordered and
unified such that q1(x)/q0(x) is strictly increasing in X:

∀x, y, qy(x) ∈ (0,∞);
d

dx

(
q1(x)

q0(x)

)
> 0 (4)

Assumption 3 ensures that the feature X is “well-behaved”: In our example, as credit scores increase
as x, the odds that individuals with that credit score x will pay off loans also increases.

Finally, a classifier observes the feature X of each agent, from which it must predict the agent’s
correct label Y using a deterministic policy π that, unless otherwise stated, remains ignorant of G.
Assumption 4. The classifier learns the true distribution Pr(Y | X) before choosing policy π.1

Assumption 5. The classifier maximizes its expected utility u with risk-neutral preferences. This
utility u is linear in each outcome fraction Pr(Y = y, Ŷ = ŷ), and the coefficients2 Vy,ŷ ∈ (−∞,∞)
are independent of feature value X and group membership G. The classifier receives higher utility
from correct predictions (Ŷ = Y ).

Ŷ := π(X); u(π) :=

1∑
y,ŷ=0

Vy,ŷ Pr(Y = y, π(X) = ŷ); Vy=ŷ > Vy 6=ŷ (5)

In our example, Assumption 5 is consistent with a bank maximizing expected net profit, where the
bank expects net profit proportional to Vy,ŷ from each individual qualified as y and approved as ŷ,
independent of credit score X or community G. By Assumption 4, the bank selects policy π knowing
the stochastic relationship between qualification Y and credit score X for the region it serves.

With group-independent classifier policies, having excised assumptions of inherent differences
between groups in our formulation, we emphasize that unequal group qualification rates cause
any statistical group-level disparities of prediction outcomes. We therefore consider eliminating
differences in group qualification rates as a realization of long-term fairness in this setting.
Theorem 1. Discounting sets of measure zero, the u-maximizing, group-independent policy π is
parameterized by the feature threshold φ ∈ [−∞,∞] such that π(x) = 1 if and only if x > φ, where
φ depends only on the global qualification rate s̄.

ŷ = π(x) =

{
1 x > φ

0 otherwise
;

q1(φ)

q0(φ)
= ξ · 1− s

s
; ξ :=

V00̂ − V01̂

V11̂ − V10̂

(6)

When a solution in φ to the threshold equation, Eq. (6), does not exist, φ is either ±∞.

Corollary 1.1. The classifier’s feature threshold φ responds inversely to s: dφ
ds < 0, ds

dφ < 0.

1In practice, this distribution may be learned from sufficient data.
2We will abuse notation to write, e.g., Vy,ŷ as V10̂, to disambiguate the order of indices on V and, later, U .
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Assumption 6. V is such that ξ ∈ (0,∞) (ξ is defined in Theorem 1, Eq. (6)).

The threshold equation, Eq. (6), is a reprise of Coate and Loury [21] restricted to group-independent
classifier policies. In our example, the bank maximizes its utility by approving individuals with credit
scores greater than φ and denying everyone else. Interpreting Assumption 6, there exist populations
for which the bank prefers to accept some applicants and reject others.

2.1 Time-dependence

We model our system in discrete time for semantic reasons, acknowledging that a learning process
consistent with Assumption 4 requires time, although the mathematics generalize to continuous time
without issue.3 Where required, we will denote time-dependence in square brackets [t]. Where we
omit this explicit dependence, as in all prior expressions, it is understood that all variables in an
expression correspond to the same time t.

Assumption 7. The relative sizes of groups µg , qualification-conditioned feature distributions qy , and
classifier utility coefficients Vy,ŷ are all time-independent. All prior assumptions hold independently
for each time step.

2.2 Replicator dynamics

Anticipating algorithmic classification, how do agents decide whether to become qualified? In our
banking example, we imagine that individuals must “invest” or “apply capital” to be able to pay back
loans and that the “rationality” of doing so depends on what they know about the classification policy
and potential outcomes—which they must estimate from incomplete information provided by peer
examples. To deal with the uncertainty of limited examples, we imagine the emergent heuristic of
updating personal qualification by imitating the strategies of others based on popularity and “success”.
For example, if your friend chose to become qualified for a loan and now runs a small business, the
success of the business may induce you to seek qualification yourself by first building credit history;
if many of your neighbors receive loans despite being unqualified and appear successful investing in
speculative assets, you may infer that qualification is a waste of resources.

classifier

policy π

group g

qualification

rate sg

fitness Wy

of strategy y

Update of variables

s1

s2

?

s[t+ 1] − s[t]

Agents respond to classifier

x

pX(x, Y = y)

Y = 0

Y = 1

φ(s)

A
cc

ep
t

R
ej

ec
t

Classifier chooses policy

Figure 1: Our model appeals to the replicator equation Eq. (7) to model population response and considers
a Bayes-optimal, group-independent classifier policy π with feature threshold φ (Eq. (6), right pane). When
coupled (middle pane), these equations give rise to an autonomous dynamical system. We wish to understand
how the vector of group qualification rates s, as our state variable, changes in time (left pane).

Björnerstedt and Weibull [38] have shown that imitation in this form, whereby agents stochastically
update to strategies weighted by success and popularity4 yields the (continuous time) replicator
equation, which we use in its discrete time form, as detailed by Friedman and Sinervo [41]:

sg[t+ 1] = sg[t]
W1[t]

W g[t]
; W g := W1sg +W0(1− sg); ∀y, Wy ≥ 0 (7)

3The continuous replicator equation appears in Björnerstedt and Weibull [38] & Friedman and Sinervo [41].
4Weighting by popularity effects “preferential attachment” for the success of a strategy in a subpopulation and

thus introduces dynamical inertia. Replicator dynamics also arise when agents update strategies with (Poisson
distributed) expected periodicity that is affine in the success of one’s current strategy [38].
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Here, Wy is the fitness of strategy y, which, by Theorem 2, we model as independent of feature X
and group G. Following Björnerstedt and Weibull [38], we may derive the fitness Wy in terms of
expected “success” Uy,ŷ of each qualification-classification outcome (y, ŷ):
Assumption 8. The fitness of strategy (Y = y), denoted as W g

y , is affine in the average success Uy,ŷ
of qualification (Y = y) with classification (Ŷ = ŷ). Uy,ŷ is time-, feature- and group-independent.
Without loss of generality, we restrict Uy,ŷ ∈ [0,∞) and drop the constant bias term from each W g

y .

W g
y :=

1∑
ŷ=0

Pr(Ŷ = ŷ | Y = y,G = g)Uy,ŷ (8)

Theorem 2. The fitness W g
y of strategy Y = y in group g is feature- and group-independent.

∀y, g, W g
y = Wy (9)

Intuitively, “success” U may be interpreted as utility or payoff to each agent when agents align
strategy adoption with personal incentives, but, fundamentally, W corresponds to the relative success
of the strategy in replicating, i.e., spreading between individuals. The strategies of (non)qualification
are thus subject to evolutionary pressures, competing to out-replicate each other in an environment
shaped by perceptions of classifier policy. Notably, the fitness of a strategy depends only on the
classifier—not group membership G. Agents remain identically modelled across all groups.
Assumption 9. The success of (non)qualification is sensitive to classification, and the expected
success for qualified individuals increases with classifier acceptance: U01̂ 6= U00̂; U11̂ > U10̂ .

Assumption 10. Each group g has the properties of a closed population in which qualification, as a
strategy or meme [40], competes with non-qualification free from exchange with other groups.

It is significant that we model population updates as independent for closed populations, as this
restricts our interpretation of groups, which must be functionally impermeable to the exchange of
qualification strategies. To precisely delineate between real-world examples of “groups” is akin to
disassociating “cultures”, which also imply boundaries of exchange but generally intersect. Having
noted that “sensitive attributes” such as race, sex, color, etc. may not correspond to meaningful
divisions between people (which depend on social context), we instead qualify a group by the
extent to which it satisfies Assumption 10. As an open question, we ask whether imposing arbitrary
demographic-dependent policies may catalyze the formation of groups of strategic peers, but we will
consider insular social groups or isolated communities as canonical examples.

3 Dynamics

The threshold equation, Eq. (6): φ[t](s[t]), and the replicator equation, Eq. (7): s[t+ 1](φ[t], s[t]),
may be coupled to yield an autonomous dynamical system s[t + 1](s[t]) that evolves in time. To
analyze it, we first generate a useful set of coordinates to compliment s and track qualification
rate disparities, defined by the differences in sg between groups. We then note the importance of
W1(φ)−W0(φ) to the overall dynamics of the system, and use it to identify non-trivial equilibrium
states. To interpret this section for our example, we ask how community-specific loan qualification
rates change as individuals imitate successful strategies in their isolated communities, while assuming
that the bank maximizes profit using group-independent credit thresholds for loan approval.
Definition 3. Define the (signed) qualification distance from group h to group g as

δ(g, h) := sg − sh, g, h ∈ {1, 2, ..., n} (10)

We next define the vector D comprising (n− 1) linearly-independent qualification distances between
sequential pairs of subpopulations:

D :=
(
δ(1, 2), δ(2, 3), ..., δ(n− 1, n)

)
(11)

The components of D and value of s together yield a complete set of coordinates to describe the
state of the dynamical system, which we may exchange for the original vector of qualification rates
s = (s1, s2, ..., sn) via a non-orthogonal, linear change of basis (See Appendix B):

sg = s+

n−1∑
h=g

δ(h, h+ 1)−
n−1∑
h=1

h∑
k=1

µkδ(h, h+ 1) ∀g ∈ G (12)

Let us denote the state vector in our new coordinate system as r :=
(
δ(1, 2), δ(2, 3), ..., δ(n−1, n), s

)
.
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Definition 3.1. For p ≥ 1, define a state’s p-total qualification rate disparity as the p-norm of D:∥∥D∥∥
p

:=
( n−1∑
g=1

∣∣δ(g, g + 1)
∣∣p)1/p

(13)

Remark 4. States s with a common s value form a hyperplane s = 〈µ, s〉 (Eq. (2)), by definition.
Theorem 5. The nullity of any p-total qualification rate disparity is preserved in time.

p ≥ 1;
∥∥D[t]

∥∥
p

= 0 ⇐⇒
∥∥D[t+ 1]

∥∥
p

= 0 (14)

Theorem 5 highlights a weak notion of the persistence of disparity within the system sans intervention:
Any state that possesses some non-zero total qualification disparity (defined as some chosen p-norm
of D) must always exhibit some non-zero total qualification disparity with any finite time horizon. In
our example, if some communities start more qualified than others, the qualification rates of different
communities will not naturally equalize in any given lifetime. Note that this statement is insufficient
to address the limit t→∞, however. For a stronger result that includes this limit (Theorem 10), we
first characterize the system’s equilibrium states.

3.1 Equilibrium

Definition 6. The system as a whole is at equilibrium when, for all g ∈ G simultaneously, sg is
stationary in time:

at equilibrium def⇐⇒ ∀g ∈ G, ∃t0 s.t. ∀t ≥ t0, sg[t] = sg[t0] (15)

Note: replicator dynamics is an instance of the more general family of monotone dynamics, with
which all equilibria are shared [38, 41].
Theorem 7. Disregarding boundary states by Assumption 1, the replicator equation, Eq. (7), implies

sgn
(
s[t+ 1]− s[t]

)
= sgn

(
W1(φ[t])−W0(φ[t])

)
(16)

Theorem 8. It is necessary and sufficient for a system at equilibrium thatW1 = W0 or for the system
to occupy some vertex of the state space.

at equilibrium ⇐⇒
{
W1 = W0 (internal equilibrium)
∀g ∈ G, sg ∈ {0, 1} (trivial equilibrium)

(17)

W1 −W0

φ
−∞ ∞

U11̂ − U01̂

U10̂ − U00̂

0

φ?

φ+ φ−

Figure 2: W1(φ) −W0(φ) (blue curve) is
a strictly quasi-concave function of φ. φ?

denotes the unique local extremum. The di-
rection of the arrows is a consequence of
Theorem 7 and Corollary 1.1.

Theorem 8 indicates that the conditions for internal
equilibrium are described by the zeros of the function
W1(φ)−W0(φ), as depicted in Fig. 2, and, by the thresh-
old equation, Eq. (6), φ has dynamical dependence only on
s. It follows that only certain values of s support internal
equilibrium, and each value corresponds to a hyperplane
in state space (Remark 4).
Theorem 9. W1(φ)−W0(φ) is strictly quasi-concave in
φ. This guarantees that no more than two zeros of the
function W1 −W0 exist.

We denote the possible zeros of W1 −W0 as φ+ and φ−,
where the sign in the superscript indicates the local slope
of the function. These zeroes correspond to parallel hyper-
planes in state space that comprise all interior equilibria
of the system. Whether φ± corresponds to an (un)stable equilibrium hyperplane may be determined
by Theorem 7 and the sign of ∂

∂φ (W1 −W0): Only s(φ+) is stable, and we will verify this fact with
linear stability analysis.
Theorem 10. If the state of the system asymptotically approaches an internal equilibrium, the nullity
of p-total qualification rate disparity is preserved in the limit of infinite time.

p ≥ 1; lim
t′→∞

(W1 −W0) = 0 =⇒
(∥∥D[t]

∥∥
p

= 0 ⇐⇒ lim
t′→∞

∥∥D[t′]
∥∥
p

= 0
)

(18)

Theorem 10 formalizes the critical observation that any state that attracts to the stable equilibrium hy-
perplane, unless initially free from qualification disparity, will forever exhibit some total qualification
disparity. This is a more robust notion of the persistence of disparity in our system than Theorem 5.
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3.2 Stability

For our regional banking example, we may imagine that qualification rates settle into a stable pattern
in which some communities have a higher average qualification rate than others. How robust is
this pattern of inequality to small fluctuations of qualification rates? Using linear stability analysis
(i.e., linearizing the response of the system to small perturbations about equilibrium and asking “do
perturbations amplify or dissipate?”), we show that only the φ+-hyperplane acts as a stable attractor.

First, let us denote the evaluation of an expression at equilibrium by placing a vertical line to the
right of the expression with “eq” as a subscript. In light of Theorem 8 and Eq. (7), we also introduce
the shorthand Weq to denote an equilibrium value of W1, W0, or, equivalently, any W g . It should be
noted that the value of Weq ∈ [0,∞) still depends on the particular equilibrium state of the system.

Weq := W0

∣∣∣
eq

= W1

∣∣∣
eq

= W g

∣∣∣
eq
∀g ∈ G (19)

We linearize the system at equilibrium by constructing the Jacobian J ∈ Rn×n corresponding to
discrete time-evolution and identifying its eigenvectors and eigenvalues:

J :=

[
∂r

∂δ(1, 2)

∂r

∂δ(2, 3)
...

∂r

∂δ(n− 1, n)

∂r

∂s

]
(20)

where r, the state vector in (D, s) coordinates, is interpreted as a column vector.
Theorem 11. The Jacobian J simplifies to a scalar multiplied by a matrix with a single non-zero
column v in the last position.

J

∣∣∣∣∣
eq

=
1

Weq

(
dφ

ds

)(
d

dφ
(W1 −W0)

)[
0(n×n−1)

∣∣∣∣∣v
]
, v :=

 δ(1,2)(1−s1−s2)
δ(2,3)(1−s2−s3)

...
δ(n−1,n)(1−sn−1−sn)∑

g∈G µgsg(1−sg)

 (21)

The eigenvalues of J determine the stability of the system at equilibrium.
Corollary 11.1. At equilibrium, any state displacement vector with zero s component is an eigenvec-
tor of J with eigenvalue 0, while v is an eigenvector of J with eigenvalue λ:

λ :=

(∑
g∈G

µgsg(1− sg)
)

1

Weq

(
dφ

ds

)(
d

dφ
(W1 −W0)

)∣∣∣∣∣
eq

(22)

Perturbing (displacing) a state vector r at an internal equilibrium by altering any combination of
coordinates appearing in D—while leaving s fixed—specifies motion on the s hyperplane occurring
in neutrally stable equilibrium (i.e., a displacement vector with zero s component has null eigenvalues
at internal equilibrium. See Strogatz [42]). An internal equilibrium is stable to perturbations in v,
leaving the hyperplane, iff λ is negative (and, in discrete-time, > −2 to forbid over-corrections) [42].

Corollary 11.2. As a consequence of Corollary 1.1, which states dφ
ds < 0, the eigenvalue λ in

Eq. (22) is negative, (and the associated equilibrium hyperplane stable) iff d
dφ (W1 −W0)|eq > 0.

This prescribes precisely the value φ+ for the stable equilibrium hyperplane.

4 Interventions

In the dynamical setting we have characterized, we now explore “fairness interventions”, which
substitute the set of policies that the classifier may choose from, possibly permitting group-specific
decision rules πg. We first observe that for the default policy with a group-independent feature
threshold φ, one commonly cited standard of normative present fairness is automatically satisfied.

Definition 12. Equalized Odds [12–14] requires that a classifier’s decisions Ŷ , given by policy π,
misclassify (un)qualified agents at equal rates across groups:

∀g, h ∈ G, ∀y, ŷ ∈ {0, 1}, Pr(Ŷ = ŷ | Y = y,G = g) = Pr(Ŷ = ŷ | Y = y,G = h) (23)

Theorem 13. For policies defined by group-specific thresholds φg, the equivalence of these feature
thresholds (∀g, φg = φ) is necessary and sufficient to satisfy Equalized Odds given the group-
independence of each qy (Assumption 2).
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By Theorem 13, a group-independent policy satisfies Equalized Odds (e.g., the bank accepts/rejects
(un)qualified loan applicants at group-independent rates), yet disparities may persist (Theorem 10).
This indicates a counter-example to reliance on Equalized Odds for long-term fairness in our model,
viz., the optimal group-independent threshold classifier we have studied so far.
Corollary 13.1. Equalized Odds does not imply long-term fairness in our model.

We next ask whether a small displacement a group-independent threshold φ near the φ+-hyperplane,
which we interpret as a universal subsidy (or penalty), can diminish qualification rate disparities.
Theorem 14. Θ(ε) perturbations of a group-independent φ at internal equilibrium induce motion,
which, to first-order approximation (i.e., ignoring O(ε2) terms), is parallel to the eigenvector v.

As a consequence of Theorem 14, while v need not be orthogonal to the equilibrium hyperplane,
and a universal subsidy may decrease qualification rate disparity while applied (settling on a new
equilibrium hyperplane with different, though persistent disparities), the system is stable to such per-
turbations at φ+ as characterized by linear system response and will relax to the original equilibrium
state when the intervention is removed. To permanently change qualification disparities, a temporary
universal subsidy (penalty) must rely on the non-linear response of the system and is therefore liable
to require large perturbations to the classifier’s threshold φ. This finding compels us to consider
interventions with group-dependent threshold perturbations—or group-dependent thresholds. To this
end, we hereafter generalize our classifier such that it independently classifies each group g according
to a group-specific threshold φg. We denote the vector of these thresholds as Φ := (φ1, φ2, ..., φn)
and assume that, prior to some perturbative intervention, φg = φ for each g ∈ G.

Definition 15. Demographic Parity [10, 11] requires that a classifier’s decisions Ŷ , given by policy
π, are positive (Ŷ = 1, e.g., accepting a loan application) at equal rates for all groups:

∀g, h ∈ G, Pr(Ŷ = 1 | G = g) = Pr(Ŷ = 1 | G = h) (24)

Definition 16. Laissez-Faire allows a separate, u-maximizing threshold φg for each group.
Theorem 17. Demographic parity requires sign-heterogeneous, group-dependent changes to the
Laissez-Faire values of φg when π is non-trivial (does not uniformly accept (reject)).

Satisfying demographic parity in our setting requires the solution of a differential equation in qy
(Appendix B), which we do not rigidly constrain. We therefore rely on numerical simulation, rather
than analytical tools, to evaluate this intervention for our system.

Feedback control Arbitrary state transitions in the equilibrium hyperplane may be permanently
effected by group-dependent perturbations to Φ, which we derive from linear system response at
equilibrium. Specifically, to diminish a specific qualification distance δ(g, g + 1) for given g, Φ may
be perturbed by a vector quantity ∆gΦ = (∆gφ1,∆gφ2, ...,∆gφn).
Theorem 18. On the stable internal equilibrium hyperplane, infinitesimal perturbation of Φ by

∆gΦ := −εδ(g, g + 1)
( αg
s1(1− s1)

, ...,
αg

sg(1− sg)
,

βg
sg+1(1− sg+1)

, ...,
βg

sn(1− sn)

)
(25a)

αg := (µg+1 + µg+2 + ...+ µn), βg := −(µ1 + µ2 + ...+ µg) (25b)

will induce motion in the system preserving s and each δ(h, h+1) for h 6= g. The value of δ(g, g+1)
will be diminished by a ratio proportional to the strength parameter ε > 0.

Perturbations of the form ∆gΦ may be composed linearly for multiple values of g. In particular, when
ε is a universal quantity, we may determine the total perturbation to Φ necessary to simultaneously
and proportionately decrease all qualification distances for any given state on the stable equilibrium
hyperplane. Let us denote this total perturbation as ∆Φ :=

∑
g∈G ∆gΦ = (∆φ1,∆φ2, ...,∆φn).

Component-wise, ∆Φ is given by

∆φg =
−ε

sg(1− sg)

( n−1∑
h=g

αhδ(h, h+ 1) +

g−1∑
h=1

βhδ(h, h+ 1)

)
(26)

We note that the proposed feedback control mechanism depends only on the known constants µg and
feedback in terms of current qualification distances δ. In addition, the force of the intervention can be
tuned by setting the strength parameter ε. Finally, we remark that this mechanism can be composed
with global perturbations of φ, i.e., universal subsidy in the manner of Theorem 14, to intervene
without rejecting any agents that would have been accepted under a group-independent policy.
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Figure 3: Simulated dynamics for two groups of equal size, subject to different global interventions. Streamlines
approximate system time evolution. q0 and q1 are Gaussians with unit variance and have means −1 and 1,
respectively. Other examples and rendered dynamical variables are provided in Appendix C. For this example,
(U00̂ = 0.1; U01̂ = 5.5; U10̂ = 0.5; U11̂ = 1.0;V00̂ = 0.5; V01̂ = −0.5; V10̂ = −0.25; V11̂ = 1.0).

We compare interventions by appeal to simulation, choosing a setting that guarantees a single, stable
average qualification rate s? under group-independent policies (GI) (Fig. 3). We consider trade-offs
between normative present fairness (FNP) (e.g., demographic parity (DP) or equalized odds (EO))
and long-term fairness (FLT), for which the dynamics must converge to the line demarcating equal
qualification rates. Darker shading (blue) implies a higher absolute acceptance rate for Group 1,
which, by the setting’s symmetry, is the same for Group 2 when reflected across the aforementioned
line; reflectional asymmetry violates DP. Under compulsory DP (first pane), the system violates FLT,
settling into a “patronizing equilibrium under affirmative action”, as coined by Coate and Loury [21],
in which agents from a less-qualified group are patronized (e.g., granted loans despite nonqualification)
by the classifier (cf. the upper-left corner, with low qualification and high acceptance rates for Group
1). States under GI (second pane), which satisfies the EO notion of FNP by Theorem 13, converge to
a line of constant s (cf. Remark 4) while preserving qualification disparities (cf. Theorem 10). FLT
is expected from a laissez-faire (LZ) policy (last pane), which adopts group-specific policies and
thus decouples all group dynamics: Each group must converge to s? separately. Still, LZ satisfies
neither the DP (by reflectional asymmetry) nor EO (by Theorem 13) notions of FNP. In contrast,
feedback control (third pane) achieves FLT by conceding ε-small, parametric violations of FNP (EO)
(See Appendix C for plots of classifier error rates in this setting).

5 Discussion and limitations

The novelty of our contribution is the demonstration of persistent qualification rate disparities in
a symmetric setting consistent with plausible mechanisms of population response—sustained by
the careless deployment of machine learning and myopic fairness interventions. We submit that,
given the many charitable assumptions of our model to achieve perfect structural equality between
groups, any reasonable fairness intervention should succeed in responsibly rectifying disparities here,
if anywhere. Moreover, we have laid bare inherent tensions that can exist between the means and
ends of fairness considerations in a dynamical context, demonstrating the potential incompatibility of
immediate and long-term notions of fairness.

We acknowledge that our model is simplistic, but such simple cases must be well-understood as a first
step towards further, equitable models of population response. We regard the requirement of strictly
isolated groups as the most tenuous assumption of our model and conjecture that even relatively
weak inter-group exchange of strategies should lead to long-term fairness in our default setting.
Nonetheless, we believe that a program based on incomplete agent information can successfully
endogenize persistent disparities in symmetric settings more robustly. Specifically, future work may
consider multiple classifiers with different task domains affecting a common population; we expect
this extension to readily endogenize broken symmetries between group environments and conditions.
We also trust that voluntary participation, as considered by Zhang et al. [32], may be modelled as
an additional strategy within our framework. Regarding empirical falsifiability, we note that the
dynamics of social disparity are not exclusive to algorithmic classifiers [27], and ask whether our
model’s predictions may be contrasted with existing and historical resource allocation problems.

We invite readers to consider both our model and application of control theory to society through
algorithmic classification, with care. We intend our work to reform the misapplication of machine
learning, inappropriate modelling assumptions, and myopic notions of fairness.
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The Appendices are organized according to Table 2.

Table 2: Organization of appendices

Appendix Content

Appendix A Summary of notation used in the main paper
Appendix B Proofs of all theorems, remarks, and corollaries as well as additional lemmas
Appendix C Figures like Fig. 3, exploring different settings and variables of interest
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A Notation

Table 3: Choice of notation

Parameters:
n Number of groups
G Set of groups {1, 2, ..., n}
µg Fraction of total population in group g
µ Vector (µ1, µ2, ..., µn)

V 2× 2 matrix of classifier utilities, indexed by (Y, Ŷ ) pairs
θ Classifier’s probability threshold (Lemma 1.1)
U 2× 2 matrix of agent fitnesses, indexed by (Y, Ŷ ) pairs
qy Probability density function of X given Y = y
Qy Cumulative distribution function of X given Y = y

Random Variables:
G Group to which an agent belongs
X Real-valued feature of an agent
Y Actual binary label (qualification) of an agent
Ŷ Predicted binary label (qualification) of an agent

Indices:
g, h, i, j used to indicate a group

x used to indicate a feature value
y used to indicate a binary label (qualification)
ŷ used to indicate a predicted binary label (qualification)

Dynamical Variables:
t Discrete time
·[t] Restriction of a dynamical variable to time t
sg Fraction of qualified agents in group g
s Vector (s1, s2, ..., sn)
s Fraction of qualified agents in total population

δ(g, h) Difference in qualification rates between groups: sg − sh
D A set of n− 1 linearly independent qualification distances δ
r Vector with the elements of D prepending s as components
π Classifier’s policy mapping X to Ŷ
φ Classifier’s feature threshold (Theorem 1)
Wy Average agent fitness conditioned on Y = y
W g Average agent fitness conditioned on G = g

Miscellaneous:
J Jacobian matrix for dynamical system.
λ A specific eigenvalue of J
v A specific eigenvector of J
Φ Vector of group-specific feature thresholds φg
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B Proofs

Proof of Theorem 1
Lemma 1.1. Discounting sets of measure zero, the u-maximizing policy π is parameterized by a
single probability threshold θ ∈ [0, 1] such that

π(x) =

{
1 Pr(Y = 1 | X = x) > θ

0 otherwise
(27)

where

θ =
V00̂ − V01̂

V11̂ − V01̂ + V00̂ − V01̂

(28)

Proof of Lemma 1.1. Discounting sets of measure zero (i.e., rejecting the possibility of strict
equality as infinitely unlikely), a classifier will accept an agent with feature value X = x if and
only if the expected utility of doing so is greater than rejecting.(

1∑
y=0

Pr(Y = y | X = x)Vy1̂

)
>

(
1∑
y=0

Pr(Y = y | X = x)Vy0̂

)
(29)

This reduces algebraically to

Pr(Y = 1 | X = x)

Pr(Y = 0 | X = x)
> ξ (30)

where

ξ :=
V00̂ − V01̂

V11̂ − V10̂

(31)

and by change of variables

θ :=
ξ

1 + ξ
=

V00̂ − V01̂

V11̂ − V10̂ + V00̂ − V01̂

, ξ =
θ

1− θ (32)

to

Pr(Y = 1 | X = x) > θ (33)

Eq. (33) is thus the sole criterion for accepting an agent with feature value X = x, and our proof is
complete.

Lemma 1.2.

Pr(Y = 1 | X = x) =
sq1(x)

sq1(x) + (1− s)q0(x)
(34)

Proof of Lemma 1.2. By Bayes’s Theorem,

Pr(G = g, Y = 1 | X = x) =
pX(x | G = g, Y = 1) Pr(Y = 1 | G = g) Pr(G = g)

pX(x)
(35a)

=
q1(x)sgµg∑

h∈G
(
shq1(x) + (1− sh)q0(x)

)
µh

(35b)

By marginalizing over groups g, it follows that

Pr(Y = 1 | X = x) =

∑
g∈G sgq1(x)µg∑

h∈G
(
shq1(x) + (1− sh)q0(x)

)
µh

(36)

This expression may be simplified to the target statement by substituting from Eq. (1):

s :=
∑
g∈G

µgsg (37)
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(1− s) =
∑
g

µg −
∑
g∈G

µgsg (38a)

=
∑
g∈G

µg(1− sg) (38b)

Lemma 1.3. Pr(Y = 1 | X = x) and Pr(Y = 0 | X = x) have support for all x.
∀x ∈ (−∞,∞), 0 < Pr(Y = 1 | X = x) < 1 (39)

Proof of Lemma 1.3. By Assumption 3 and Assumption 1, sq1(x) and (1− s)q0(x) must
both be strictly positive. As an immediate consequence of Lemma 1.2 and the identity
Pr(Y = 1 | X = x) = 1− Pr(Y = 0 | X = x), we conclude that both Pr(Y = 1 | X = x) and
Pr(Y = 0 | X = x) are greater than zero.

Lemma 1.4. Pr(Y = 1 | X = x) is monotonically increasing in X .

Proof of Lemma 1.4. By Assumption 3, we have that

∀y, x, qy(x) ∈ (0,∞) and
d

dx

(
q1(x)

q0(x)

)
> 0

While from Lemma 1.2,

Pr(Y = 1 | X = x) =
sq1(x)

sq1(x) + (1− s)q0(x)

By the differentiability and strict positivity of each q (Assumption 3) as well as the strict psitivity
of Pr(Y = 1 | X = x) by Lemma 1.3, it is sufficient to show strict positivity of the first derivative
of Pr(Y = 1 | X = x) to prove monotonicity. We therefore wish to show

d

dx

(
q1(x)

q0(x)

)
> 0 =⇒ d

dx

(
sq1(x)

sq1(x) + (1− s)q0(x)

)
> 0 (40)

First, let us define

a(x) := sq1(x); b(x) := (1− s)q0(x) (41)

Our objective may therefore be rewritten as(
(1− s)
s

)
d

dx

(
a(x)

b(x)

)
> 0 =⇒ d

dx

(
a(x)

a(x) + b(x)

)
> 0 (42)

Performing explicit differentiation,

d

dx

(
a(x)

b(x)

)
=

(
a(x) + b(x)

b(x)

)2
d

dx

(
a(x)

a(x) + b(x)

)
(43)

we again rewrite our objective as

(1− s)
s

(
a(x) + b(x)

b(x)

)2
d

dx

(
a(x)

a(x) + b(x)

)
> 0 =⇒ d

dx

(
a(x)

a(x) + b(x)

)
> 0 (44)

since 1−s
s > 0 by Assumption 1, this is a necessarily true statement.

Theorem 1 Statement. Discounting sets of measure zero, the u-maximizing, group-independent
policy π is parameterized by the feature threshold φ ∈ [−∞,∞] such that π(x) = 1 if and only if
x > φ, where φ depends only on the global qualification rate s̄ as

ξ :=
V00̂ − V01̂

V11̂ − V10̂

;
q1(φ)

q0(φ)
= ξ

(
1− s
s

)
(45)
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When a solution in φ to the threshold equation, Eq. (45), does not exist, φ is either ±∞.

Proof of Theorem 1. By Lemma 1.1, a threshold value for Pr(Y = 1 | X = x) (i.e., θ) is sufficient
to characterize the optimal classifier policy π:

π(x) =

{
1 Pr(Y = 1 | X = x) > θ

0 otherwise
(46)

Lemma 1.4 concludes that Pr(Y = 1 | X = x) is monotonic in X , and so it follows that whenever
Pr(Y = 1 | X = x) achieves the threshold value of θ, it does so at a corresponding, unique
feature-threshold value X = φ

∀x, Pr(Y = 1 | X = x) = θ =⇒ x = φ (47)

such that the classifier’s policy is given by

π(x) =

{
1 x > φ

0 otherwise
(48)

When such equality between Pr(Y = 1 | X = x) and θ never occurs, we are free to define

φ =

{−∞ minx
{

Pr(Y = 1 | X = x)
}
> θ

∞ maxx
{

Pr(Y = 1 | X = x)
}
< θ

(49)

so that Eq. (48) remains valid in all cases.
Finally, when equality between Pr(Y = 1 | X = x) and θ does occur, we may solve for finite φ by
re-expressing Pr(Y = 1 | X = x) according to Lemma 1.2:

θ =
sq1(φ)

sq1(φ) + (1− s)q0(φ)
(50)

Algebraic manipulations are sufficient to derive Eq. (45), where we appeal to Assumption 1
(sg ∈ (0, 1)) and Assumption 6 (ξ ∈ (0,∞), thus θ ∈ (0, 1) by Eq. (32)) to ensure that we do not
divide by 0.

Proof of Corollary 1.1

Corollary 1.1 Statement. The classifier’s feature threshold φ responds inversely to s:

dφ

ds
< 0,

ds

dφ
< 0 (51)

Proof of Corollary 1.1. Let us differentiate Eq. (45) with respect to s. By the chain rule,

d

dφ

(
q1(φ)

q0(φ)

)(
dφ

ds

)
=

(
θ

1− θ

)
d

ds

(
1− s
s

)
(52a)

=

(
θ

1− θ

)( −1

(s)2

)
(52b)

By Assumption 3, Assumption 6, we observe

d

dφ

(
q1(φ)

q0(φ)

)
> 0;

(
θ

1− θ

)
> 0;

( −1

(s)2

)
< 0 (53)

Therefore, by accounting for the sign of each factor in Eq. (52b) and the relationship between
derivatives of inverse functions, we conclude that

dφ

ds
< 0,

ds

dφ
< 0 (54)

Proof of Theorem 2
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Definition 2.1. Define the cumulative distribution functions Qy such that

Qy(φ) :=

∫ φ

−∞
qy(x) dx, y ∈ {0, 1} (55)

Lemma 2.1. Qy(φ) is group-independent.

Qy(φ) = Pr(Ŷ = 0 | Y = y) (56)

Proof of Lemma 2.1.

Qi(φ) :=

∫ φ

−∞
qi(x) dx (57a)

=

∫
{x : π(x)=0}

pX(x | Y = i) (57b)

=

∫
{x : π(x)=0}

pX(x | Y = i, G = g), ∀g ∈ G (57c)

= Pr(Ŷ = 0 | Y = i, G = g), ∀g ∈ G (57d)

= Pr(Ŷ = 0 | Y = y) (57e)

where Eq. (57b) is a consequence of Theorem 1, and Eq. (57c) follows from Assumption 2.

Theorem 2 Statement. The fitness W g
y of strategy Y = y in group g is feature- and group-

independent.

∀y, g, W g
y = Wy (58)

Proof of Theorem 2. By Assumption 8 and Lemma 2.1,

W g
y = Uy1̂ + (Uy0̂ − Uy1̂)Qy(φ), y ∈ {0, 1} (59)

This expression is also group-independent, and we may denote

∀y, g, W g
y = Wy (60)

Verification of Eq. (12)

Eq. (12) Statement.

sg = s+

n−1∑
h=g

δ(h, h+ 1)−
n−1∑
h=1

h∑
k=1

µkδ(h, h+ 1)

Verification of Eq. (12). We will verify from Eq. (12) directly that∑
g

sgµg = s; sg − sg+1 = δ(g, g + 1) (61)

First, let us verify that
∑
g sgµg = s, recalling

∑n
g=1 µg = 1. We recognize that thes first and

third unexpanded terms in Eq. (12) are unvarying with g, while the second term, when summed,
negates the third. That is, despite prescribing a different order of summation, precisely the same
values are summed in

n∑
g=1

µg

n−1∑
h=g

δ(h, h+ 1) =

n−1∑
h=1

h∑
k=1

µkδ(h, h+ 1) =
∑

1≤i≤j<n
µiδ(j, j + 1) (62)

and so, as desired,
n∑
g=1

µgsg = s (63)
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Next, we rewrite the definitions of αg and βg appearing in Theorem 18

αg :=

n∑
h=g+1

µh = (µg+1 + µg+2 + ...+ µn) (64)

βg := −
g∑

h=1

µh = −(µ1 + µ2 + ...+ µg) (65)

We note that αg − βg = 1 and may rewrite the change of coordinates given in Eq. (12) as

sg = s+

n−1∑
h=g

δ(h, h+ 1)−
n−1∑
h=1

h∑
k=1

µkδ(h, h+ 1) (66a)

= s+

n−1∑
h=g

δ(h, h+ 1) +

n−1∑
h=1

βhδ(h, h+ 1) (66b)

= s+

n−1∑
h=g

αhδ(h, h+ 1) +

g−1∑
h=1

βhδ(h, h+ 1) (66c)

from which we may verify that

sg − sg+1 = αgδ(g, g + 1)− βgδ(g, g + 1) = δ(g, g + 1) (67)

It follows that Eq. (12) inverts the linear change of coordinates prescribed by the definitions of s
and δ(g, g + 1).

Proof of Remark 4

Remark 4 Statement. States s with a common s value form a hyperplane s = 〈µ, s〉 (Eq. (2)), by
definition.

Proof of Remark 4. This follows from the definition of a hyperplane and Eq. (2)

s :=
∑
g∈G

µgsg = 〈µ, s〉 (68)

Proof of Theorem 5

Theorem 5 Statement. The nullity of any p-total qualification rate disparity is preserved in time.

p ≥ 1;
∥∥D[t]

∥∥
p

= 0 ⇐⇒
∥∥D[t+ 1]

∥∥
p

= 0 (69)

Proof of Theorem 5. We first prove the forward direction (for any p),H = {1, 2, ..., n− 1}

n−1∑
g=1

‖δ(g, g + 1)[t]‖p = 0 =⇒ δ(h, h+ 1)[t] = 0 ∀h ∈ H (70a)

=⇒ sh[t] = sh+1[t], Wh[t] = Wh+1[t] ∀h ∈ H (70b)

=⇒ sh[t]
W1

Wh[t]
= sh+1[t]

W1

Wh+1[t]
∀h ∈ H (70c)

=⇒ sh[t+ 1] = sh+1[t+ 1] ∀h ∈ H (70d)
=⇒ δ(h, h+ 1)[t+ 1] = 0 ∀h ∈ H (70e)

=⇒
n−1∑
g=1

‖δ(g, g + 1)[t+ 1]‖p = 0 (70f)
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Next, we prove the reverse direction (for any p):

n−1∑
g=1

‖δ(g, g + 1)[t+ 1]‖p = 0 =⇒ δ(h, h+ 1)[t+ 1] = 0 ∀h ∈ H (71a)

=⇒ sh[t+ 1] = sh+1[t+ 1] ∀h ∈ H (71b)

=⇒ sh[t]
W1

Wh[t]
= sh+1[t]

W1

Wh+1[t]
∀h ∈ H (71c)

=⇒ sh[t] = sh+1[t] ∀h ∈ H (71d)
=⇒ δ(h, h+ 1)[t] = 0 ∀h ∈ H (71e)

=⇒
n−1∑
g=1

‖δ(g, g + 1)[t]‖p = 0 (71f)

where Eq. (71d) follows from
sg

sgW1 + (1− sg)W0
=

sh
shW1 + (1− sh)W0

(72a)

=⇒ sg(shW1 + (1− sh)W0) = sh(sgW1 + (1− sg)W0) (72b)
=⇒W0sg = W0sh (72c)
=⇒ sg = sh (72d)

Proof of Theorem 7

Theorem 7 Statement.

Disregarding boundary states by Assumption 1, the replicator equation, Eq. (7), implies
sgn

(
s[t+ 1]− s[t]

)
= sgn

(
W1(φ[t])−W0(φ[t])

)
(73)

Proof of Theorem 7. There are three mutually exclusive cases we must consider by appeal to the
replicator equation (Eq. (7)) and Assumption 1 (sg ∈ (0, 1) for all g in G). Specifically, we verify
that

W1 > W0 =⇒ ∀g ∈ G, W1

W g

> 1 =⇒ s[t+ 1] > s[t] (74a)

W1 = W0 =⇒ ∀g ∈ G, W1

W g

= 1 =⇒ s[t+ 1] = s[t] (74b)

W1 < W0 =⇒ ∀g ∈ G, W1

W g

< 1 =⇒ s[t+ 1] < s[t] (74c)

The sign of W1 −W0 therefore determines the sign of s[t+ 1]− s[t] directly. Likewise, the sign
of s[t+ 1]− s[t] implies the sign of W1 −W0, for any discrepancy would imply a contradiction:

s[t+ 1] > s[t] =⇒ W1 > W0 (75a)
s[t+ 1] = s[t] =⇒ W1 = W0 (75b)
s[t+ 1] < s[t] =⇒ W1 < W0 (75c)

Proof of Theorem 8

Theorem 8 Statement.

It is necessary and sufficient for a system at equilibrium that W1 = W0 or for the system to occupy
some vertex of the state space.

at equilibrium ⇐⇒
{
W1 = W0 (internal equilibrium)
∀g ∈ G, sg ∈ {0, 1} (trivial equilibrium)

(76)
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Proof of Theorem 8. By the definition of equilibrium (Definition 6), the forward direction implies
equality between sg[t] and sg[t0 + 1] for all g ∈ G. It follows from the replicator equation (Eq. (7))
that at least one condition must be met to guarantee this equality, and at least one is consequent:

∀g ∈ G, (77a)

sg[t0 + 1] = sg[t0] ⇐⇒
(

W1

W1sg +W0(1− sg)
[t0] = 1 ∨ sg[t0] = 0

)
(77b)

We consider the first case further and note that it is true if and only if W1 = W0 or sg = 1.

W1

W1sg +W0(1− sg)
= 1 ⇐⇒ W1 = W1sg +W0(1− sg) (78a)

⇐⇒ (1− sg)W1 = W0(1− sg) (78b)

⇐⇒
(
W1 = W0 ∨ sg = 1

)
(78c)

Thus the tree of cases terminates with, for each g ∈ G, any one of sg = 0, sg = 1, or W0 = W1,
as necessary and sufficient for the state to be at equilibrium. We note that if W0 = W1, no other
conditions must be considered separately for different values of g. We may therefore re-express
these conditions for equilibrium succinctly as the two cases we set out to show:

at equilibrium ⇐⇒
(
W1 = W0 ∨ ∀g ∈ G, sg ∈ {0, 1}

)
(79)

Note: It is possible that W1 = W0 at some trivial equilibrium, and so our use of the term internal
equilibrium does not strictly limit us to consideration of states in the interior of the state space (i.e.,
points removed from the boundary).

Proof of Theorem 9

Theorem 9 Statement. W1(φ) −W0(φ) is strictly quasi-concave in φ. This guarantees that no
more than two zeros of the function W1 −W0 exist.

Proof of Theorem 9. We proceed by characterizing the function W1(φ)−W0(φ), starting with its
zeros. By Theorem 2 and Lemma 2.1, the values of φ for which W1(φ)−W0(φ) = 0 must satisfy(

U11̂ + (U10̂ − U11̂)Q1(φ)
)
−
(
U01̂ + (U00̂ − U01̂)Q0(φ)

)
= 0 (80)

Next, we consider the first derivative of W1 −W0 with respect to φ:
d

dφ

(
W1(φ)−W0(φ)

)
= q1(φ)(U10̂ − U11̂)− q0(φ)(U00̂ − U01̂) (81a)

=

(
q1(φ)

q0(φ)
− U00̂ − U01̂

U10̂ − U11̂

)(
q0(φ)(U10̂ − U11̂)

)
(81b)

Recall that Ui0̂ 6= Ui1̂ and U10̂ < U11̂ (Assumption 9). By the strict (increasing) monotonicity
of q1(φ)

q0(φ) in φ and strict positivity of q0(φ), both guaranteed by Assumption 3, the sign of this
expression can change at most once as φ is varied from −∞ to∞. We denote the value of φ at
which the sign of this first derivative changes as φ?:

q1(φ?)

q0(φ?)
=
U00̂ − U01̂

U10̂ − U11̂

(82)

Moreover, it follows that

φ < φ? =⇒ d

dφ
W1 −W0 > 0 (83a)

φ > φ? =⇒ d

dφ
W1 −W0 < 0 (83b)

W1 −W0 is therefore strictly quasi-concave, from which it follows that only two zeros of the
function can exist (By contradiction, more than two zeros would require the function, which has no
discontinuities, to invert its slope more than once.)
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For completeness, we may also take a second derivative of W1 −W0 with respect to φ:

d2

dφ2

(
W1(φ)−W0(φ)

)
=

d

dφ

(
q1(φ)

q0(φ)

)(
q0(φ)(U10̂ − U11̂)

)
+

(
q1(φ)

q0(φ)
− U00̂ − U01̂

U10̂ − U11̂

)(
d

dφ
q0(φ)

) (84)

Doing so, we observe that W1 −W0 may have any number of inflection points, but φ? cannot be
one of them. We see this because the second term of the expression above evaluated at φ? must be
zero, but the first term must be non-zero by Assumption 3 and Assumption 9. It follows that φ? is
the unique occurrence of a local extremum and therefore a global extremum of W1 −W0.

Proof of Theorem 10

Theorem 10 Statement. If the state of the system asymptotically approaches an internal equilibrium,
the nullity of p-total qualification rate disparity is preserved in the limit of infinite time.

p ≥ 1; lim
t′→∞

(W1 −W0) = 0 =⇒
(∥∥D[t]

∥∥
p

= 0 ⇐⇒ lim
t′→∞

∥∥D[t′]
∥∥
p

= 0
)

(85)

Proof of Theorem 10. Assuming that a state asymptotically approaches the equilibrium hyperplane
(limt′→∞(W1−W0) = 0), Let us first prove the forward direction of the desired mutual implication.
If a state starts with zero total qualfication rate disparity, it follows by Theorem 5 that the total
qualification rate disparity remains zero for all time, and so

p ≥ 1; lim
t′→∞

(W1 −W0) = 0 =⇒
(∥∥D[t]

∥∥
p

= 0 =⇒ lim
t′→∞

∥∥D[t′]
∥∥
p

= 0
)

(86)

For the reverse direction, let us define s? as the unique disparity-free state on the stable internal
equilibrium hyperplane, such that ∥∥D(s?)

∥∥
p

= 0 (87)

We may phase the assumptions limt′→∞(W1 −W0) = 0 and limt′→∞ ‖D[t′]‖p = 0 jointly as the
condition

lim
t′→∞

s = s? (88)

By the Weierstrass definition of a limit, this is

∀ε > 0,∃t0,∀t > t0, ‖s− s?‖p < ε. (89)

For any ε, we have thus assumed that there exists some time t0 beyond which s is within ε of s?.
In particular, we are free to choose ε small enough that the local dynamics of the system are well
approximated by the linearization undertaken in the proof of Theorem 11:
Because the system is well approximated to first order within any sufficiently-small ε-neighborhood
of the equilibrium hyperplane, the preimage of s? in the infinite-time limit within this neighborhood
lies along the line through s? parallel to the sole eigenvector of the Jacobian with non-zero
eigenvalue: v.
When ∀g, δ(g, g + 1) = 0, v is orthogonal to the internal equilibrium hyperplane (Eq. (21)),
therefore, all states in the preimage of s? also satisfy ∀g, δ(g, g + 1) = 0 and exhibit zero p-total
qualification rate disparity. We may then appeal to induction and Theorem 5 to note that the entire
trajectory of of the state must have had zero total disparity.

p ≥ 1; lim
t′→∞

(W1 −W0) = 0 =⇒
(∥∥D[t]

∥∥
p

= 0 ⇐= lim
t′→∞

∥∥D[t′]
∥∥
p

= 0
)

(90)

This completes the proof.

A Series of Lemmas for Linear Stability Analysis
Lemma 11.1.

∂

∂φ

W1

W g

∣∣∣∣∣
eq

=
1

Weq
(1− sg)

∂

∂φ
(W1 −W0)

∣∣∣
eq

(91)
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Proof of Lemma 11.1. We directly differentiate the expression evaluated at equilibrium, recalling
that Weq = W0|eq = W1|eq = W g|eq ∀g ∈ G and Wg = sgW1 + (1− sg)W0.

∂

∂φ

W1

W g

∣∣∣∣∣
eq

=
1

Weq

∂W1

∂φ

∣∣∣∣∣
eq

− 1

Weq

∂W g

∂φ

∣∣∣∣∣
eq

(92a)

=
1

Weq

∂

∂φ

(
W1 − sgW1 − (1− sg)W0

)∣∣∣∣∣
eq

(92b)

=
1

Weq
(1− sg)

∂

∂φ
(W1 −W0)

∣∣∣
eq

(92c)

Lemma 11.2. ∀g ∈ G,

∂s

∂sg
= µg,

∂δ(g, g + 1)

∂sg
= 1,

∂δ(g − 1, g)

∂sg
= −1 (93)

Proof of Lemma 11.2. By Eq. (2) and Eq. (10), the result is immediate.

Lemma 11.3.

∂sg
∂s

= 1 (94)

Proof of Lemma 11.3. By Eq. (12), the result is immediate.

Lemma 11.4.

∂sg
∂δ(g, h)

=

{
1− µ1 − µ2 − ...− µg h = g + 1

µ1 + µ2 + ...+ µg−1 h = g − 1
=

{
1 + βg h = g + 1

−µg − βg h = g − 1
(95)

∂sh
∂δ(g, h)

=

{−µ1 − µ2 − ...− µg h = g + 1

−1 + µ1 + µ2 + ...+ µg−1 h = g − 1
=

{
βg h = g + 1

−µg − βg − 1 h = g − 1
(96)

Proof of Lemma 11.4. The result follows from Eq. (12), noting δ(g, h) = −δ(h, g).

Lemma 11.5. Taking a partial derivative with respect to sg while holding all other sh, h 6= g fixed,

∂

∂sg[t]
sg[t+ 1]

∣∣∣∣∣
eq

= 1 + µg
1

Weq

(
∂φ

∂s

)
sg(1− sg)

∂

∂φ
(W1 −W0)

∣∣∣∣∣
eq

(97)

Holding φ constant as well,

(
∂

∂sg[t]

)
φ

sg[t+ 1]

∣∣∣∣∣
eq

= 1 (98)

When φ is held constant when taking a partial derivative with respect to sg, we shall denote the
partial derivative with φ in the subscript, as in the equation above, and omit this subscript otherwise.

Proof of Lemma 11.5. Let us begin by proving the second equality, observing first that

∂

∂sg
W g =

∂

∂sg

(
sgW1 + (1− sg)W0

)
= W1 −W0 (99)
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With φ fixed, W1 does not depend on sg . Therefore, substituting sg[t+ 1] = sg
W1

W g
,(

∂

∂sg

)
φ

(
sg
W1

W g

)∣∣∣∣∣
eq

=
W1

W g

∣∣∣∣∣
eq

− sg
W1

W
2

g

(W1 −W0)

∣∣∣∣∣
eq

(100a)

=
Weq

Weq
− 0 (100b)

= 1 (100c)

We next address the first equality. By Lemma 11.2,(
∂φ

∂sg

)
=

(
∂s

∂sg

)(
∂φ

∂s

)
= µg

(
∂φ

∂s

)
(101)

By Lemma 11.1,(
∂

∂sg

)(
sg
W1

W g

)∣∣∣∣∣
eq

=

(
∂

∂sg

)
φ

(
sg
W1

W g

)∣∣∣∣∣
eq

+ sg

(
∂φ

∂sg

)(
∂

∂φ

W1

Wg

)∣∣∣∣∣
eq

(102a)

= 1 + µg
sg
Weq

(
∂φ

∂s

)
(1− sg)

∂

∂φ
(W1 −W0)

∣∣∣∣∣
eq

(102b)

Fact 11.1. We note when differentiating an expression g with respect to an expression f, each
involving each sg and φ (which depends on each sg), we may invoke the chain rule to treat φ as an
independent function input from the beginning, or we may treat the effect on φ due to perturbation of
each sg separately. It is for this reason that we have been explicit about which variables are fixed in
the partial derivatives of Lemma 11.5.

∂

∂sg
f(sg, φ) =

∂φ

∂sg

∂ f

∂φ
+

(
∂ f

∂sg

)
φ

(103)

∂φ

∂f
=
∑
g∈G

∂sg
∂f

∂φ

∂sg
(104)

Therefore,

∂

∂f
g(sg, φ) =

∑
g∈G

(
∂sg
∂f

)
∂

∂sg
g(sg, φ) (105a)

=
∑
g∈G

(
∂sg
∂f

)(
∂φ

∂sg

∂g

∂φ
+

(
∂g

∂sg

)
φ

)
(105b)

=
∑
g∈G

(
∂sg
∂f

∂φ

∂sg

)
∂g

∂φ
+
∑
g∈G

(
∂sg
∂f

)(
∂g

∂sg

)
φ

(105c)

=
∂φ

∂f

∂g

∂φ
+
∑
g∈G

(
∂sg
∂f

)(
∂g

∂sg

)
φ

(105d)

For convenience, we will treat φ as an independent function input (i.e., we will invoke the chain rule
as in Eq. (105d)) when proving Lemma 11.6, Lemma 11.7, and Lemma 11.8.

Lemma 11.6.

∂(s[t+ 1]− s[t])
∂s[t]

∣∣∣∣∣
eq

=
1

Weq

(
∂φ

∂s

)(∑
g∈G

µgsg(1− sg)
)
∂

∂φ
(W1 −W0)

∣∣∣
eq

(106)
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Proof of Lemma 11.6. Noting that s[t+ 1] depends on each sg and φ,

s[t+ 1] =
∑
g∈G

µgsg
W1(φ)

W g(φ)
(107)

we may use the chain rule (Fact 11.1),

∂

∂s
f(s1, s2, ..., sn, φ) =

∑
g∈G

∂sg
∂s

(
∂f

∂sg

)
φ

+
∂φ

∂s

∂f

∂φ
(108)

to compute, referencing Lemma 11.1, Lemma 11.2, Lemma 11.3, and Lemma 11.5,

∂(s[t+ 1]− s[t])
∂s[t]

∣∣∣∣∣
eq

=
∂s[t+ 1]

∂s[t]
− 1

∣∣∣∣∣
eq

(109a)

=

(∑
g∈G

(
∂sg
∂s

)(
∂

∂sg

)
φ

(
µgsg

W1

W g

)
+

(
∂φ

∂s

)(
∂

∂φ

∑
g∈G

µgsg
W1

W g

)
− 1

)∣∣∣∣∣
eq

(109b)

=
∑
g∈G

µg +

(
∂φ

∂s

)
1

Weq

∑
g∈G

µgsg(1− sg)
∂

∂φ
(W1 −W0)

∣∣∣∣∣
eq

− 1 (109c)

=
1

Weq

(
∂φ

∂s

)(∑
g∈G

µgsg(1− sg)
)
∂

∂φ
(W1 −W0)

∣∣∣
eq

(109d)

Lemma 11.7.

∂

∂s[t]

(
δ(g, h)[t+ 1]− δ(g, h)[t]

)∣∣∣∣∣
eq

(110a)

=
1

Weq

(
∂φ

∂s

)
δ(g, h)(1− sg − sh)

∂

∂φ
(W1 −W0)

∣∣∣∣∣
eq

(110b)

Proof of Lemma 11.7. Since s and δ(g, h) are independent coordinates, the partial derivative of
one with respect to the other at the same time is identically zero.

∂

∂s
δ(g, h) = 0 (111)

The left hand side of the target equality is therefore equal to

∂

∂s[t]
δ(g, h)[t+ 1]

∣∣∣∣∣
eq
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From the chain rule (Fact 11.1), Lemma 11.1, Lemma 11.3, and Lemma 11.5, it follows that

∂

∂s[t]
δ(g, h)[t+ 1]

∣∣∣
eq

(112a)

=

((
∂φ

∂s

)
∂δ(g, h)[t+ 1]

∂φ
+
∂sg
∂s

(
∂sg[t+ 1]

∂sg[t]

)
φ

− ∂sh
∂s

(
∂sh[t+ 1]

∂sh[t]

)
φ

)∣∣∣∣∣
eq

(112b)

=

(
∂φ

∂s

)
∂

∂φ
δ(g, h)[t+ 1]

∣∣∣∣∣
eq

(112c)

=

(
∂φ

∂s

)
∂

∂φ

(
sg
W1

W g

− sh
W1

Wh

)∣∣∣∣∣
eq

(112d)

=
1

Weq

(
∂φ

∂s

)(
sg(1− sg)− sh(1− sh)

) ∂

∂φ
(W1 −W0)

∣∣∣
eq

(112e)

=
1

Weq

(
∂φ

∂s

)
δ(g, h)(1− sg − sh)

∂

∂φ
(W1 −W0)

∣∣∣
eq

(112f)

Lemma 11.8. (
∂s[t+ 1]− s[t]
∂δ(g, h)[t]

)∣∣∣∣∣
eq

= 0 (113)

(
∂δ(g, h)[t+ 1]− δ(g, h)[t]

∂δ(g, h)[t]

)∣∣∣∣∣
eq

= 0 (114)

(
∂δ(h, h+ 1)[t+ 1]− δ(h, h+ 1)[t]

∂δ(g, g + 1)[t]

)∣∣∣∣∣
eq

= 0, ∀h 6= g (115)

Proof of Lemma 11.8. By Theorem 1, φ depends only on s, which is held constant during partial
differentiation by δ(g, h). Therefore,

∂φ

∂δ(g, h)
= 0 (116)

Consider any expression f which depends linearly on each sg[t+ 1].

f
(
sg : g ∈ G

)
:=
∑
g∈G

fgsg, fg ∈ R (117)

where we introduce a “vector builder” notation s =
(
sg : g ∈ G

)
for brevity. We may use the

linearity of differentiation to concisely deal with derivatives of linear combinations of f. We
consider will expressions without explicit time dependence to correspond to time [t]. By the chain
rule (Fact 11.1), Eq. (116), and Lemma 11.5,

∂

∂δ(g, h)

(
f[t+ 1]− f[t]

)∣∣∣∣∣
eq

(118a)

=

(∑
i∈G

∂si
∂δ(g, h)

(
∂

∂si

)
φ

+
∂φ

∂δ(g, h)

∂

∂φ

)
f
(
si[t+ 1]− si[t] : i ∈ G

)∣∣∣∣∣
eq

(118b)

= f

(∑
i∈G

∂si
∂δ(g, h)

(
∂si[t+ 1]

∂si[t]
− ∂si[t]

∂si[t]

)
: i ∈ G

)
(118c)

= f(0 : i ∈ G) = 0 (118d)

We conclude that perturbing any δ while holding s constant has no effect on the evolution of
dynamical variables that are linear in s at equilibrium. This includes each δ and s.
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Proof of Theorem 11

Theorem 11 Statement. The Jacobian J simplifies to a scalar multiplied by a matrix with a single
non-zero column v in the last position.

J

∣∣∣∣∣
eq

=
1

Weq

(
dφ

ds

)(
d

dφ
(W1 −W0)

)[
0(n×n−1)

∣∣∣∣∣v
]
, v :=

 δ(1,2)(1−s1−s2)
δ(2,3)(1−s2−s3)

...
δ(n−1,n)(1−sn−1−sn)∑

g∈G µgsg(1−sg)

 (119)

Proof of Theorem 11. The zero entries in the Jacobian matrix are a consequence of Lemma 11.8.
Lemma 11.7 and Lemma 11.6 provide us with the last column of the matrix J in the desired form:

∂δ(g, h)[t+ 1]− δ(g, h)[t]

∂s[t]

∣∣∣
eq

=
1

Weq

(
∂φ

∂s

)
δ(g, h)(1− sg − sh)

∂

∂φ
(W1 −W0)

∣∣∣
eq

(120)

∂(s[t+ 1]− s[t])
∂s[t]

∣∣∣∣∣
eq

=
1

Weq

(
∂φ

∂s

)(∑
g∈G

µgsg(1− sg)
)
∂

∂φ
(W1 −W0)

∣∣∣
eq

(121)

Proof of Corollary 11.1

Corollary 11.1 Statement.

At equilibrium, any state displacement vector with zero s component is an eigenvector of J with
eigenvalue 0, while v is an eigenvector of J with eigenvalue λ:

λ :=

(∑
g∈G

µgsg(1− sg)
)

1

Weq

(
dφ

ds

)(
d

dφ
(W1 −W0)

)∣∣∣∣∣
eq

(122)

Proof of Corollary 11.1. Corollary 11.1 follows by inspection of J in Eq. (119).

Proof of Corollary 11.2

Corollary 11.2 Statement. As a consequence of Corollary 1.1, which states dφ
ds < 0, the eigenvalue

λ in Eq. (22) is negative, (and the associated equilibrium hyperplane stable) iff d
dφ (W1−W0)|eq > 0.

This prescribes precisely the value φ+ for the stable equilibrium hyperplane.

Proof of Corollary 11.2. This is a consequence of Corollary 1.1 and Corollary 11.1 given Assump-
tion 1 (each sg is interior) and the restriction of Wy ∈ [0,∞) as specified in the replicator equation
(Eq. (7)). The eigenvalue λ is negative, (and the associated equilibrium hyperplane stable) iff

d

dφ
(W1 −W0)

∣∣∣
eq
> 0 (123)

This prescribes precisely the value φ+ for the stable equilibrium hyperplane.

Proof of Theorem 13

Theorem 13 Statement. For policies defined by group-specific thresholds φg, the equivalence of
these feature thresholds (∀g, φg = φ) is necessary and sufficient to satisfy Equalized Odds given the
group-independence of each qy (Assumption 2).

Proof of Theorem 13. The forward direction (group-independence satisfies Equalized Odds) fol-
lows from the group-independence of Qy (Definition 2.1). The reverse direction follows from the
same; specifically, as functions of φ,

Pr(Ŷ = 0 | Y = y) = Qy(φ) (124)

Pr(Ŷ = 1 | Y = y) = (1−Qy(φ)) (125)

are each monotonic, and any specified value of Pr(Ŷ = ŷ | Y = y) corresponds to a unique φ
value that must be shared by all groups.
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Proof of Corollary 13.1

Corollary 13.1 Statement. Equalized Odds does not imply long-term fairness in our model.

Proof of Corollary 13.1. By contradiction, we have shown that a group-independent threshold
policy satisfies Equalized Odds (Theorem 13), yet long-term fairness is violated by persistent
qualification rate disparities (Theorem 10).

Proof of Theorem 14

Theorem 14 Statement. Θ(ε) perturbations of a group-independent φ at internal equilibrium induce
motion, which, to first-order approximation (i.e., ignoring O(ε2) terms), is parallel to the eigenvector
v.

Proof of Theorem 14. We note that the a perturbation to φ at internal equilibrium causes a change
in state vector parallel to the eigenvector v, where

v =
∂r

∂s
=


δ(1, 2)(1− s1 − s2)
δ(2, 3)(1− s2 − s3)

...
δ(n− 1, n)(1− sn−1 − sn)∑

g∈G µgsg(1− sg)

 (126)

By use of the chain rule with Lemma 11.7, or direct application of Lemma 11.1, we note

∂

∂φ

(
δ(g, h)[t+ 1]− δ(g, h)[t]

)∣∣∣∣∣
eq

=

(
∂φ

∂s

)−1
∂δ(g, h)[t+ 1]− δ(g, h)[t]

∂s[t]

∣∣∣∣∣
eq

(127a)

=
1

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq

(
sg(1− sg)− sh(1− sh)

)∣∣∣∣∣
eq

(127b)

=
1

Weq

∂

∂φ
(W1 −W0)

∣∣∣∣∣
eq

δ(g, h)(1− sg − sh) (127c)

Likewise, pairing the chain rule with Lemma 11.6 or directly applying Lemma 11.1, we note

∂

∂φ

(
s[t+ 1]− s[t]

)∣∣∣∣∣
eq

=

(
∂φ

∂s

)−1
∂(s[t+ 1]− s[t])

∂s[t]

∣∣∣∣∣
eq

(128a)

=
1

Weq

∂

∂φ
(W1 −W0)

∣∣∣∣∣
eq

∑
g

µgsg(1− sg) (128b)

Together, our observations imply

∂

∂φ
(s[t+ 1]− s[t])

∣∣∣∣∣
eq

=
1

Weq

∂

∂φ
(W1 −W0)

∣∣∣∣∣
eq

v (129)

and perturbation of φ induces motion parallel to v. For readers familiar with gradient descent but
new to linear stability analysis, we offer the intuition that v is parallel to the gradient of φ in state
space.

Proof of Theorem 17

Theorem 17 Statement. Demographic parity requires sign-heterogeneous, group-dependent
changes to the Laissez-Faire values of φg when π is non-trivial (does not uniformly accept (re-
ject)).
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Proof of Theorem 17. The policy adopted by a classifier subject to demographic parity is given by

π = argmax
π

1∑
y,ŷ=0

Vyŷ Pr
Ŷ=π(X)

(Y = y, Ŷ = ŷ)

subject to Pr(Ŷ = 1 | G = g) = Pr(Ŷ = 1 | G = h) ∀g, h ∈ G
(130)

Without allowing group-dependent values of φ, the only solutions to π when groups have differing
qualification rates are the trivial policies π = 0 and π = 1. We therefore consider a solution
that permits group-dependent thresholds φg. We solve for these thresholds using the method of
Lagrange multipliers. In the sg state basis, this requires that we satisfy, for Lagrange multipliers
Lh ∈ (−∞,∞), h ∈ {1, 2, ...n− 1}, the set of equations

∇φu = ∇φ

(
n−1∑
h=1

Lhch

)
(131)

where ∇φ denotes the vector operator such that the gth component is the partial derivative with
respect to φg; u is the utility to be maximized; and each ch = 0 represents a pairwise constraint
between the probabilities of accepting an agent from two different groups (h and h+ 1).

u :=

1∑
y,ŷ=0

Vyŷ Pr
Ŷ=π(X)

(Y = y, Ŷ = ŷ) (132a)

=
∑
g

µg


V00̂(1− sg)Q0(φg)

+V01̂(1− sg)(1−Q0(φg))

+V10̂sgQ1(φg)

+V11̂sg(1−Q1(φg))

 (132b)

ch :=

(
shQ1(φh) + (1− sh)Q0(φh)

−sh+1Q1(φh+1)− (1− sh+1)Q0(φh+1)

)
(133)

Defining L0 = Ln = 0 for notational convenience, Eq. (131) simplifies to a set n equations indexed
by g ∈ {1, 2, ..., n}

µg

(
(V00̂ − V01̂)q0(φg)(1− sg) + (V10̂ − V11̂)q1(φg)sg

)
(134a)

= (Lg − Lg−1)
(
sgq1(φg) + (1− sg)q0(φg)

)
(134b)

From which the perturbed values φg may be derived:
q1(φg)

q0(φg)
=

(
V00̂ − V01̂ − γg
V11̂ − V10̂ + γg

)(
1− sg
sg

)
(135a)

γg :=
Lg − Lg−1

µg
; Lg =

∂u

∂cg
(135b)

We compare this equation with Eq. (45), noting that when each γg = 0 (i.e., requiring that
constraints cg are not active at locally optimal utility u), we recover a Laissez-fair policy:

q1(φ)

q0(φ)
=

(
V00̂ − V01̂

V11̂ − V10̂

)(
1− sg
sg

)
(136)

For interpretation of the Lagrange multipliers Lg, also known as the dual variables, we refer the
reader to Boyd et al. [43]. By the monotonicity of q1/q0, the effect of γg in determining φg is
therefore a perturbation to φ, the sign of which is inverted relative to the sign of γg . Finally, having
defined L0 = Ln = 0, as a telescoping sum,

n∑
g=1

(Lg − Lg−1) = 0 (137)

Therefore,
n∑
g=1

µgγg = 0 (138)

This guarantees in turn that set of group-specific changes to the group-specific values φg defined by
a Laissez-Fair policy (Eq. (136)) must be sign-heterogeneous to satisfy Demographic Parity.
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We comment that a solution for each γg that satisfying constraints cg requires the solution of
differential equation(s) in qy (i.e., equation(s) involving both qy(φg) and Qy(φg) simultaneously).
This most apparent if we appeal to the chain rule to write

Lg =
∂u

∂cg
=
∂sg
∂cg

∂u

∂sg
+
∂sg+1

∂cg

∂u

∂sg+1
(139a)

+
∂Q0(φg)

∂cg

∂u

∂Q0(φg)
+
∂Q1(φg)

∂cg

∂u

∂Q1(φg)
(139b)

+
∂Q0(φg+1)

∂cg

∂u

∂Q0(φg+1)
+
∂Q1(φg+1)

∂cg

∂u

∂Q1(φg+1)
(139c)

which, after some simplification, yields an expression in terms of Qy:

Lg − Lg−1 = (140a)(
Q1(φg+1)−Q0(φg+1)

)(
Q0(φg+1)

(
V01̂ − V00̂

)
+Q1(φg+1)

(
V10̂ − V11̂

))
(140b)

−
(
Q1(φg−1)−Q0(φg−1)

)(
Q0(φg−1)

(
V01̂ − V00̂

)
+Q1(φg−1)

(
V10̂ − V11̂

))
(140c)

Considering that we treat arbitrary qy subject to Assumption 3, analytically solving an equation in q
and Q simultaneously is not practical for our purposes.

Proof of Theorem 18

Theorem 18 Statement. On the stable internal equilibrium hyperplane, infinitesimal perturbation
of Φ by

∆gΦ := −εδ(g, g + 1)
( αg
s1(1− s1)

, ...,
αg

sg(1− sg)
,

βg
sg+1(1− sg+1)

, ...,
βg

sn(1− sn)

)
(141a)

αg := (µg+1 + µg+2 + ...+ µn), βg := −(µ1 + µ2 + ...+ µg) (141b)

will induce motion in the system preserving s and each δ(h, h+1) for h 6= g. The value of δ(g, g+1)
will be diminished by a ratio proportional to the strength parameter ε > 0.

Proof of Theorem 18. For convenience, on an equilibrium hyperplane, we will write as equivalent
statements

∂

∂φ
(W1 −W0)

∣∣∣
eq

=
∂

∂φg
(W g

1 −W g
0 )
∣∣∣
eq

(142)

We first generalize Lemma 11.1 for group-dependent feature thresholds φg, each perturbed from
φg = φ at equilibrium and but applied only to the corresponding group g.

∂

∂φg

(
sh[t+ 1]− sh[t]

)∣∣∣
eq

=
1

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq

{
sg(1− sg) g = h

0 h 6= g
(143)

It follows from the definition of s that
∂

∂φg

(
s[t+ 1]− s[t]

)∣∣∣
eq

=
1

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq
µgsg(1− sg) (144)

and, by the definition of δ(h, h+ 1),

∂

∂φg

(
δ(h, h+ 1)[t+ 1]− δ(h, h+ 1)[t]

)∣∣∣
eq

= (145a)

(
1

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq

)
sg(1− sg) g = h

−sg(1− sg) g = h+ 1

0 otherwise
(145b)

We may now prove that perturbation of the vector Φ by the vector ∆gΦ = (∆gφ1,∆gφ2, ...,∆gφn)
causes the system to maintain its current value of s. We sum the contribution due to each ∆gφh,
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where 〈·, ·〉 denotes the inner product, ∇Φ denotes a gradient taken with respect to the components
of Φ, and by linearity, 〈∆gΦ,∇Φ〉 is an operator that perturbs the system with change ∆gΦ. Linear
proportionality is denoted with ∝.

∆g(s[t+ 1]− s[t])
∣∣∣
eq

= 〈∆gΦ,∇Φ〉
(
s[t+ 1]− s[t]

)∣∣∣
eq

(146a)

=

n∑
h=1

(∆gφh)
∂

∂φh

(
s[t+ 1]− s[t]

)∣∣∣
eq

(146b)

=
−εδ(g, g + 1)

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq

( g∑
h=1

µhαg +

n∑
h=g+1

µhβg

)
(146c)

∝ (−βgαg + αgβg) (146d)
= 0 (146e)

Next, by Eq. (145a), we consider the effect that the perturbation ∆gΦ has on each δ(h, h+ 1) at
equilibrium.

∆g(δ(h, h+ 1)[t+ 1]− δ(h, h+ 1[t]))
∣∣∣
eq

(147a)

= 〈∆gΦ,∇Φ〉
(
δ(h, h+ 1)[t+ 1]− δ(h, h+ 1)[t]

)∣∣∣
eq

(147b)

=

n∑
i=1

(∆gφi)
∂

∂φi

(
δ(h, h+ 1)[t+ 1]− δ(h, h+ 1)[t]

)∣∣∣
eq

(147c)

=

(−εδ(g, g + 1)

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq

){
αg h ≤ g
βg h > g

(147d)

−
(−εδ(g, g + 1)

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq

){
αg h+ 1 ≤ g
βg h+ 1 > g

(147e)

=

(−εδ(g, g + 1)

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq

){
αg − βg g = h

0 g 6= h
(147f)

Since αg − βg = 1 by Eq. (1), We see that the discrete velocity in δ(g, g + 1) induced by ∆gΦ is

−εδ(g, g + 1)

Weq

∂

∂φ
(W1 −W0)

∣∣∣
eq

(148)

On the stable equilibrium hyperplane, where ∂
∂φ (W1 −W0) > 0 and initial discrete velocity in

δ(g, g + 1) is zero, the prescribed perturbation proportionately opposes δ(g, g + 1).
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C Additional Figures

For all settings, we display the simulated dynamics for two groups, subject to different global
interventions. Streamlines approximate system time evolution. q0 and q1 are Gaussians with unit
variance and have means −1 and 1, respectively. The figures included herein are provided with little
analysis and are intended to prompt further consideration for the curious reader.

C.1 Additional Variables of Interest

In addition to the acceptance rate for Group 1 (blue; first row), we plot the false positive rate for
Group 1 (red; second row) and the false negative rate for Group 1 (green; third row).

[µ1 = 0.5 µ2 = 0.5][
U0,0̂ = 0.1 U0,1̂ = 5.5
U1,0̂ = 0.5 U1,1̂ = 1.0

]
[
V0,0̂ = 0.5 V0,1̂ = −0.5
V1,0̂ = −0.25 V1,1̂ = 1.0

]
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Figure 4: Setting 1 (Analyzed in Section 4)
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C.2 Different U and V

Classifier decisions will differ for a given state s when V is modified. Similarly, the success of
different strategies update with different U values. The qualitative behavior of the system ultimately
depends on the shape of W1 −W0 as a function of φ.

[µ1 = 0.5 µ2 = 0.5][
U0,0̂ = 0.5 U0,1̂ = 1.5
U1,0̂ = 0.1 U1,1̂ = 1.0

]
[
V0,0̂ = 1 V0,1̂ = 0
V1,0̂ = 0 V1,1̂ = 1

]
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=
0jY

=
1;G

=
1)

0

1

0

1

0

1

Figure 5: Setting 2 (Stable and unstable hyperplanes)
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[µ1 = 0.5 µ2 = 0.5][
U0,0̂ = 0.5 U0,1̂ = 0.5
U1,0̂ = 0.1 U1,1̂ = 1.5

]
[
V0,0̂ = 10.0 V0,1̂ = 0.0
V1,0̂ = 1.0 V1,1̂ = 1.5

]
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Figure 6: Setting 3 (Only an unstable hyperplane; Note the negative value of ε for Feedback Control.)
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C.3 Different Group Sizes
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(7a) Setting 1 with asymmetric µ: µ1 = 0.7, µ2 = 0.3
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=
1jG

=
1)

Laissez-Faire
Equal qualification rates

0.1

0.3

0.5

0.7

0.9

G
ro

up
 2

 q
ua

lif
ic

at
io

n 
ra

te
 s
2 G

roup 1 false positive rate 
 P
r(Ŷ
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(7b) Setting 1 with asymmetric µ: µ1 = 0.9, µ2 = 0.1
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C.4 Limited Space for Acceptance
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(8a) Setting 1, but the classifier is limited to accepting Pr(Ŷ ) < 0.6
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(8b) Setting 1, in the classifier is limited to accepting Pr(Ŷ ) < 0.3
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C.5 Other Models

For completeness, we picture the dynamics of other models. Specifically, a Markov model like that of
Zhang et al. [23] (Fig. 9) and the “best response” model of Coate and Loury [21] (Fig. 10). Note that
the setting of Coate and Loury [21] assumes that agents privately know their own costs for becoming
qualified, which are sampled from a group-independent distribution, rather than being uniform for all
agents. We use the following set of parameters.

[µ1 = 0.5 µ2 = 0.5][
T0,0̂ = 0.2 T0,1̂ = 0.5
T1,0̂ = 0.1 T1,1̂ = 0.8

]
[
V0,0̂ = 0.0 V0,1̂ = −1.0
V1,0̂ = 0.0 V1,1̂ = 1.3

]
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Figure 9: The classifier of Setting 1, but the dynamics of Zhang et al. [23], where the probability of an agent
becoming qualified in the next round given outcome y, ŷ, denoted Ty,ŷ , given as above. We assume T is
group-independent; under this assumption, disparity in qualification rates cannot persist.
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[µ1 = 0.5 µ2 = 0.5][
V0,0̂ = 0.0 V0,1̂ = −500.0
V1,0̂ = 0.0 V1,1̂ = 1.0

]
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Figure 10: The classifier of Setting 1, but the population response model of Coate and Loury [21]. The
intersections of the curves shown above the phase portraits correspond to the possible fixed points of the system
in qualification rate; these intersections had to be manufactured with a distribution of costs, known to agents
privately, associated with qualification.
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