
A Theory of the Distortion-Perception Tradeoff in
Wasserstein Space - Supplementary Material

In Appendix A we present the distortion-perception tradeoff in general metric spaces. We formulate
the problem of finding a perfect perceptual quality estimator as an optimal transportation problem,
and extend some of the background provided in Sec. 2. In Appendix B we provide detailed proofs of
the results appearing in the paper. In Appendix C we discuss the implications of our results on the
DP tradeoff with divergences other than the Wasserstein-2. Appendix D examines settings where
covariance matrices commute. In Appendix E we discuss the details of the numerical illustrations of
Sec. 5 and provide additional visual results. Appendix F summarizes the results in the paper.

A Background and extensions

A.1 The distortion-perception function

In Sec. 2 of the main text we presented the setting of Euclidean space for simplicity. For the sake of
completeness, we present here a more general setup.

Let X,Y be random variables on separable metric spaces X ,Y , with joint probability pX,Y on X ×Y .
Given a distortion function d : X ×X → R+ ∪{0}, we aim to find an estimator X̂ ∈ X defined by a
conditional distribution pX̂|Y (which induces a marginal distribution pX̂ ), minimizing the expectation

E[d(X, X̂)] under the constraint dp(pX , pX̂) ≤ P . Here, dp is some divergence between probability
measures. We further assume the Markov relation X → Y → X̂ , i.e. X, X̂ are independent given Y .
Similarly to Blau and Michaeli [4] we define the distortion-perception function

D(P ) = min
pX̂|Y

{
E[d(X, X̂)] : dp(pX , pX̂) ≤ P

}
. (27)

The expectation is taken w.r.t. the joint probability pX̂Y X induced by pX̂|Y and pXY , where X̂ and
X are independent given Y . We can write (27) as

D(P ) = min
pX̂|Y

{
J(pX̂|Y ) : dp(pX , pX̂) ≤ P

}
, (28)

where we defined J(pX̂|Y ) , EpX̂Y X [d(X, X̂)]. This objective can be written as

J(pX̂|Y ) = EpX̂Y XE[d(X, X̂)|Y, X̂]. (29)

Let us define the cost function

ρ(x̂, y) , E[d(X, X̂)|Y = y, X̂ = x̂]

= E[d(X, x̂)|Y = y], (30)

where we used the fact that X is independent of X̂ given Y . Then we have that the objective (29)
boils down to J(pX̂|Y ) = EpX̂Y ρ(X̂, Y ).

The problem of finding a perfect perceptual quality estimator can be now written as an optimal
transport problem

D(P = 0) = min
pX̂|Ỹ

EpX̂Ỹ ρ(X̂, Ỹ ) s.t. pX̂ = pX , pỸ = pY .

In the setting where X ,Y are Euclidean spaces, considering the MSE distortion d(x, x̂) = ‖x− x̂‖2,
we write

ρ(x̂, y) = E
[
‖X − X̂‖2|Y = y, X̂ = x̂

]

= E
[
‖X − x̂‖2|Y = y

]

= E
[
‖X‖2|Y = y

]
− 2x̂TE [X|Y = y] + ‖x̂‖2

= E
[
‖X −X∗‖2|Y = y

]
+
{
E
[
‖X∗‖2|Y = y

]
− 2x̂TE [X|Y = y] + ‖x̂‖2

}

13



and we have

J(pX̂|Y ) = EpX̂Y Xρ(X̂, Y ) = EpYXE
[
‖X −X∗‖2|Y

]
+ EpX̂Y E

[
‖X̂ −X∗‖2|Y, X̂

]

= D∗ + EpX̂Y
[
‖X̂ −X∗‖2

]
.

A.2 The optimal transportation problem

Assume X ,Y are Radon spaces [2]. Let ρ : X × Y → R be a non-negative Borel cost function, and
let q(x), p(y) be probability measures on X ,Y respectively. The optimal transport problem is then
given in the following formulations.

In the Monge formulation, we search for an optimal transformation, often referred to as an optimal
map, T : Y → X minimizing

Eρ(T (Y ), Y ) , s.t. Y ∼ q(y), T (Y ) ∼ q(x). (31)

Note that the Monge problem seeks for a deterministic map, and might not have a solution.

In the Kantorovich formulation, we wish to find a probability measure q = qXY onX×Y , minimizing

Eqρ(X,Y ) , s.t. q ∈ Π(q(x), p(y)), (32)

where Π is the set of probabilities on X ×Y with marginals q(x), p(y). A probability minimizing (32)
is called an optimal plan, and we denote q ∈ Πo(q

(x), p(y)). Note that when ρ(x, y) = dp(x, y) and
d(x, y) is a metric, taking inf over (32) yields the Wasserstein distance W p

p (q(x), p(y)) induced by
d(x, y).

In the case where X = Y = Rd and ρ(x, y) = ‖x − y‖2 is the quadratic cost (and we assume
q(x), p(y) have finite first and second moments), there exists an optimal plan minimizing (32). If p(y)

is absolutely continuous (w.r.t Lebesgue measure), this plan is given by an optimal map which is the
unique solution to (31) [20, p.5,16].

A.3 Optimal maps between Gaussian measures

When µ1 = N (m1,Σ1) and µ2 = N (m2,Σ2) are Gaussian distributions on Rd, we have that

W 2
2 (µ1, µ2) = ‖m1 −m2‖22 + Tr

{
Σ1 + Σ2 − 2

(
Σ

1
2
1 Σ2Σ

1
2
1

) 1
2

}
. (33)

If Σ1 and Σ2 are non-singular, then the distribution attaining the optimum in (3) corresponds to

U ∼ N (m1,Σ1), V = m2 + T1→2(U −m1), (34)

where

T1→2 = Σ
− 1

2
1

(
Σ

1
2
1 Σ2Σ

1
2
1

) 1
2

Σ
− 1

2
1 (35)

is the optimal transformation pushing forward from N (0,Σ1) to N (0,Σ2) [12]. This transformation
satisfies Σ2 = T1→2Σ1T1→2.

When distributions are singular, we have the following.

Lemma 1. [33, Theorem 3] Let µ and ν be two centered Gaussian measures defined on Rn. Let Pµ
be the projection matrix onto Im{Σµ}. Then the optimal transport map Tµ→Pµ#ν from µ to Pµ#ν
is linear and self-adjoint, and can be written as

Tµ→Pµ#ν = (Σ1/2
µ )†(Σ1/2

µ ΣνΣ1/2
µ )1/2(Σ1/2

µ )†.

In the case Im{Σν} ⊆ Im{Σµ} we have Pµ#ν = ν, hence Tµ→ν = Tµ→Pµ#ν is the optimal
transport map from µ to ν, even where measures are singular.
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B Proof of main results

In this Section we provide proofs of the main results of this paper. In lemmas 2 and 3 we present
some alternative representations for D(P ). In Lemma 4 we obtain a lower bound on D(P ). We then
prove Theorem 3 (via a more general result given by Lemma 5), where the lower bound of Lemma 4
is attained. Equipped with Theorem 3, we prove Theorem 1 which is the main result of our paper.

B.1 Relations between D(P ) and X∗

In this section we relate the distortion-perception function D(P ) given in (2) to the estimator
X∗ = E [X|Y ]. Recall that D∗ = E

[
‖X −X∗‖2

]
and P ∗ = W2(pX , pX∗).

Lemma 2. If X̂ is independent of X given Y , then its MSE can be decomposed as E[‖X − X̂‖2] =

E[‖X −X∗‖2 + E[‖X∗ − X̂‖2] and hence

D(P ) = D∗ + min
pX̂|Y

{
EpX̂Y

[
‖X̂ −X∗‖2

]
: W2(pX̂ , pX) ≤ P

}
. (36)

Proof. For any estimator we can write the MSE

E
[
‖X − X̂‖2

]
= E

[
|X −X∗‖2

]
+ E

[
‖X̂ −X∗‖2

]
− 2E

[
(X −X∗)T (X̂ −X∗)

]
. (37)

Since in our case X̂ is independent of X given Y , we show that the third term vanishes.

E
[
(X −X∗)T (X̂ −X∗)

]
= E

[
E(X −X∗)T (X̂ −X∗)|Y

]

= E
[
E
[
(X −X∗)T |Y

]
︸ ︷︷ ︸

=0

[
E(X̂ −X∗)|Y

] ]
= 0.

Since X∗is a deterministic function of Y , D∗ = E
[
‖X −X∗‖2

]
is a property of the problem, and

does not depend on the choice of pX̂|Y , which, in view of (37) completes the proof.

Next, we express D(P ) in terms of the Wasserstein distance between pX̂ and pX∗ .

Lemma 3 (Eq. (14)).

D(P ) = D∗ + min
pX̂

{
W 2

2 (pX̂ , pX∗) : W2(pX̂ , pX) ≤ P
}
. (38)

Proof. Denote W 2
2 (BP , pX∗) = minpX̂ :W2(pX̂ ,pX)≤P W

2
2 (pX̂ , pX∗), where BP is the ball of radius

P around pX in Wasserstein space.

From Lemma 2 we have

D(P ) = D∗ + min
pX̂|Y :W2(pX̂ ,pX)≤P

EpX̂Y
[
‖X̂ −X∗‖2

]
. (39)

For every pX̂|Y whose marginal attains W2(pX̂ , pX) ≤ P we have,

EpX̂Y
[
‖X̂ −X∗‖2

]
≥ inf
q∈Π(pX̂ ,pX∗ )

Eq
[
‖X̂ −X∗‖2

]

= W 2
2 (pX̂ , pX∗)

≥ min
pX̂ :W2(pX̂ ,pX)≤P

W 2
2 (pX̂ , pX∗),

which leads to D(P ) ≥ D∗ +W 2
2 (BP , pX∗).

Conversely, given pX̂ such that W2(pX̂ , pX) ≤ P , we have an optimal plan pX̂X∗ achieving
W2(pX̂ , pX∗). Once we determine the optimal plan pX̂X∗ with marginal pX̂ , we have an estimator

X̂ given by pX̂|Y achieving EpX̂Y
[
‖X̂ −X∗‖2

]
= W 2

2 (pX̂ , pX∗) (for the connection between the

15



optimal plan pX̂X∗ and the choice of a consistent pX̂|Y , see Remark about uniqueness in Sec. 3.1).
We then have

min
pX̂|Y :W2(pX̂ ,pX)≤P

EpX̂Y
[
‖X̂ −X∗‖2

]
≤ EpX̂Y

[
‖X̂ −X∗‖2

]
= W 2

2 (pX̂ , pX∗).

Taking the minimum over pX̂ yields D(P ) ≤ D∗ +W 2
2 (BP , pX∗). Combining the upper and lower

bounds, we obtain the desired result.

For the proof of Theorem 3, we first prove the following

Lemma 4. D(P ) ≥ D∗ + [(P ∗ − P )+]2.

Proof. For every estimator satisfying W2(pX̂ , pX) ≤ P , we have from the triangle inequality

P ∗ = W2(pX , pX∗) ≤W2(pX̂ , pX∗) +W2(pX̂ , pX) ≤W2(pX̂ , pX∗) + P, (40)

yielding

E
[
‖X − X̂‖2

]
= E

[
‖X −X∗‖2

]
+ E

[
‖X̂ −X∗‖2

]

≥ D∗ +W 2
2 (pX̂ , pX∗)

≥ D∗ + (P ∗ − P )2
+,

where the last inequality follows from (40). Hence D(P ) =

minpX̂|Y :W2(pX̂ ,pX)≤P EpX̂Y
[
‖X − X̂‖2

]
≥ D∗ + [(P ∗ − P )+]2.

B.1.1 Proof of Theorem 3

Theorem. 3. Let X̂0 be an estimator achieving perception index 0 and MSE D(0). Then for any
P ∈ [0, P ∗], the estimator

X̂P =

(
1− P

P ∗

)
X̂0 +

P

P ∗
X∗ (41)

is optimal for perception index P , namely, it achieves perception index P and distortion D(P ).

Let us prove a stronger result, from which Theorem 3 will follow.

Lemma 5. Let X̂ε be an estimator (independent of X given Y ) achieving W2(pX , pX̂ε) ≤ εP

and E
[
‖X̂ε −X∗‖2

]
≤ (1 + εD)2W 2

2 (pX , pX∗) for some εD, εP ≥ 0. Given 0 ≤ P ≤ P ∗ =

W2(pX , pX∗), consider the estimator

X̂P =

(
1− P

P ∗

)
X̂ε +

P

P ∗
X∗. (42)

Then X̂P achieves E[‖X−X̂P ‖2] ≤ D∗+(1+εD)2(P ∗−P )2 with perception index εP +(1+εD)P .
When εD, εP = 0, namely X̂ε is an optimal perfect perceptual quality estimator, X̂P is an optimal
estimator under perception constraint P , which proves Theorem 3.

Proof. W 2
2 (pX̂ε , pX̂P ) ≤ E

[
‖X̂ε − X̂P ‖2

]
, and using the triangle inequality

W2(pX , pX̂P ) ≤W2(pX , pX̂ε) +W2(pX̂ε , pX̂P )

≤ εP +

√
E
[
‖X̂ε − X̂P ‖2

]

= εP +

√
P 2

W 2
2 (pX , pX∗)

E
[
‖X̂ε −X∗‖2

]

≤ εP + P (1 + εD),
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where the equality is based on (42). A direct calculation of the distortion yields

E
[
‖X∗ − X̂P ‖2

]
=

(
1− P

W2(pX , pX∗)

)2

E
[
‖X∗ − X̂ε‖2

]

≤ (1 + εD)2(W2(pX , pX∗)− P )2,

E
[
‖X − X̂P ‖2

]
= D∗ + E

[
‖X∗ − X̂P ‖2

]

≤ D∗ + (1 + εD)2(W2(pX , pX∗)− P )2.

When εD, εP = 0 we have W2(pX , pX̂P ) ≤ P and E
[
‖X − X̂P ‖2

]
≤ D∗ + (W2(pX , pX∗) −

P )2. From Lemma 4, the latter inequality is achieved with equality. Note that since here
E
[
‖X̂ε −X∗‖2

]
= W 2

2 (pX , pX∗), the distributions of {X̂P , P ∈ [0,W2(pX , pX∗)]} form a
constant-speed geodesic, hence W2(pX , pX̂P ) = P .

Corollary 1. When X∗ has a density, X̂0 (hence X̂P ) can be obtained via a deterministic transfor-
mation of Y .

Proof. Since the distribution of X∗ is absolutely continuous, we have an optimal map TpX∗→pX
between the distributions of X∗ and X (see discussion in App. A.2). Namely, we have that
X̂0 = TpX∗→pX (X∗) is an optimal estimator with perception index 0. Thus, according to (15)
X̂P =

(
1− P

P∗

)
TpX∗→pX (X∗) + P

P∗X
∗ are optimal estimators, which in this case are given by a

deterministic function of Y .

B.2 Proof of Theorem 1

With Theorem 3 and Lemma 5 in hand, we are now ready to prove our main result.
Theorem. 1. The DP function (2) is given by

D(P ) = D∗ + [(P ∗ − P )+]
2
. (43)

Furthermore, an estimator achieving perception index P and distortion D(P ) can always be con-
structed by applying a (possibly stochastic) transformation to X∗.

Proof. When P ≥ P ∗ the result is trivial since D(P ) = D∗. Let us focus on P < P ∗. Since
X,X∗ ∈ Rnx , we have an optimal plan pX̂0X∗

between their distributions, attaining P ∗ [2, 20]. We
then have an optimal estimator X̂0 with perception index 0, which is given by this joint distribution
hence achieving E

[
‖X̂0 −X∗‖2

]
= (P ∗)2 (for the connection between pX̂0X∗

and the choice of

pX̂0|Y , see Remark about uniqueness in Sec. 3.1). For any perception P < P ∗, consider X̂P given
by (41). We have W2(pX , pX̂P ) = P , and (see Theorem 3’s proof)

E
[
‖X − X̂P ‖2

]
≤ D∗ + (W2(pX , pX∗)− P )2,

hence D(P ) ≤ D∗ + [(P ∗ − P )+]
2. On the other hand, we have (Lemma 4) D(P ) ≥ D∗ +

[(P ∗ − P )+]
2, which completes the proof.

B.3 The Gaussian setting

In this Section we prove Theorems 4 and 5. We begin by proving Theorem 5, and then show that
Theorem 4 follows as a special case. Recall that

(G∗)2 = Tr

{
ΣX + ΣX∗ − 2

(
Σ

1/2
X ΣX∗Σ

1/2
X

)1/2
}

(44)

and
T ∗ = Σ

−1/2
X (Σ

1/2
X ΣX∗Σ

1/2
X )1/2Σ

−1/2
X . (45)
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Theorem. 5. Consider the setting of Theorem 4 in the main text. Let ΣX̂0Y
∈ Rnx×ny satisfy

ΣX̂0Y
Σ−1
Y ΣY X = Σ

1
2

X(Σ
1
2

XΣX∗Σ
1
2

X)
1
2 Σ
− 1

2

X , (46)

and W0 be a zero-mean Gaussian noise with covariance

ΣW0 = ΣX − ΣX̂0Y
Σ−1
Y ΣT

X̂0Y
� 0 (47)

that is independent of Y,X . Then, for any P ∈ [0, G∗], an optimal estimator with perception index
P can be obtained by

X̂P =

((
1− P

G∗

)
ΣX̂0Y

+
P

G∗
ΣXY

)
Σ−1
Y Y +

(
1− P

G∗

)
W0. (48)

The estimator given in (50) is one solution to (46)-(47), but it is generally not unique.

Proof. (Theorem 5) Let X̂0 , ΣX̂0Y
Σ−1
Y Y +W0 where ΣX̂0Y

satisfies (46)-(47). It is easy to see
that X̂0 ∼ N (0,ΣX) and it is jointly Gaussian with (X,Y,X∗). We have by (46)

E
[
X∗X̂T

0

]
= ΣXY Σ−1

Y ΣY X̂0
= Σ

−1/2
X (Σ

1/2
X ΣX∗Σ

1/2
X )1/2Σ

1/2
X , (49)

hence using (47),

E
[
‖X̂0 −X∗‖2

]
= Tr

{
ΣX + ΣX∗ − 2E

[
X∗X̂T

0

]}

= Tr
{

ΣX + ΣX∗ − 2Σ
−1/2
X (Σ

1/2
X ΣX∗Σ

1/2
X )1/2Σ

1/2
X

}

= Tr
{

ΣX + ΣX∗ − 2(Σ
1/2
X ΣX∗Σ

1/2
X )1/2

}

= G2(ΣX ,ΣX∗)

= (G∗)2.

Summarizing, X̂0 is an optimal perfect perceptual quality estimator. Note that (48) can be written as

X̂P =

(
1− P

G∗

)
X̂0 +

P

G∗
X∗,

and by Theorem 3 we have that it is an optimal estimator.

Before proceeding to the proof of Theorem 4, let us introduce some auxiliary facts.
Lemma 6. Let Σ,ΣX∗ ∈ Rn×n be (symmetric) PSD matrices, and ΣX ∈ Rn×n is PD. Denote

T ∗ = Σ
− 1

2

X

(
Σ

1
2

XΣX∗Σ
1
2

X

) 1
2

Σ
− 1

2

X . Then:

1. Ker{Σ} = Ker{Σ 1
2 }.

2. Ker{Σ∗} ⊆ Ker{Σ
1
2

X(Σ
1
2

XΣX∗Σ
1
2

X)
1
2 Σ
− 1

2

X } = Ker{ΣXT ∗}, and we have
ΣXT

∗Σ†X∗ΣX∗ = ΣXT
∗.

Proof. (1) Let Σ be PSD. Since it is real and symmetric it is diagonalizable, Σ = UDUT and
Σ1/2 = UD1/2UT where D is a diagonal matrix with non-negative entries which are the eigenvalues
of Σ. We have Ker{D} = Ker{D1/2} = {v ∈ Rn : vi = 0∀i : Di,i 6= 0} and since U is full-rank,
Ker{Σ} = Ker{Σ1/2} = UKer{D}.

(2) Assume ΣX∗v = 0. We have (Σ
1/2
X ΣX∗Σ

1/2
X )Σ

−1/2
X v = 0, implying that Σ

−1/2
X v ∈

Ker{(Σ1/2
X ΣX∗Σ

1/2
X )} = Ker{(Σ1/2

X ΣX∗Σ
1/2
X )1/2}. The equality is true since Σ

1/2
X ΣX∗Σ

1/2
X =

Σ
1/2
X Σ

1/2
X∗ (Σ

1/2
X Σ

1/2
X∗ )T is PSD, and we use (1). To conclude, we have

ΣXT
∗v = Σ

1/2
X (Σ

1/2
X ΣX∗Σ

1/2
X )1/2Σ

−1/2
X v = 0 =⇒ Ker{ΣX∗} ⊆ Ker{ΣXT ∗}.

Recall now that (I−Σ†X∗ΣX∗) is a projection onto Ker{ΣX∗}. We have ΣXT
∗(I−Σ†X∗ΣX∗) = 0,

yielding ΣXT
∗Σ†X∗ΣX∗ = ΣXT

∗.
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The following Lemma is a reminder of the Schur Complement and its properties.

Lemma 7. [Schur complement]. Let Σ =

[
A B
BT C

]
be a symmetric matrix where A is PD. Then

Σ/A , C −BTA−1B is the Schur complement of Σ, and we have that Σ is PSD iff Σ/A is PSD.

We are now ready to prove Theorem 4.
Theorem. 4. Assume X and Y are zero-mean jointly Gaussian random vectors with ΣX ,ΣY � 0.
Then for any P ∈ [0, G∗], an estimator with perception index P and MSE D(P ) can be constructed
as

X̂P =

((
1− P

G∗

)
Σ

1
2

X

(
Σ

1
2

XΣX∗Σ
1
2

X

) 1
2

Σ
− 1

2

X Σ†X∗ +
P

G∗
I

)
ΣXY Σ−1

Y Y +

(
1− P

G∗

)
W, (50)

whereW is a zero-mean Gaussian noise with covariance ΣW = Σ
1/2
X (I−Σ

1/2
X T ∗Σ†X∗T

∗Σ
1/2
X )Σ

1/2
X ,

which is independent of Y,X .

Proof. We observe that (50) is a special case of (48), where ΣX̂0Y
= ΣT

Y X̂0
=

Σ
1
2

X

(
Σ

1
2

XΣX∗Σ
1
2

X

) 1
2

Σ
− 1

2

X Σ†X∗ΣXY . We now show that ΣX̂0Y
has the desired properties (46)-(47).

By substitution,

ΣX̂0Y
Σ−1
Y ΣY X = Σ

1
2

X

(
Σ

1
2

XΣX∗Σ
1
2

X

) 1
2

Σ
− 1

2

X Σ†X∗
(
ΣXY Σ−1

Y ΣY X
)

= Σ
1
2

X

(
Σ

1
2

XΣX∗Σ
1
2

X

) 1
2

Σ
− 1

2

X Σ†X∗ΣX∗

= Σ
1
2

X

(
Σ

1
2

XΣX∗Σ
1
2

X

) 1
2

Σ
− 1

2

X .

The last equality is due to Lemma 6.

Recall Σ†X∗ΣX∗Σ
†
X∗ = Σ†X∗ , and we denote T ∗ = Σ

− 1
2

X

(
Σ

1
2

XΣX∗Σ
1
2

X

) 1
2

Σ
− 1

2

X . We now have

ΣY X̂0
Σ−1
X ΣX̂0Y

= ΣY XΣ†X∗T
∗ΣXΣ−1

X ΣXT
∗Σ†X∗ΣXY

= ΣY XΣ†X∗Σ
− 1

2

X (Σ
1
2

XΣX∗Σ
1
2

X)Σ
− 1

2

X Σ†X∗ΣXY

= ΣY XΣ†X∗ΣX∗Σ
†
X∗ΣXY

= ΣY XΣ†X∗ΣXY ,

hence
ΣY − ΣY X̂0

Σ−1
X ΣX̂0Y

= ΣY − ΣY XΣ†X∗ΣXY = ΣY |X∗ � 0. (51)

Since ΣX ,ΣY � 0, (51) is the Schur complement of
[

ΣX ΣX̂0Y
ΣY X̂0

ΣY

]
� 0, yielding

ΣW = ΣX − ΣX̂0Y
Σ−1
Y ΣT

X̂0Y
� 0. (52)

Corollary 2 (Non-singular special case). In the case where ΣX∗ is invertible, ΣX̂0Y
=

ΣXT
∗Σ−1

X∗ΣXY in the proof of Theorem 4, and it is easy to see that the noise covariance is ΣW = 0.
In this case ΣX̂0Y

is the unique solution to (46)-(47). This means that X̂0 (hence X̂P ) is a determin-
istic function of Y .

Proof. We first show ΣW = 0. Let MP = ΣX̂0Y
= ΣXT

∗Σ−1
X∗ΣXY , then

ΣW = ΣX −MPΣ−1
Y MT

P

= ΣX − ΣXT
∗Σ−1

X∗ΣXY Σ−1
Y ΣY XΣ−1

X∗T
∗ΣX

= ΣX − ΣXΣ
−1/2
X (Σ

1/2
X ΣX∗Σ

1/2
X )1/2 (Σ

−1/2
X Σ−1

X∗Σ
−1/2
X )︸ ︷︷ ︸

=(Σ
1/2
X ΣX∗Σ

1/2
X )−1

(Σ
1/2
X ΣX∗Σ

1/2
X )1/2Σ

−1/2
X ΣX

= ΣX − ΣXΣ
−1/2
X Σ

−1/2
X ΣX = 0.
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Now, assume M is a solution to (46)-(47), then M∆ = MP −M satisfies M∆Σ−1
Y ΣY X = 0 and

ΣX −MΣ−1
Y MT =

ΣX − [MPΣ−1
Y MT

P +M∆Σ−1
Y MT

∆ −M∆Σ−1
Y MT

P −MPΣ−1
Y MT

∆] � 0.

But, M∆Σ−1
Y MT

P = (M∆Σ−1
Y ΣY X)Σ−1

X∗T
∗ΣX = 0 and ΣX − MPΣ−1

Y MT
P = 0, yielding

M∆Σ−1
Y MT

∆ � 0. Since M∆Σ−1
Y MT

∆ is PSD and Σ−1
Y is PD, we conclude that M∆ = 0.

C Relations with other divergences

While in Section 3 we focused our attention on the MSE−W2 tradeoff, in this section we discuss
the implications of our results on the DP tradeoff with other divergences. In particular, we show that
when considering the MSE distortion, (8) establishes a lower bound on a class of DP functions. Note
that at the point P = 0, the DP function coincides with (8) for all plausible divergences.

Let dp(·, ·) be a divergence between probability measures, and let Ddp(P ) be the DP function
w.r.t. this divergence, given by (1), where MSE is used to measure distortion. Here, D(P ) will denote
DW2(P ), given by (8). We can now write, similarly to (14),

Ddp(P ) = D∗ + inf
dp(pX ,pX̂)≤P

W 2
2 (pX̂ , pX∗). (53)

In cases where dp(pX , pX̂) ≥W2(pX , pX̂) for all pX̂ , the constraint set {pX̂ : dp(pX , pX̂) ≤ P} is
contained in {pX̂ : W2(pX , pX̂) ≤ P}. Therefore, from (53), we have that

Ddp(P ) ≥ D∗ + inf
W2(pX ,pX̂)≤P

W 2
2 (pX̂ , pX∗) = D(P ). (54)

The last equality follows from (14), where the infimum is attained. The above result holds true for
any Wasserstein distance Wp with p ≥ 2, since when p ≥ q ≥ 1, we have that Wp(pX , pX̂) ≥
Wq(pX , pX̂) for all pX̂ , pX [20].

For the case of W1, let us denote P ∗1 , W1(pX , pX∗). From the triangle inequality, for every
estimator satisfying W1(pX , pX̂) ≤ P we have

P ∗1 ≤W1(pX , pX̂) +W1(pX̂ , pX∗) ≤ P +W2(pX̂ , pX∗),

which together with (53) yields

D(P ) ≥ DW1
(P ) ≥ D∗ + [(P ∗1 − P )+]2. (55)

A similar result can be obtained for any Wp ,p ∈ [1, 2].

Note that when the support of pX and pX̂ is compact with diameter R, we have
R(p−q)/pW

q/p
q (pX̂ , pX) ≥ Wp(pX̂ , pX) for any p ≥ q ≥ 1 [20]. Particularly,

R1/2W
1/2
1 (pX̂ , pX) ≥ W2(pX̂ , pX), and therefore W1(pX̂ , pX) ≤ P implies W2(pX̂ , pX) ≤√

RP , so we have from (53) that

DW1(P ) ≥ D(
√
RP ). (56)

In the Gaussian setting where X ∼ N (0, I), we have by Talagrand’s Inequality [28, 19]
W2(pX̂ , pX) ≤

√
2dKL(pX̂‖pX) for pX̂ � pX , hence we obtain, similarly to (54)

DdKL(P ) ≥ D(
√

2P ). (57)

We summarize these results in Appendix F.

D Settings with commuting covariances

In many practical problems, covariance matrices may have the commutative relation ΣXΣX∗ =
ΣX∗ΣX . This is the case, for example, of circulant or large Toeplitz matrices [9]. For natural images
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X (full res.) Y (low res.) X̂

Figure 5: A visual demonstration of SR image enhancement. X is a full-resolution reference image
and Y is a ×4 downsampled version of X . X̂ is a reconstruction of X based on Y .

this is a reasonable assumption since shift-invariance induces diagonalization by the Fourier basis
[30].

In the Gaussian settings of Sec. 3.3, where ΣX ,ΣX∗ commute it is easy to see that the Gelbrich
distance between them can be written as

G∗ = G((µX ,ΣX), (µX∗ ,ΣX∗)) = ‖Σ1/2
X − Σ

1/2
X∗ ‖F .

‖A‖F =
√

Tr {ATA} is the Frobenius norm. This is due to the fact that Σ
1/2
X ,Σ

1/2
X∗ also commute.

In order to achieve E
[
‖X̂0 −X∗‖2

]
= (G∗)2, an optimal perfect perceptual quality estimator has

to satisfy (49) which now takes the form

E
[
X∗X̂T

0

]
= Σ

1/2
X Σ

1/2
X∗ .

It is easy to see that estimators obtained by X̂0, X
∗ using (15) are Gaussian with zero mean and

covariance ΣP , given by

Σ
1
2

P =

(
1− P

G∗

)
Σ

1
2

X +
P

G∗
Σ

1
2

X∗ . (58)

Pay attention that since the roots commute, ΣP commmutes with ΣX ,ΣX∗ , and

‖Σ
1
2

X − Σ
1
2

P ‖F = P, ‖Σ
1
2

P − Σ
1
2

X∗‖F = G∗ − P.

This further reduces the geometry of the problem to the l2-distance between commuting matrices.

E Numerical illustration

E.1 Super-resolution problem

In super-resolution (SR) problems, the objective is to enhance the resolution of a given image. This
setting can be viewed as an image reconstruction problem, where we assume X is an unknown image
of the desired resolution, and the input to the algorithm is Y , a downsampled (degraded) version of
X . The output of the algorithm is then X̂ ∼ pX̂|Y , an estimation of X based on Y .

Figure 5 visually demonstrates this setting with a concrete example.
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E.2 Simulation details

In Section 5 we construct an experimental setup, demonstrating our results. Figure 3 presents
the evaluation of 13 super resolution algorithms on the BSD100 dataset, where we compare MSE
distortion, and Gelbrich and FID perceptual indices. Low resolution images were obtained by 4×
downsampling BSD100 images using a bicubic kernel.

For each algorithm, we acquire 100 RGB images (5000 for the explorable SR method) which are
reconstructions of BSD100 images. To compute the Gelbrich index, we extract 9× 9 patches from
the RGB images, and then estimate

mAlg =
1

Npatches

∑

i

pi, ΣAlg =
1

Npatches − 1
(pi −mAlg)(pi −mAlg)T ,

where pi is the i-th patch (a 243-row vector) and Npatches = 1, 643, 200. We compute using (4)

MSEAlg =
1

243×Npatches

∑

i

‖pAlg
i −pBSD100

i ‖2, PAlg =

√
1

243
G ((mBSD100,ΣBSD100), (mAlg,ΣAlg)) .

The stochastic explorable SR method [3] is evaluated using 50 different SR outputs for each input
image, hence for this method Npatches = 50× 1, 643, 200.

FID values are calculated on 299 × 299 patches, where for the explorable SR method we use 40
different outputs for each input.

The estimators X̂t are constructed using per-pixel interpolation between EDSR and ESRGAN,

X̂t = tXEDSR + (1− t)XESRGAN.

E.3 Visual illustration

Here we present a visual comparison between SR methods and our constructed estimators, achieving
roughly the same MSE but with a lower perception index. We also present EDSR, ESRGAN, the
low-resolution input, and the ground-truth BSD100 images.
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Figure 6: A visual comparison between SRGAN-VGG2,2 (RMSE: 18.08, P: 5.05), and X̂0.12 (18.14,
2.59).
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Figure 7: A visual comparison between SRGAN-MSE (RMSE: 16.93, P: 5.85), and X̂0.3 (16.82,
4.32).
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F Table of main results

For convenience, we summarize our results in the following Table.

Table 1: Main results

Result notation setting remarks
D-P

D(P) MSE-W2 D(P ) = D∗ + [(P ∗ − P )+]
2

P ∗ = W2(pX , pX∗)

function Gaussian D(P ) = D∗ + [(G∗ − P )+]
2

G∗ = G(ΣX ,ΣX∗)

Optimal
X̂P

MSE-W2

(
1− P

P∗

)
X̂0 + P

P∗X
∗

estimators Gaussian

(
αΣXT

∗Σ†X∗ + (1− α) I
)
X∗

+αW

α =
(
1− P

G∗

)
, X∗ = ΣXY Σ−1

Y Y

T ∗ = Σ
− 1

2

X

(
Σ

1
2

XΣX∗Σ
1
2

X

) 1
2

Σ
− 1

2

X

W ∼ N (0,ΣX − ΣXT
∗Σ†X∗T

∗ΣX)

MSE-W2 D(P ) ≥ D∗ + [(G∗ − P )+]
2

Lower MSE-Wp DWp
(P ) ≥ D∗ + [(P ∗ − P )+]

2
p ≥ 2

bounds MSE-W1 DW1
(P ) ≥ D∗ + [(P ∗1 − P )+]

2
P ∗1 = W1(pX , pX∗)

MSE-dKL DdKL(P ) ≥ D∗ +
[
(P ∗ −

√
2P )+

]2
X ∼ N (0, I)
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