A Theory of the Distortion-Perception Tradeoff in Wasserstein Space - Supplementary Material

In Appendix A we present the distortion-perception tradeoff in general metric spaces. We formulate the problem of finding a perfect perceptual quality estimator as an optimal transportation problem, and extend some of the background provided in Sec. 2 In Appendix B we provide detailed proofs of the results appearing in the paper. In Appendix Cwe discuss the implications of our results on the DP tradeoff with divergences other than the Wasserstein-2. Appendix D examines settings where covariance matrices commute. In Appendix E we discuss the details of the numerical illustrations of Sec. 5 and provide additional visual results. Appendix F summarizes the results in the paper.

A Background and extensions

A. 1 The distortion-perception function

In Sec. 2 of the main text we presented the setting of Euclidean space for simplicity. For the sake of completeness, we present here a more general setup.
Let X, Y be random variables on separable metric spaces \mathcal{X}, \mathcal{Y}, with joint probability $p_{X, Y}$ on $\mathcal{X} \times \mathcal{Y}$. Given a distortion function $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{+} \cup\{0\}$, we aim to find an estimator $\hat{X} \in \mathcal{X}$ defined by a conditional distribution $p_{\hat{X} \mid Y}$ (which induces a marginal distribution $p_{\hat{X}}$), minimizing the expectation $\mathbb{E}[d(X, \hat{X})]$ under the constraint $d_{p}\left(p_{X}, p_{\hat{X}}\right) \leq P$. Here, d_{p} is some divergence between probability measures. We further assume the Markov relation $X \rightarrow Y \rightarrow \hat{X}$, i.e. X, \hat{X} are independent given Y. Similarly to Blau and Michaeli [4] we define the distortion-perception function

$$
\begin{equation*}
D(P)=\min _{p_{\hat{X} \mid Y}}\left\{\mathbb{E}[d(X, \hat{X})]: d_{p}\left(p_{X}, p_{\hat{X}}\right) \leq P\right\} \tag{27}
\end{equation*}
$$

The expectation is taken w.r.t. the joint probability $p_{\hat{X} Y X}$ induced by $p_{\hat{X} \mid Y}$ and $p_{X Y}$, where \hat{X} and X are independent given Y. We can write (27) as

$$
\begin{equation*}
D(P)=\min _{p_{\hat{X} \mid Y}}\left\{J\left(p_{\hat{X} \mid Y}\right): d_{p}\left(p_{X}, p_{\hat{X}}\right) \leq P\right\} \tag{28}
\end{equation*}
$$

where we defined $J\left(p_{\hat{X} \mid Y}\right) \triangleq \mathbb{E}_{p_{\hat{X} Y X}}[d(X, \hat{X})]$. This objective can be written as

$$
\begin{equation*}
J\left(p_{\hat{X} \mid Y}\right)=\mathbb{E}_{p_{\hat{X} Y X}} \mathbb{E}[d(X, \hat{X}) \mid Y, \hat{X}] . \tag{29}
\end{equation*}
$$

Let us define the cost function

$$
\begin{align*}
\rho(\hat{x}, y) & \triangleq \mathbb{E}[d(X, \hat{X}) \mid Y=y, \hat{X}=\hat{x}] \\
& =\mathbb{E}[d(X, \hat{x}) \mid Y=y], \tag{30}
\end{align*}
$$

where we used the fact that X is independent of \hat{X} given Y. Then we have that the objective boils down to $J\left(p_{\hat{X} \mid Y}\right)=\mathbb{E}_{p_{\hat{X} Y}} \rho(\hat{X}, Y)$.
The problem of finding a perfect perceptual quality estimator can be now written as an optimal transport problem

$$
D(P=0)=\min _{p_{\hat{X} \mid \tilde{Y}}} \mathbb{E}_{p_{\hat{X} \tilde{Y}}} \rho(\hat{X}, \tilde{Y}) \quad \text { s.t. } p_{\hat{X}}=p_{X}, p_{\tilde{Y}}=p_{Y}
$$

In the setting where \mathcal{X}, \mathcal{Y} are Euclidean spaces, considering the MSE distortion $d(x, \hat{x})=\|x-\hat{x}\|^{2}$, we write

$$
\begin{aligned}
\rho(\hat{x}, y) & =\mathbb{E}\left[\|X-\hat{X}\|^{2} \mid Y=y, \hat{X}=\hat{x}\right] \\
& =\mathbb{E}\left[\|X-\hat{x}\|^{2} \mid Y=y\right] \\
& =\mathbb{E}\left[\|X\|^{2} \mid Y=y\right]-2 \hat{x}^{T} \mathbb{E}[X \mid Y=y]+\|\hat{x}\|^{2} \\
& =\mathbb{E}\left[\left\|X-X^{*}\right\|^{2} \mid Y=y\right]+\left\{\mathbb{E}\left[\left\|X^{*}\right\|^{2} \mid Y=y\right]-2 \hat{x}^{T} \mathbb{E}[X \mid Y=y]+\|\hat{x}\|^{2}\right\}
\end{aligned}
$$

and we have

$$
\begin{aligned}
J\left(p_{\hat{X} \mid Y}\right)=\mathbb{E}_{p_{\hat{X} Y X}} \rho(\hat{X}, Y) & =\mathbb{E}_{p_{Y X}} \mathbb{E}\left[\left\|X-X^{*}\right\|^{2} \mid Y\right]+\mathbb{E}_{p_{\hat{X} Y}} \mathbb{E}\left[\left\|\hat{X}-X^{*}\right\|^{2} \mid Y, \hat{X}\right] \\
& =D^{*}+\mathbb{E}_{p_{\hat{X} Y}}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right]
\end{aligned}
$$

A. 2 The optimal transportation problem

Assume \mathcal{X}, \mathcal{Y} are Radon spaces [2]. Let $\rho: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a non-negative Borel cost function, and let $q^{(x)}, p^{(y)}$ be probability measures on \mathcal{X}, \mathcal{Y} respectively. The optimal transport problem is then given in the following formulations.
In the Monge formulation, we search for an optimal transformation, often referred to as an optimal map, $T: \mathcal{Y} \rightarrow \mathcal{X}$ minimizing

$$
\begin{equation*}
\mathbb{E} \rho(T(Y), Y), \text { s.t. } Y \sim q^{(y)}, T(Y) \sim q^{(x)} \tag{31}
\end{equation*}
$$

Note that the Monge problem seeks for a deterministic map, and might not have a solution.
In the Kantorovich formulation, we wish to find a probability measure $q=q_{X Y}$ on $\mathcal{X} \times \mathcal{Y}$, minimizing

$$
\begin{equation*}
\mathbb{E}_{q} \rho(X, Y), \text { s.t. } q \in \Pi\left(q^{(x)}, p^{(y)}\right) \tag{32}
\end{equation*}
$$

where Π is the set of probabilities on $\mathcal{X} \times \mathcal{Y}$ with marginals $q^{(x)}, p^{(y)}$. A probability minimizing (32) is called an optimal plan, and we denote $q \in \Pi_{o}\left(q^{(x)}, p^{(y)}\right)$. Note that when $\rho(x, y)=d^{p}(x, y)$ and $d(x, y)$ is a metric, taking inf over 32 yields the Wasserstein distance $W_{p}^{p}\left(q^{(x)}, p^{(y)}\right)$ induced by $d(x, y)$.
In the case where $\mathcal{X}=\mathcal{Y}=\mathbb{R}^{d}$ and $\rho(x, y)=\|x-y\|^{2}$ is the quadratic cost (and we assume $q^{(x)}, p^{(y)}$ have finite first and second moments), there exists an optimal plan minimizing (32). If $p^{(y)}$ is absolutely continuous (w.r.t Lebesgue measure), this plan is given by an optimal map which is the unique solution to (31) [20, p.5,16].

A. 3 Optimal maps between Gaussian measures

When $\mu_{1}=\mathcal{N}\left(m_{1}, \Sigma_{1}\right)$ and $\mu_{2}=\mathcal{N}\left(m_{2}, \Sigma_{2}\right)$ are Gaussian distributions on \mathbb{R}^{d}, we have that

$$
\begin{equation*}
W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)=\left\|m_{1}-m_{2}\right\|_{2}^{2}+\operatorname{Tr}\left\{\Sigma_{1}+\Sigma_{2}-2\left(\Sigma_{1}^{\frac{1}{2}} \Sigma_{2} \Sigma_{1}^{\frac{1}{2}}\right)^{\frac{1}{2}}\right\} \tag{33}
\end{equation*}
$$

If Σ_{1} and Σ_{2} are non-singular, then the distribution attaining the optimum in (3) corresponds to

$$
\begin{equation*}
U \sim \mathcal{N}\left(m_{1}, \Sigma_{1}\right), \quad V=m_{2}+T_{1 \rightarrow 2}\left(U-m_{1}\right) \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{1 \rightarrow 2}=\Sigma_{1}^{-\frac{1}{2}}\left(\Sigma_{1}^{\frac{1}{2}} \Sigma_{2} \Sigma_{1}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{1}^{-\frac{1}{2}} \tag{35}
\end{equation*}
$$

is the optimal transformation pushing forward from $\mathcal{N}\left(0, \Sigma_{1}\right)$ to $\mathcal{N}\left(0, \Sigma_{2}\right)$ [12]. This transformation satisfies $\Sigma_{2}=T_{1 \rightarrow 2} \Sigma_{1} T_{1 \rightarrow 2}$.

When distributions are singular, we have the following.
Lemma 1. [33] Theorem 3] Let μ and ν be two centered Gaussian measures defined on \mathbb{R}^{n}. Let P_{μ} be the projection matrix onto $\operatorname{Im}\left\{\Sigma_{\mu}\right\}$. Then the optimal transport map $T_{\mu \rightarrow P_{\mu} \# \nu}$ from μ to $P_{\mu} \# \nu$ is linear and self-adjoint, and can be written as

$$
T_{\mu \rightarrow P_{\mu} \# \nu}=\left(\Sigma_{\mu}^{1 / 2}\right)^{\dagger}\left(\Sigma_{\mu}^{1 / 2} \Sigma_{\nu} \Sigma_{\mu}^{1 / 2}\right)^{1 / 2}\left(\Sigma_{\mu}^{1 / 2}\right)^{\dagger}
$$

In the case $\operatorname{Im}\left\{\Sigma_{\nu}\right\} \subseteq \operatorname{Im}\left\{\Sigma_{\mu}\right\}$ we have $P_{\mu} \# \nu=\nu$, hence $T_{\mu \rightarrow \nu}=T_{\mu \rightarrow P_{\mu} \# \nu}$ is the optimal transport map from μ to ν, even where measures are singular.

B Proof of main results

In this Section we provide proofs of the main results of this paper. In lemmas 2 and 3 we present some alternative representations for $D(P)$. In Lemma 4 we obtain a lower bound on $D(P)$. We then prove Theorem 3 (via a more general result given by Lemma 5), where the lower bound of Lemma 4 is attained. Equipped with Theorem 3, we prove Theorem 1 which is the main result of our paper.

B. 1 Relations between $D(P)$ and X^{*}

In this section we relate the distortion-perception function $D(P)$ given in (2) to the estimator $X^{*}=\mathbb{E}[X \mid Y]$. Recall that $D^{*}=\mathbb{E}\left[\left\|X-X^{*}\right\|^{2}\right]$ and $P^{*}=W_{2}\left(p_{X}, p_{X^{*}}\right)$.
Lemma 2. If \hat{X} is independent of X given Y, then its MSE can be decomposed as $\mathbb{E}\left[\|X-\hat{X}\|^{2}\right]=$ $\mathbb{E}\left[\left\|X-X^{*}\right\|^{2}+\mathbb{E}\left[\left\|X^{*}-\hat{X}\right\|^{2}\right]\right.$ and hence

$$
\begin{equation*}
D(P)=D^{*}+\min _{p_{\hat{X} \mid Y}}\left\{\mathbb{E}_{p_{\hat{X} Y}}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right]: W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P\right\} \tag{36}
\end{equation*}
$$

Proof. For any estimator we can write the MSE

$$
\begin{equation*}
\mathbb{E}\left[\|X-\hat{X}\|^{2}\right]=\mathbb{E}\left[\mid X-X^{*} \|^{2}\right]+\mathbb{E}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right]-2 \mathbb{E}\left[\left(X-X^{*}\right)^{T}\left(\hat{X}-X^{*}\right)\right] \tag{37}
\end{equation*}
$$

Since in our case \hat{X} is independent of X given Y, we show that the third term vanishes.

$$
\begin{aligned}
\mathbb{E}\left[\left(X-X^{*}\right)^{T}\left(\hat{X}-X^{*}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left(X-X^{*}\right)^{T}\left(\hat{X}-X^{*}\right) \mid Y\right] \\
& =\mathbb{E}[\underbrace{\mathbb{E}\left[\left(X-X^{*}\right)^{T} \mid Y\right]}_{=0}\left[\mathbb{E}\left(\hat{X}-X^{*}\right) \mid Y\right]]=0
\end{aligned}
$$

Since X^{*} is a deterministic function of $Y, D^{*}=\mathbb{E}\left[\left\|X-X^{*}\right\|^{2}\right]$ is a property of the problem, and does not depend on the choice of $p_{\hat{X} \mid Y}$, which, in view of 37] completes the proof.

Next, we express $D(P)$ in terms of the Wasserstein distance between $p_{\hat{X}}$ and $p_{X^{*}}$.
Lemma 3 (Eq. (14)).

$$
\begin{equation*}
D(P)=D^{*}+\min _{p_{\hat{X}}}\left\{W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right): W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P\right\} \tag{38}
\end{equation*}
$$

Proof. Denote $W_{2}^{2}\left(\mathcal{B}_{P}, p_{X^{*}}\right)=\min _{p_{\hat{X}}: W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P} W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right)$, where \mathcal{B}_{P} is the ball of radius P around p_{X} in Wasserstein space.
From Lemma 2 we have

$$
\begin{equation*}
D(P)=D^{*}+\min _{p_{\hat{X} \mid Y}: W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P} \mathbb{E}_{p_{\hat{X} Y}}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right] \tag{39}
\end{equation*}
$$

For every $p_{\hat{X} \mid Y}$ whose marginal attains $W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P$ we have,

$$
\begin{aligned}
\mathbb{E}_{p_{\hat{X} Y}}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right] & \geq \inf _{q \in \Pi\left(p_{\hat{X}}, p_{X^{*}}\right)} \mathbb{E}_{q}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right] \\
& =W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right) \\
& \geq \min _{p_{\hat{X}}: W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P} W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right)
\end{aligned}
$$

which leads to $D(P) \geq D^{*}+W_{2}^{2}\left(\mathcal{B}_{P}, p_{X^{*}}\right)$.
Conversely, given $p_{\hat{X}}$ such that $W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P$, we have an optimal plan $p_{\hat{X} X^{*}}$ achieving $W_{2}\left(p_{\hat{X}}, p_{X^{*}}\right)$. Once we determine the optimal plan $p_{\hat{X} X^{*}}$ with marginal $p_{\hat{X}}$, we have an estimator \hat{X} given by $p_{\hat{X} \mid Y}$ achieving $\mathbb{E}_{p_{\hat{X} Y}}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right]=W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right)$ (for the connection between the
optimal plan $p_{\hat{X} X^{*}}$ and the choice of a consistent $p_{\hat{X} \mid Y}$, see Remark about uniqueness in Sec. 3.1.). We then have

$$
\min _{p_{\hat{X} \mid Y}: W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P} \mathbb{E}_{p_{\hat{X} Y}}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right] \leq \mathbb{E}_{p_{\hat{X} Y}}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right]=W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right)
$$

Taking the minimum over $p_{\hat{X}}$ yields $D(P) \leq D^{*}+W_{2}^{2}\left(\mathcal{B}_{P}, p_{X^{*}}\right)$. Combining the upper and lower bounds, we obtain the desired result.

For the proof of Theorem 3, we first prove the following
Lemma 4. $D(P) \geq D^{*}+\left[\left(P^{*}-P\right)_{+}\right]^{2}$.
Proof. For every estimator satisfying $W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P$, we have from the triangle inequality

$$
\begin{equation*}
P^{*}=W_{2}\left(p_{X}, p_{X^{*}}\right) \leq W_{2}\left(p_{\hat{X}}, p_{X^{*}}\right)+W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq W_{2}\left(p_{\hat{X}}, p_{X^{*}}\right)+P \tag{40}
\end{equation*}
$$

yielding

$$
\begin{aligned}
\mathbb{E}\left[\|X-\hat{X}\|^{2}\right] & =\mathbb{E}\left[\left\|X-X^{*}\right\|^{2}\right]+\mathbb{E}\left[\left\|\hat{X}-X^{*}\right\|^{2}\right] \\
& \geq D^{*}+W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right) \\
& \geq D^{*}+\left(P^{*}-P\right)_{+}^{2}
\end{aligned}
$$

where the last inequality follows from 40). Hence $D(P)=$ $\min _{p_{\hat{X} \mid Y}: W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq P} \mathbb{E}_{p_{\hat{X} Y}}\left[\|X-\hat{X}\|^{2}\right] \geq D^{*}+\left[\left(P^{*}-P\right)_{+}\right]^{2}$.

B.1.1 Proof of Theorem 3

Theorem. 3 Let \hat{X}_{0} be an estimator achieving perception index 0 and $\operatorname{MSE} D(0)$. Then for any $P \in\left[0, P^{*}\right]$, the estimator

$$
\begin{equation*}
\hat{X}_{P}=\left(1-\frac{P}{P^{*}}\right) \hat{X}_{0}+\frac{P}{P^{*}} X^{*} \tag{41}
\end{equation*}
$$

is optimal for perception index P, namely, it achieves perception index P and distortion $D(P)$.
Let us prove a stronger result, from which Theorem 3 will follow.
Lemma 5. Let \hat{X}_{ε} be an estimator (independent of X given Y) achieving $W_{2}\left(p_{X}, p_{\hat{X}_{\varepsilon}}\right) \leq \varepsilon_{P}$ and $\mathbb{E}\left[\left\|\hat{X}_{\varepsilon}-X^{*}\right\|^{2}\right] \leq\left(1+\varepsilon_{D}\right)^{2} W_{2}^{2}\left(p_{X}, p_{X^{*}}\right)$ for some $\varepsilon_{D}, \varepsilon_{P} \geq 0$. Given $0 \leq P \leq P^{*}=$ $W_{2}\left(p_{X}, p_{X^{*}}\right)$, consider the estimator

$$
\begin{equation*}
\hat{X}_{P}=\left(1-\frac{P}{P^{*}}\right) \hat{X}_{\varepsilon}+\frac{P}{P^{*}} X^{*} \tag{42}
\end{equation*}
$$

Then \hat{X}_{P} achieves $\mathbb{E}\left[\left\|X-\hat{X}_{P}\right\|^{2}\right] \leq D^{*}+\left(1+\varepsilon_{D}\right)^{2}\left(P^{*}-P\right)^{2}$ with perception index $\varepsilon_{P}+\left(1+\varepsilon_{D}\right) P$. When $\varepsilon_{D}, \varepsilon_{P}=0$, namely \hat{X}_{ε} is an optimal perfect perceptual quality estimator, \hat{X}_{P} is an optimal estimator under perception constraint P, which proves Theorem 3

Proof. $W_{2}^{2}\left(p_{\hat{X}_{\varepsilon}}, p_{\hat{X}_{P}}\right) \leq \mathbb{E}\left[\left\|\hat{X}_{\varepsilon}-\hat{X}_{P}\right\|^{2}\right]$, and using the triangle inequality

$$
\begin{aligned}
W_{2}\left(p_{X}, p_{\hat{X}_{P}}\right) & \leq W_{2}\left(p_{X}, p_{\hat{X}_{\varepsilon}}\right)+W_{2}\left(p_{\hat{X}_{\varepsilon}}, p_{\hat{X}_{P}}\right) \\
& \leq \varepsilon_{P}+\sqrt{\mathbb{E}\left[\left\|\hat{X}_{\varepsilon}-\hat{X}_{P}\right\|^{2}\right]} \\
& =\varepsilon_{P}+\sqrt{\frac{P^{2}}{W_{2}^{2}\left(p_{X}, p_{X^{*}}\right)} \mathbb{E}\left[\left\|\hat{X}_{\varepsilon}-X^{*}\right\|^{2}\right]} \\
& \leq \varepsilon_{P}+P\left(1+\varepsilon_{D}\right),
\end{aligned}
$$

where the equality is based on (42). A direct calculation of the distortion yields

$$
\begin{aligned}
\mathbb{E}\left[\left\|X^{*}-\hat{X}_{P}\right\|^{2}\right] & =\left(1-\frac{P}{W_{2}\left(p_{X}, p_{X^{*}}\right)}\right)^{2} \mathbb{E}\left[\left\|X^{*}-\hat{X}_{\varepsilon}\right\|^{2}\right] \\
& \leq\left(1+\varepsilon_{D}\right)^{2}\left(W_{2}\left(p_{X}, p_{X^{*}}\right)-P\right)^{2} \\
\mathbb{E}\left[\left\|X-\hat{X}_{P}\right\|^{2}\right] & =D^{*}+\mathbb{E}\left[\left\|X^{*}-\hat{X}_{P}\right\|^{2}\right] \\
& \leq D^{*}+\left(1+\varepsilon_{D}\right)^{2}\left(W_{2}\left(p_{X}, p_{X^{*}}\right)-P\right)^{2}
\end{aligned}
$$

When $\varepsilon_{D}, \varepsilon_{P}=0$ we have $W_{2}\left(p_{X}, p_{\hat{X}_{P}}\right) \leq P$ and $\mathbb{E}\left[\left\|X-\hat{X}_{P}\right\|^{2}\right] \leq D^{*}+\left(W_{2}\left(p_{X}, p_{X^{*}}\right)-\right.$ $P)^{2}$. From Lemma 4, the latter inequality is achieved with equality. Note that since here $\mathbb{E}\left[\left\|\hat{X}_{\varepsilon}-X^{*}\right\|^{2}\right]=W_{2}^{2}\left(p_{X}, p_{X^{*}}\right)$, the distributions of $\left\{\hat{X}_{P}, P \in\left[0, W_{2}\left(p_{X}, p_{X^{*}}\right)\right]\right\}$ form a constant-speed geodesic, hence $W_{2}\left(p_{X}, p_{\hat{X}_{P}}\right)=P$.

Corollary 1. When X^{*} has a density, \hat{X}_{0} (hence \hat{X}_{P}) can be obtained via a deterministic transformation of Y.

Proof. Since the distribution of X^{*} is absolutely continuous, we have an optimal map $T_{p_{X^{*}} \rightarrow p_{X}}$ between the distributions of X^{*} and X (see discussion in App. A.2). Namely, we have that $\hat{X}_{0}=T_{p_{X^{*}} \rightarrow p_{X}}\left(X^{*}\right)$ is an optimal estimator with perception index 0 . Thus, according to (15) $\hat{X}_{P}=\left(1-\frac{P}{P^{*}}\right) T_{p_{X^{*}} \rightarrow p_{X}}\left(X^{*}\right)+\frac{P}{P^{*}} X^{*}$ are optimal estimators, which in this case are given by a deterministic function of Y.

B. 2 Proof of Theorem 1

With Theorem 3 and Lemma 5 in hand, we are now ready to prove our main result.
Theorem. 1. The DP function (2) is given by

$$
\begin{equation*}
D(P)=D^{*}+\left[\left(P^{*}-P\right)_{+}\right]^{2} \tag{43}
\end{equation*}
$$

Furthermore, an estimator achieving perception index P and distortion $D(P)$ can always be constructed by applying a (possibly stochastic) transformation to X^{*}.

Proof. When $P \geq P^{*}$ the result is trivial since $D(P)=D^{*}$. Let us focus on $P<P^{*}$. Since $X, X^{*} \in \mathbb{R}^{n_{x}}$, we have an optimal plan $p_{\hat{X}_{0} X^{*}}$ between their distributions, attaining P^{*} [2, 20]. We then have an optimal estimator \hat{X}_{0} with perception index 0 , which is given by this joint distribution hence achieving $\mathbb{E}\left[\left\|\hat{X}_{0}-X^{*}\right\|^{2}\right]=\left(P^{*}\right)^{2}$ (for the connection between $p_{\hat{X}_{0} X^{*}}$ and the choice of $p_{\hat{X}_{0} \mid Y}$, see Remark about uniqueness in Sec. 3.11. For any perception $P<P^{*}$, consider \hat{X}_{P} given by (41). We have $W_{2}\left(p_{X}, p_{\hat{X}_{P}}\right)=P$, and (see Theorem 3 s proof)

$$
\mathbb{E}\left[\left\|X-\hat{X}_{P}\right\|^{2}\right] \leq D^{*}+\left(W_{2}\left(p_{X}, p_{X^{*}}\right)-P\right)^{2}
$$

hence $D(P) \leq D^{*}+\left[\left(P^{*}-P\right)_{+}\right]^{2}$. On the other hand, we have (Lemma 4) $D(P) \geq D^{*}+$ $\left[\left(P^{*}-P\right)_{+}\right]^{2}$, which completes the proof.

B. 3 The Gaussian setting

In this Section we prove Theorems 4 and 5 . We begin by proving Theorem5 , and then show that Theorem 4 follows as a special case. Recall that

$$
\begin{equation*}
\left(G^{*}\right)^{2}=\operatorname{Tr}\left\{\Sigma_{X}+\Sigma_{X^{*}}-2\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2}\right\} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{*}=\Sigma_{X}^{-1 / 2}\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2} \Sigma_{X}^{-1 / 2} \tag{45}
\end{equation*}
$$

Theorem. 5. Consider the setting of Theorem 4 in the main text. Let $\Sigma_{\hat{X}_{0} Y} \in \mathbb{R}^{n_{x} \times n_{y}}$ satisfy

$$
\begin{equation*}
\Sigma_{\hat{X}_{0} Y} \Sigma_{Y}^{-1} \Sigma_{Y X}=\Sigma_{X}^{\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}} \tag{46}
\end{equation*}
$$

and W_{0} be a zero-mean Gaussian noise with covariance

$$
\begin{equation*}
\Sigma_{W_{0}}=\Sigma_{X}-\Sigma_{\hat{X}_{0} Y} \Sigma_{Y}^{-1} \Sigma_{\hat{X}_{0} Y}^{T} \succeq 0 \tag{47}
\end{equation*}
$$

that is independent of Y, X. Then, for any $P \in\left[0, G^{*}\right]$, an optimal estimator with perception index P can be obtained by

$$
\begin{equation*}
\hat{X}_{P}=\left(\left(1-\frac{P}{G^{*}}\right) \Sigma_{\hat{X}_{0} Y}+\frac{P}{G^{*}} \Sigma_{X Y}\right) \Sigma_{Y}^{-1} Y+\left(1-\frac{P}{G^{*}}\right) W_{0} \tag{48}
\end{equation*}
$$

The estimator given in (50) is one solution to (46)-(47), but it is generally not unique.
Proof. (Theorem 5) Let $\hat{X}_{0} \triangleq \Sigma_{\hat{X}_{0} Y} \Sigma_{Y}^{-1} Y+W_{0}$ where $\Sigma_{\hat{X}_{0} Y}$ satisfies 46)-47). It is easy to see that $\hat{X}_{0} \sim \mathcal{N}\left(0, \Sigma_{X}\right)$ and it is jointly Gaussian with $\left(X, Y, X^{*}\right)$. We have by 46

$$
\begin{equation*}
\mathbb{E}\left[X^{*} \hat{X}_{0}^{T}\right]=\Sigma_{X Y} \Sigma_{Y}^{-1} \Sigma_{Y \hat{X}_{0}}=\Sigma_{X}^{-1 / 2}\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2} \Sigma_{X}^{1 / 2} \tag{49}
\end{equation*}
$$

hence using 47,

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{X}_{0}-X^{*}\right\|^{2}\right] & =\operatorname{Tr}\left\{\Sigma_{X}+\Sigma_{X^{*}}-2 \mathbb{E}\left[X^{*} \hat{X}_{0}^{T}\right]\right\} \\
& =\operatorname{Tr}\left\{\Sigma_{X}+\Sigma_{X^{*}}-2 \Sigma_{X}^{-1 / 2}\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2} \Sigma_{X}^{1 / 2}\right\} \\
& =\operatorname{Tr}\left\{\Sigma_{X}+\Sigma_{X^{*}}-2\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2}\right\} \\
& =G^{2}\left(\Sigma_{X}, \Sigma_{X^{*}}\right) \\
& =\left(G^{*}\right)^{2}
\end{aligned}
$$

Summarizing, \hat{X}_{0} is an optimal perfect perceptual quality estimator. Note that 48) can be written as

$$
\hat{X}_{P}=\left(1-\frac{P}{G^{*}}\right) \hat{X}_{0}+\frac{P}{G^{*}} X^{*}
$$

and by Theorem 3 we have that it is an optimal estimator.
Before proceeding to the proof of Theorem 4 let us introduce some auxiliary facts.
Lemma 6. Let $\Sigma, \Sigma_{X^{*}} \in \mathbb{R}^{n \times n}$ be (symmetric) PSD matrices, and $\Sigma_{X} \in \mathbb{R}^{n \times n}$ is PD. Denote $T^{*}=\Sigma_{X}^{-\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}}$. Then:

1. $\operatorname{Ker}\{\Sigma\}=\operatorname{Ker}\left\{\Sigma^{\frac{1}{2}}\right\}$.
2. $\operatorname{Ker}\left\{\Sigma_{*}\right\} \subseteq \operatorname{Ker}\left\{\Sigma_{X}^{\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}}\right\}=\operatorname{Ker}\left\{\Sigma_{X} T^{*}\right\}$, and we have $\Sigma_{X} T^{*} \Sigma_{X^{*}}^{\dagger} \Sigma_{X^{*}}=\Sigma_{X} T^{*}$.

Proof. (1) Let Σ be PSD. Since it is real and symmetric it is diagonalizable, $\Sigma=U D U^{T}$ and $\Sigma^{1 / 2}=U D^{1 / 2} U^{T}$ where D is a diagonal matrix with non-negative entries which are the eigenvalues of Σ. We have $\operatorname{Ker}\{D\}=\operatorname{Ker}\left\{D^{1 / 2}\right\}=\left\{v \in \mathbb{R}^{n}: v_{i}=0 \forall i: D_{i, i} \neq 0\right\}$ and since U is full-rank, $\operatorname{Ker}\{\Sigma\}=\operatorname{Ker}\left\{\Sigma^{1 / 2}\right\}=U \operatorname{Ker}\{D\}$.
(2) Assume $\Sigma_{X^{*} v}=0$. We have $\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right) \Sigma_{X}^{-1 / 2} v=0$, implying that $\Sigma_{X}^{-1 / 2} v \in$ $\operatorname{Ker}\left\{\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)\right\}=\operatorname{Ker}\left\{\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2}\right\}$. The equality is true since $\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}=$ $\Sigma_{X}^{1 / 2} \Sigma_{X^{*}}^{1 / 2}\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}}^{1 / 2}\right)^{T}$ is PSD, and we use (1). To conclude, we have

$$
\Sigma_{X} T^{*} v=\Sigma_{X}^{1 / 2}\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2} \Sigma_{X}^{-1 / 2} v=0 \Longrightarrow \operatorname{Ker}\left\{\Sigma_{X^{*}}\right\} \subseteq \operatorname{Ker}\left\{\Sigma_{X} T^{*}\right\}
$$

Recall now that $\left(I-\Sigma_{X^{*}}^{\dagger} \Sigma_{X^{*}}\right)$ is a projection onto $\operatorname{Ker}\left\{\Sigma_{X^{*}}\right\}$. We have $\Sigma_{X} T^{*}\left(I-\Sigma_{X^{*}}^{\dagger} \Sigma_{X^{*}}\right)=0$, yielding $\Sigma_{X} T^{*} \Sigma_{X^{*}}^{\dagger} \Sigma_{X^{*}}=\Sigma_{X} T^{*}$.

The following Lemma is a reminder of the Schur Complement and its properties.
Lemma 7. [Schur complement]. Let $\Sigma=\left[\begin{array}{cc}A & B \\ B^{T} & C\end{array}\right]$ be a symmetric matrix where A is $P D$. Then $\Sigma / A \triangleq C-B^{T} A^{-1} B$ is the Schur complement of Σ, and we have that Σ is PSD iff Σ / A is PSD.

We are now ready to prove Theorem 4.
Theorem. 4. Assume X and Y are zero-mean jointly Gaussian random vectors with $\Sigma_{X}, \Sigma_{Y} \succ 0$. Then for any $P \in\left[0, G^{*}\right]$, an estimator with perception index P and MSE $D(P)$ can be constructed as

$$
\begin{equation*}
\hat{X}_{P}=\left(\left(1-\frac{P}{G^{*}}\right) \Sigma_{X}^{\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}} \Sigma_{X^{*}}^{\dagger}+\frac{P}{G^{*}} I\right) \Sigma_{X Y} \Sigma_{Y}^{-1} Y+\left(1-\frac{P}{G^{*}}\right) W \tag{50}
\end{equation*}
$$

where W is a zero-mean Gaussian noise with covariance $\Sigma_{W}=\Sigma_{X}^{1 / 2}\left(I-\Sigma_{X}^{1 / 2} T^{*} \Sigma_{X}^{\dagger} T^{*} \Sigma_{X}^{1 / 2}\right) \Sigma_{X}^{1 / 2}$, which is independent of Y, X.

Proof. We observe that (50) is a special case of 48, where $\Sigma_{\hat{X}_{0} Y}=\Sigma_{Y \hat{X}_{0}}^{T}=$ $\Sigma_{X}^{\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}} \Sigma_{X^{*}}^{\dagger} \Sigma_{X Y}$. We now show that $\Sigma_{\hat{X}_{0} Y}$ has the desired properties (46)- (47). By substitution,

$$
\begin{aligned}
\Sigma_{\hat{X}_{0} Y} \Sigma_{Y}^{-1} \Sigma_{Y X} & =\Sigma_{X}^{\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}} \Sigma_{X^{*}}^{\dagger}\left(\Sigma_{X Y} \Sigma_{Y}^{-1} \Sigma_{Y X}\right) \\
& =\Sigma_{X}^{\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}} \Sigma_{X^{*}}^{\dagger} \Sigma_{X^{*}} \\
& =\Sigma_{X}^{\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}}
\end{aligned}
$$

The last equality is due to Lemma6
Recall $\Sigma_{X^{*}}^{\dagger} \Sigma_{X^{*}} \Sigma_{X^{*}}^{\dagger}=\Sigma_{X^{*}}^{\dagger}$, and we denote $T^{*}=\Sigma_{X}^{-\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X^{2}}^{-\frac{1}{2}}$. We now have

$$
\begin{aligned}
\Sigma_{Y \hat{X}_{0}} \Sigma_{X}^{-1} \Sigma_{\hat{X}_{0} Y} & =\Sigma_{Y X} \Sigma_{X^{*}}^{\dagger} T^{*} \Sigma_{X} \Sigma_{X}^{-1} \Sigma_{X} T^{*} \Sigma_{X^{*}}^{\dagger} \Sigma_{X Y} \\
& =\Sigma_{Y X} \Sigma_{X^{*}}^{\dagger} \Sigma_{X}^{-\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right) \Sigma_{X}^{-\frac{1}{2}} \Sigma_{X^{*}}^{\dagger} \Sigma_{X Y} \\
& =\Sigma_{Y X} \Sigma_{X^{*}}^{\dagger} \Sigma_{X^{*}} \Sigma_{X^{*}}^{\dagger} \Sigma_{X Y} \\
& =\Sigma_{Y X} \Sigma_{X^{*}}^{\dagger} \Sigma_{X Y}
\end{aligned}
$$

hence

$$
\begin{equation*}
\Sigma_{Y}-\Sigma_{Y \hat{X}_{0}} \Sigma_{X}^{-1} \Sigma_{\hat{X}_{0} Y}=\Sigma_{Y}-\Sigma_{Y X} \Sigma_{X^{*}}^{\dagger} \Sigma_{X Y}=\Sigma_{Y \mid X^{*}} \succeq 0 \tag{51}
\end{equation*}
$$

Since $\Sigma_{X}, \Sigma_{Y} \succ 0$, 51) is the Schur complement of $\left[\begin{array}{cc}\Sigma_{X} & \Sigma_{\hat{X}_{0} Y} \\ \Sigma_{Y \hat{X}_{0}} & \Sigma_{Y}\end{array}\right] \succeq 0$, yielding

$$
\begin{equation*}
\Sigma_{W}=\Sigma_{X}-\Sigma_{\hat{X}_{0} Y} \Sigma_{Y}^{-1} \Sigma_{\hat{X}_{0} Y}^{T} \succeq 0 \tag{52}
\end{equation*}
$$

Corollary 2 (Non-singular special case). In the case where $\Sigma_{X^{*}}$ is invertible, $\Sigma_{\hat{X}_{0} Y}=$ $\Sigma_{X} T^{*} \Sigma_{X^{*}}^{-1} \Sigma_{X Y}$ in the proof of Theorem 4 and it is easy to see that the noise covariance is $\Sigma_{W}=0$. In this case $\Sigma_{\hat{X}_{0} Y}$ is the unique solution to (46-47). This means that \hat{X}_{0} (hence \hat{X}_{P}) is a deterministic function of Y.

Proof. We first show $\Sigma_{W}=0$. Let $M_{P}=\Sigma_{\hat{X}_{0} Y}=\Sigma_{X} T^{*} \Sigma_{X^{*}}^{-1} \Sigma_{X Y}$, then

$$
\begin{aligned}
\Sigma_{W} & =\Sigma_{X}-M_{P} \Sigma_{Y}^{-1} M_{P}^{T} \\
& =\Sigma_{X}-\Sigma_{X} T^{*} \Sigma_{X^{*}}^{-1} \Sigma_{X Y} \Sigma_{Y}^{-1} \Sigma_{Y X} \Sigma_{X^{*}}^{-1} T^{*} \Sigma_{X} \\
& =\Sigma_{X}-\Sigma_{X} \Sigma_{X}^{-1 / 2}\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2} \underbrace{\left(\Sigma_{X}^{-1 / 2} \Sigma_{X}^{-1} \Sigma_{X}^{-1 / 2}\right)}_{=\left(\Sigma_{X}^{1 / 2} \Sigma_{X} * \Sigma_{X}^{1 / 2}\right)^{-1}}\left(\Sigma_{X}^{1 / 2} \Sigma_{X^{*}} \Sigma_{X}^{1 / 2}\right)^{1 / 2} \Sigma_{X}^{-1 / 2} \Sigma_{X} \\
& =\Sigma_{X}-\Sigma_{X} \Sigma_{X}^{-1 / 2} \Sigma_{X}^{-1 / 2} \Sigma_{X}=0 .
\end{aligned}
$$

Now, assume M is a solution to (46)-47, then $M_{\Delta}=M_{P}-M$ satisfies $M_{\Delta} \Sigma_{Y}^{-1} \Sigma_{Y X}=0$ and
$\Sigma_{X}-M \Sigma_{Y}^{-1} M^{T}=$
$\Sigma_{X}-\left[M_{P} \Sigma_{Y}^{-1} M_{P}^{T}+M_{\Delta} \Sigma_{Y}^{-1} M_{\Delta}^{T}-M_{\Delta} \Sigma_{Y}^{-1} M_{P}^{T}-M_{P} \Sigma_{Y}^{-1} M_{\Delta}^{T}\right] \succeq 0$.
But, $M_{\Delta} \Sigma_{Y}^{-1} M_{P}^{T}=\left(M_{\Delta} \Sigma_{Y}^{-1} \Sigma_{Y X}\right) \Sigma_{X^{*}}^{-1} T^{*} \Sigma_{X}=0$ and $\Sigma_{X}-M_{P} \Sigma_{Y}^{-1} M_{P}^{T}=0$, yielding $M_{\Delta} \Sigma_{Y}^{-1} M_{\Delta}^{T} \preceq 0$. Since $M_{\Delta} \Sigma_{Y}^{-1} M_{\Delta}^{T}$ is PSD and Σ_{Y}^{-1} is PD, we conclude that $M_{\Delta}=0$.

C Relations with other divergences

While in Section 3 we focused our attention on the MSE $-W_{2}$ tradeoff, in this section we discuss the implications of our results on the DP tradeoff with other divergences. In particular, we show that when considering the MSE distortion, (8) establishes a lower bound on a class of DP functions. Note that at the point $P=0$, the DP function coincides with (8) for all plausible divergences.

Let $d_{p}(\cdot, \cdot)$ be a divergence between probability measures, and let $D_{d_{p}}(P)$ be the DP function w.r.t. this divergence, given by (1), where MSE is used to measure distortion. Here, $D(P)$ will denote $D_{W_{2}}(P)$, given by (8). We can now write, similarly to (14),

$$
\begin{equation*}
D_{d_{p}}(P)=D^{*}+\inf _{d_{p}\left(p_{X}, p_{\hat{X}}\right) \leq P} W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right) \tag{53}
\end{equation*}
$$

In cases where $d_{p}\left(p_{X}, p_{\hat{X}}\right) \geq W_{2}\left(p_{X}, p_{\hat{X}}\right)$ for all $p_{\hat{X}}$, the constraint set $\left\{p_{\hat{X}}: d_{p}\left(p_{X}, p_{\hat{X}}\right) \leq P\right\}$ is contained in $\left\{p_{\hat{X}}: W_{2}\left(p_{X}, p_{\hat{X}}\right) \leq P\right\}$. Therefore, from (53), we have that

$$
\begin{equation*}
D_{d_{p}}(P) \geq D^{*}+\inf _{W_{2}\left(p_{X}, p_{\hat{X}}\right) \leq P} W_{2}^{2}\left(p_{\hat{X}}, p_{X^{*}}\right)=D(P) . \tag{54}
\end{equation*}
$$

The last equality follows from (14), where the infimum is attained. The above result holds true for any Wasserstein distance W_{p} with $p \geq 2$, since when $p \geq q \geq 1$, we have that $W_{p}\left(p_{X}, p_{\hat{X}}\right) \geq$ $W_{q}\left(p_{X}, p_{\hat{X}}\right)$ for all $p_{\hat{X}}, p_{X}$ [20].

For the case of W_{1}, let us denote $P_{1}^{*} \triangleq W_{1}\left(p_{X}, p_{X^{*}}\right)$. From the triangle inequality, for every estimator satisfying $W_{1}\left(p_{X}, p_{\hat{X}}\right) \leq P$ we have

$$
P_{1}^{*} \leq W_{1}\left(p_{X}, p_{\hat{X}}\right)+W_{1}\left(p_{\hat{X}}, p_{X^{*}}\right) \leq P+W_{2}\left(p_{\hat{X}}, p_{X^{*}}\right)
$$

which together with (53) yields

$$
\begin{equation*}
D(P) \geq D_{W_{1}}(P) \geq D^{*}+\left[\left(P_{1}^{*}-P\right)_{+}\right]^{2} \tag{55}
\end{equation*}
$$

A similar result can be obtained for any $W_{p}, p \in[1,2]$.
Note that when the support of p_{X} and $p_{\hat{X}}$ is compact with diameter R, we have $R^{(p-q) / p} W_{q}^{q / p}\left(p_{\hat{X}}, p_{X}\right) \geq W_{p}\left(p_{\hat{X}}, p_{X}\right)$ for any $p \geq q \geq 1$ [20]. Particularly, $R^{1 / 2} W_{1}^{1 / 2}\left(p_{\hat{X}}, p_{X}\right) \geq W_{2}\left(p_{\hat{X}}, p_{X}\right)$, and therefore $W_{1}\left(p_{\hat{X}}, p_{X}\right) \leq P$ implies $W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq$ $\sqrt{R P}$, so we have from (53) that

$$
\begin{equation*}
D_{W_{1}}(P) \geq D(\sqrt{R P}) \tag{56}
\end{equation*}
$$

In the Gaussian setting where $X \sim \mathcal{N}(0, I)$, we have by Talagrand's Inequality [28, 19] $W_{2}\left(p_{\hat{X}}, p_{X}\right) \leq \sqrt{2 d_{K L}\left(p_{\hat{X}} \| p_{X}\right)}$ for $p_{\hat{X}} \ll p_{X}$, hence we obtain, similarly to 54]

$$
\begin{equation*}
D_{d_{K L}}(P) \geq D(\sqrt{2 P}) \tag{57}
\end{equation*}
$$

We summarize these results in Appendix F

D Settings with commuting covariances

In many practical problems, covariance matrices may have the commutative relation $\Sigma_{X} \Sigma_{X^{*}}=$ $\Sigma_{X^{*}} \Sigma_{X}$. This is the case, for example, of circulant or large Toeplitz matrices [9]. For natural images

Figure 5: A visual demonstration of SR image enhancement. X is a full-resolution reference image and Y is a $\times 4$ downsampled version of $X . \hat{X}$ is a reconstruction of X based on Y.
this is a reasonable assumption since shift-invariance induces diagonalization by the Fourier basis [30].

In the Gaussian settings of Sec. 3.3 , where $\Sigma_{X}, \Sigma_{X^{*}}$ commute it is easy to see that the Gelbrich distance between them can be written as

$$
G^{*}=G\left(\left(\mu_{X}, \Sigma_{X}\right),\left(\mu_{X^{*}}, \Sigma_{X^{*}}\right)\right)=\left\|\Sigma_{X}^{1 / 2}-\Sigma_{X^{*}}^{1 / 2}\right\|_{F}
$$

$\|A\|_{F}=\sqrt{\operatorname{Tr}\left\{A^{T} A\right\}}$ is the Frobenius norm. This is due to the fact that $\Sigma_{X}^{1 / 2}, \Sigma_{X^{*}}^{1 / 2}$ also commute. In order to achieve $\mathbb{E}\left[\left\|\hat{X}_{0}-X^{*}\right\|^{2}\right]=\left(G^{*}\right)^{2}$, an optimal perfect perceptual quality estimator has to satisfy (49) which now takes the form

$$
\mathbb{E}\left[X^{*} \hat{X}_{0}^{T}\right]=\Sigma_{X}^{1 / 2} \Sigma_{X^{*}}^{1 / 2}
$$

It is easy to see that estimators obtained by \hat{X}_{0}, X^{*} using (15) are Gaussian with zero mean and covariance Σ_{P}, given by

$$
\begin{equation*}
\Sigma_{P}^{\frac{1}{2}}=\left(1-\frac{P}{G^{*}}\right) \Sigma_{X}^{\frac{1}{2}}+\frac{P}{G^{*}} \Sigma_{X^{*}}^{\frac{1}{2}} \tag{58}
\end{equation*}
$$

Pay attention that since the roots commute, Σ_{P} commmutes with $\Sigma_{X}, \Sigma_{X^{*}}$, and

$$
\left\|\Sigma_{X}^{\frac{1}{2}}-\Sigma_{P}^{\frac{1}{2}}\right\|_{F}=P, \quad\left\|\Sigma_{P}^{\frac{1}{2}}-\Sigma_{X^{*}}^{\frac{1}{2}}\right\|_{F}=G^{*}-P
$$

This further reduces the geometry of the problem to the l^{2}-distance between commuting matrices.

E Numerical illustration

E. 1 Super-resolution problem

In super-resolution (SR) problems, the objective is to enhance the resolution of a given image. This setting can be viewed as an image reconstruction problem, where we assume X is an unknown image of the desired resolution, and the input to the algorithm is Y, a downsampled (degraded) version of X. The output of the algorithm is then $\hat{X} \sim p_{\hat{X} \mid Y}$, an estimation of X based on Y.
Figure 5 visually demonstrates this setting with a concrete example.

E. 2 Simulation details

In Section 5 we construct an experimental setup, demonstrating our results. Figure 3 presents the evaluation of 13 super resolution algorithms on the BSD100 dataset, where we compare MSE distortion, and Gelbrich and FID perceptual indices. Low resolution images were obtained by $4 \times$ downsampling BSD100 images using a bicubic kernel.

For each algorithm, we acquire 100 RGB images (5000 for the explorable SR method) which are reconstructions of BSD100 images. To compute the Gelbrich index, we extract 9×9 patches from the RGB images, and then estimate

$$
m_{\mathrm{Alg}}=\frac{1}{N_{\text {patches }}} \sum_{i} p_{i}, \quad \Sigma_{\mathrm{Alg}}=\frac{1}{N_{\text {patches }}-1}\left(p_{i}-m_{\mathrm{Alg}}\right)\left(p_{i}-m_{\mathrm{Alg}}\right)^{T}
$$

where p_{i} is the i-th patch (a 243 -row vector) and $N_{\text {patches }}=1,643,200$. We compute using (4)
$\mathrm{MSE}_{\mathrm{Alg}}=\frac{1}{243 \times N_{\text {patches }}} \sum_{i}\left\|p_{i}^{\mathrm{Alg}}-p_{i}^{\mathrm{BSD} 100}\right\|^{2}, \quad P_{\mathrm{Alg}}=\sqrt{\frac{1}{243}} G\left(\left(m_{\mathrm{BSD} 100}, \Sigma_{\mathrm{BSD} 100}\right),\left(m_{\mathrm{Alg}}, \Sigma_{\mathrm{Alg}}\right)\right)$.
The stochastic explorable SR method [3] is evaluated using 50 different SR outputs for each input image, hence for this method $N_{\text {patches }}=50 \times 1,643,200$.

FID values are calculated on 299×299 patches, where for the explorable SR method we use 40 different outputs for each input.
The estimators \hat{X}_{t} are constructed using per-pixel interpolation between EDSR and ESRGAN,

$$
\hat{X}_{t}=t X_{\mathrm{EDSR}}+(1-t) X_{\mathrm{ESRGAN}}
$$

E. 3 Visual illustration

Here we present a visual comparison between SR methods and our constructed estimators, achieving roughly the same MSE but with a lower perception index. We also present EDSR, ESRGAN, the low-resolution input, and the ground-truth BSD100 images.

Figure 6: A visual comparison between SRGAN-VGG ${ }_{2,2}$ (RMSE: 18.08, P: 5.05), and $\hat{X}_{0.12}$ (18.14, 2.59).

Figure 7: A visual comparison between SRGAN-MSE (RMSE: 16.93, P: 5.85), and $\hat{X}_{0.3}(16.82$, 4.32).

F Table of main results

For convenience, we summarize our results in the following Table.
Table 1: Main results

Result	notation	setting		remarks
$\overline{\mathrm{D}-\mathrm{P}}$ function	$D(\mathrm{P})$	MSE- W_{2}	$D(P)=D^{*}+\left[\left(P^{*}-P\right)_{+}\right]^{2}$	$P^{*}=W_{2}\left(p_{X}, p_{X^{*}}\right)$
		Gaussian	$D(P)=D^{*}+\left[\left(G^{*}-P\right)_{+}\right]^{2}$	$G^{*}=G\left(\Sigma_{X}, \Sigma_{X^{*}}\right)$
Optimal	\hat{X}_{P}	MSE- W_{2}	$\left(1-\frac{P}{P^{*}}\right) \hat{X}_{0}+\frac{P}{P^{*}} X^{*}$	
estimators		Gaussian	$\begin{gathered} \left(\alpha \Sigma_{X} T^{*} \Sigma_{X^{*}}^{\dagger}+(1-\alpha) I\right) X^{*} \\ +\alpha W \end{gathered}$	$\begin{gathered} \alpha=\left(1-\frac{P}{G^{*}}\right), X^{*}=\Sigma_{X Y} \Sigma_{Y}^{-1} Y \\ T^{*}=\Sigma_{X}^{-\frac{1}{2}}\left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}} \\ W \sim \mathcal{N}\left(0, \Sigma_{X}-\Sigma_{X} T^{*} \Sigma_{X^{*}}^{\dagger} T^{*} \Sigma_{X}\right) \end{gathered}$
Lower bounds		MSE- W_{2}	$D(P) \geq D^{*}+\left[\left(G^{*}-P\right)_{+}\right]^{2}$	
		MSE- W_{p}	$D_{W_{p}}(P) \geq D^{*}+\left[\left(P^{*}-P\right)_{+}\right]^{2}$	$p \geq 2$
		MSE- W_{1}	$D_{W_{1}}(P) \geq D^{*}+\left[\left(P_{1}^{*}-P\right)_{+}\right]^{2}$	$P_{1}^{*}=W_{1}\left(p_{X}, p_{X^{*}}\right)$
		MSE- $d_{K L}$	$D_{d_{K L}}(P) \geq D^{*}+\left[\left(P^{*}-\sqrt{2 P}\right)_{+}\right]^{2}$	$X \sim \mathcal{N}(0, I)$

