
A FashionMNIST Classification

A.1 Implementation details

Environment: The RL image classification environment consists of a dataset of labelled images. At
the beginning of each episode, a new image and its corresponding label are chosen from the dataset,
and held fixed for the entire episode. Each time-step, the agent must pick an action corresponding
to one of the labels. If the picked label is correct, the agent gets a reward of r = 0, and the episode
ends, and if the picked label is incorrect, then the agent gets a reward of r = −1, and the episode
continues to the next time-step (where it must guess another label for the same image). The total
return for a trajectory corresponds to the number of incorrect guesses the agent makes for the image.
We enforce a time-limit of 20 timesteps in the environment to prevent infinite-length trajectories of
incorrect guessing.

We train the agent on a dataset of 10000 FashionMNIST images subsampled from the training set, and
test on the FashionMNIST test dataset. Note that this task is very similar, but not exactly equivalent
to maximizing predictive accuracy for supervised classification: if the episode ended regardless of
whether or not the agent was correct, then it would correspond exactly to classification.

Algorithm: We train a DQN agent on the training environment using the min-Q update rule from
TD3 [57]. The Q-function architecture is a convolutional neural network (CNN) with the architecture
from Kostrikov et al [58]. To ensure that the agent does not suffer from poor exploration during
training, the replay buffer is pre-populated with one copy of every possible transition in the training
environment (that is, where every action is taken for every image in the training dataset). The variant
labelled “Uniform after step 1” in Figure 3 follows the DQN policy for the first time-step, and if
this was incorrect, then at all subsequent time-steps, takes a random action uniformly amongst the
10 labels. For the variant labelled “Adaptive”, we train a classifier pθ(y|x) on the training dataset
of images with the same architecture as the DQN agent. The adaptive agent follows a process-
of-elimination strategy; formally, the action taken by the adaptive agent at time-step t is given by
argmaxa/∈{a1,...,at−1} pθ(y = a|x).

A.2 Derivation of Bayes-optimal policies

In the epistemic POMDP for the RL image classification problem, each episode, an image x ∈ X is
sampled randomly from the dataset, and a label y ∈ Y sampled randomly for this image from the
distribution p(y|x,D). This label is held fixed for the entire episode. For notation, let Y = {1, . . . , d},
so that a label distribution p(y|x) can be written as a vector in the probability simplex on Rd. We
emphasize two settings: γ = 0 (the supervised learning setting), and γ = 1 (an RL setting), where
the expected return of an agent is the average number of incorrect guesses made.

A.2.1 Memory-based policy

Since the optimal memory-based policy in a POMDP is deterministic [47], we restrict ourselves to
analyzing the performance of deterministic memory-based policies. In the following we will narrow
the search space even further.

Since the episode ends after the agent correctly classifies an image and the reward structure incentives
the agent to solve the task as quickly as possible, an agent acting optimally will never repeat the same
action twice. Indeed, the agent will not have the opportunity to repeat the right action twice because
the episode would have ended after the first time it tried it. Furthermore, trying a wrong action twice
is also not optimal as in incurs addition negative reward. Therefore, we can limit our search space to
policies that try each action once. These policies differ by the ordering in which they try each one of
these d labels.

At the beginning of every episode, a image x is sampled uniformly at random among all training
images and its true label y (during that episode) is sampled from p(y|x,D). Let π be policy that tries
each of the d actions exactly once in its first d trials. Let Tπy denotes the time when policy π tries
action y. Note that (Tπy )y∈Y is a permutation. When the label chosen is y, the cumulative reward of
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π for that episode is given by r = γ
Tπy −1
1−γ and the expected cumulative reward (across episodes) is

given by:

J(π) :=
∑
y∈Y

p(y|x,D)γ
Tπy − 1

1− γ
=

1

1− γ

∑
y∈Y

p(y|x,D)γT
π
y − 1

 (6)

From that expression, we see that in order to maximize its expected cumulative reward, a policy
π has to maximize

∑
y∈Y p(y|x,D)γ

Tπy which can be interpreted as the dot product of the vector
[p(y|x,D)]y∈Y and [γT

π
y ]y∈Y . By the rearrangement inequality, we know that this dot product is

maximized when the components of the vectors are arranged in the same ordering.

If we denote by y(1), . . . y(d) be the labels sorted in order of probability under the belief distribution:
p(y(1)|x,D) ≥ p(y(2)|x,D) ≥ · · · ≥ p(y(d)|x,D). Since 0 < γ < 1 the rearrangement inequality
implies that the expected return is maximized when Tπy(t) = t. This corresponds to a policy that tries
the labels sequentially from the most likely to the least likely.

A.2.2 Memoryless policy

In this section, we will derive the optimal memoryless policy. Consider a memoryless policy that
takes actions according to the distribution π(·|x) for the image x. When the true label is y for the
image x, the number of incorrect guesses is distributed as Geom(p = π(y|x)).
When the agent guesses correctly the label y at the t−th guess then the cumulative reward is given
by r = − 1−γt

1−γ . This happens with probability (1− π(y | x))t × π(y | x). The expected return for
policy π evaluated on image x is then given by:

J(π|x) = −
∑
y∈Y

∞∑
t=0

(1− π(y|x))tπ(y|x)1− γ
t

1− γ
p(y|x,D)

=
∑
y∈Y

p(y|x,D) π(y | x)− 1

1− γ(1− π(y|x))

(7)

When γ = 0 (supervised learning problem), J(π) =
∑
y∈Y p(y|x,D) (π(y | x)− 1) is a linear

function of π and as expected, the optimal policy is to deterministically choose the label with the
highest probability:π∗(y | x) = 1

[
y = argmaxy∈Y p(y|x,D)

]
.

When γ > 0, the optimal policy is the solution to a constrained optimization problem that can be
solved with Lagrange multipliers. When γ = 1, the optimal policy can be written explicitly as:

π∗(y | x) = 1

λ

√
p(y|x,D) (8)

where λ is a normalization constant.

B Theoretical Results

Proposition 5.1. If the true MDPM is sampled from P(M), and evidence D fromM is provided
to an algorithm during training, then the expected test-time return of π is equal to its performance in
the epistemic POMDPMpo.

JMpo(π) = EM∼P(M)[JM(π) | D]. (2)
In particular, the optimal policy inMpo is Bayes-optimal for generalization to the unknown MDP
M: it receives the highest expected test-time return amongst all possible policies.

Proof. This proposition follows directly from the definition of the epistemic POMDP. If the MDP
M is sampled from P(M) and D is witnessed, then the posterior distribution over MDPs is given by
P(M|D), and the expected test-time return of π given the evidence is

EM∼P(M)[JM(π)|D] := EM∼P(M|D)[JM(π)].
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In the epistemic POMDP, where an episode corresponds to randomly sampling an MDP from
P(M|D), and a single episode being evaluated in this MDP, the expected return can be expressed
identically:

JMpo(π) := EM∼P(M|D)[Eπ,M[

∞∑
i=0

γtr(st, at)]] = EM∼P(M|D)[JM(π)].

B.1 Optimal MDP Policies can be Arbitrarily Suboptimal

Proposition B.1. Let ε > 0. There exists posterior distributions P(M|D) where a deterministic
Markov policy π is optimal with probability at least 1− ε,

PM∼P(M|D)

(
π ∈ argmax

π′
JM(π′)

)
≥ 1− ε, (9)

but is outperformed by a uniformly random policy in the epistemic POMDP: JMpo(π) < JMpo(πunif).

Proof. Consider two deterministic MDPs,MA, andMB that both have two states and two actions:
“stay” and ”switch”. In both MDPs, the reward for the “stay” action is always zero. InMA the reward
for “switch” is always 1, while inMB the reward for “switch” is −c for c > 0. The probability of
being inMB is ε while the probability of being inMA is 1− ε. Clearly, the policy “always switch”
is optimal inMA and so is ε-optimal under the distribution on MDPs. The expected discounted
reward of the “always switch” policy is:

J(πalways switch) = (1− ε) 1

1− γ
− ε c

1− γ
=

1

1− γ
(1− (c+ 1)ε) . (10)

On the other hand, we can consider a policy which selects actions uniformly at random. In this case,
the expected cumulative reward is

J(πrandom) = (1− ε)1
2

1

1− γ
− ε c

2

1

1− γ
=

1

2

1

1− γ
(1− (c+ 1)ε) =

1

2
J(πalways switch) . (11)

Thus for any ε we can find a c > 1
ε − 1 such that both policies have negative expected rewards and

we prefer the random policy for being half as negative.

B.2 Bayes-optimal Policies May Take Suboptimal Actions Everywhere

We formalize the remark that optimal policies for the MDPs in the posterior distribution may be
poor guides for determining what the Bayes-optimal behavior is in the epistemic POMDP. The
following proposition shows that there are epistemic POMDPs where the support of actions taken
by the MDP-optimal policies is disjoint from the actions taken by the Bayes-optimal policy, so no
method can “combine” the optimal policies from each MDP in the posterior to create Bayes-optimal
behavior.
Proposition B.2. There exist posterior distributionsP(M|D) where the support of the Bayes-optimal
memoryless policy π∗po(a|s) is disjoint with that of the optimal policies in each MDP in the posterior.
Formally, writing supp(π(a|s)) = {a ∈ A : π(a|s) > 0}, then ∀M with P(M|D) > 0 and ∀s:

supp(π∗po(a|s)) ∩ supp(π∗M(a|s)) = ∅

Proof. The proof is a simple modification of the construction in Proposition 5.1. Consider two
deterministic MDPs,MA, andMB with equal support under the posterior, where both have two
states and three actions: “stay”, ”switch 1”, and “switch 2”. In both MDPs, the reward for the “stay”
action is always zero. InMA the reward for “switch” is always 1, while inMB the reward for
“switch” is −2. The reward structure for “switch 2” is flipped: inMA, the reward for “switch 2” is
−2, and inMB , the reward is 1. Then, the policy “always switch” is optimal inMA, and the policy
“always switch 2” is optimal inMB . However, any memoryless policy that takes either of these
actions receives negative reward in the epistemic POMDP, and is dominated by the Bayes-optimal
memoryless policy “always stay”, which achieves 0 reward.
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B.3 MaxEnt RL is Optimal for a Choice of Prior

We describe a special case of the construction of Eysenbach and Levine [52], which shows that
maximum-entropy RL in a bandit problem recovers the Bayes-optimal POMDP policy in an epistemic
POMDP similar to that described in the RL image classification task.

Consider the family of MDPs {Mk}k∈[n] each with one state and n actions, where taking action k in
MDPMk yields zero reward and the episode ends, and taking any other action yields reward −1 and
the episode continues. Effectively,Mk corresponds to a first-exit problem with “goal action” k. Note
that this MDP structure is exactly what we have for the RL image classification task for a single image.
Also consider the surrogate bandit MDP M̂, also with one state and n actions, but in which taking
action k yields reward rk with immediate episode termination. The following proposition shows that
running max-ent RL in M̂ recovers the optimal memoryless policy in a particular epistemic POMDP
supported on {Mk}k∈[n].

Proposition B.3. Let π∗ = argmaxπ∈Π JM̂(π) +H(π) be the max-ent solution in the surrogate
bandit MDP M̂. Define the distribution P(M|D) on {Mk}k∈[n] as P(Mk|D) = exp(2rk)∑

j exp(2rj)
. Then,

π is the optimal memoryless policy in the epistemic POMDPMpo defined by P(M|D).

Proof. See Eysenbach and Levine [52, Lemma 4.1]. The optimal policy π∗ is given by π∗(a = k) =
exp(rk)∑
j exp(rj)

. We know from Appendix A.2.2 that this policy is optimal for epistemic POMDPMpo

when γ = 1.

If allowing time-varying reward functions, this construction can be extended beyond “goal-action
taking” epistemic POMDPs to the more general “goal-state reaching” setting in an MDP, where the
agent seeks to reach a specific goal state, but the identity of the goal state hidden from the agent [52,
Lemma 4.2].

B.4 Failure of MaxEnt RL and Uncertainty-Agnostic Regularizations

We formalize the remark made in the main text that while the Bayes-optimal memoryless policy is
stochastic, methods that promote stochasticity in an uncertainty-agnostic manner can fail catastrophi-
cally. We begin by explaining the significance of this result: it is well-known that stochastic policies
can be arbitrarily sub-optimal in a single MDP, and can be outperformed by deterministic policies.
The result we describe is more subtle than this: there are epistemic POMDPs where any attempt at
being stochastic in an uncertainty-agnostic manner is sub-optimal, and also any attempt at acting
completely deterministically is also sub-optimal. Rather, the characteristic of Bayes-optimal behavior
is to be stochastic in some states (where it has high uncertainty), and not stochastic in others, and
a useful stochastic regularization method must modulate the level of stochasticity to calibrate with
regions where it has high epistemic uncertainty.

Proposition B.4. Let α > 0, c > 0. There exist posterior distributions P(M|D), where the
Bayes-optimal memoryless policy π∗po is stochastic. However, every memoryless policy πs that is

“everywhere-stochastic”, in that ∀s ∈ S : H(πs(a|s)) > α, can have performance arbitrarily close to
the uniformly random policy:

J(πs)− J(πunif)

J(π∗po)− J(πunif)
< c

Proof. Consider two binary tree MDP with n levels,M1 andM2. A binary tree MDP, visualized in
Figure 6, has n levels, where level k has 2k states. On any level k < n, the agent can take a “left”
action or a “right” action, which transitions to the corresponding state in the next level. On the final
level, if the state corresponds to the terminal state (in green), then the agent receives a reward of 1,
and the episode exits, and otherwise a reward of 0, and the agent returns to the top of the binary tree.
The two binary tree MDPsM1 andM2 are identical except for the final terminal state: inM1, the
terminal state is the left-most state in the final level, and inM2, the terminal state is the right-most
state. Reaching the goal inM1 corresponds to taking the “left” action repeatedly, and reaching the
goal inM2 corresponds to taking the “right” action repeatedly. We consider the posterior distribution
that places equal mass onM1 andM2, P(M1|D) = P(M2|D) = 1

2 . A policy that reaches the
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Figure 6: Visual description of Binary Tree MDPs described in proof of Proposition B.4 with depth
n = 3.

correct terminal state with probability p (otherwise reset) will visit the initial state a Geom(p) number
of times, and writing γ := γn, will achieve return γp

1−γ+pγ = 1
1+ 1

p
1−γ
γ

.

Uniform policy: A uniform policy randomly chooses between “left” and “right” at all states, and will
reach all states in the final level equally often, so the probability it reaches the correct goal state is 1

2n .
Therefore, the expected return is J(πunif) =

1
1+2n 1−γ

γ

.

Bayes-optimal memoryless policy: The Bayes-optimal memoryless policy π∗po chooses randomly
between “left” and “right” at the top level; on every subsequent level, if the agent is in the left
half of the tree, the agent deterministically picks “left” and on the right half of the tree, the agent
deterministically picks “right”. Effectively, this policy either visits the left-most state or the right-
most state in the final level. The Bayes-optimal memoryless policy returns to the top of the tree a
Geom(p = 1

2 ) number of times, and the expected return is given by J(π∗po) = 1
1+2 1−γ

γ

.

Everywhere-stochastic policy: Unlike the Bayes-optimal policy, which is deterministic in all levels
underneath the first, an everywhere-stochastic policy will sometimes take random actions at these
lower levels, and therefore can reach states at the final level that are neither the left-most or right-most
states (and therefore always bad). We note that ifH(π(a|s)) > α, then there is some β > 0 such that
maxa π(a|s) < 1− β. For an α-everywhere stochastic policy, the probability of taking at least one
incorrect action increases as the depth of the binary tree grows, getting to the correct goal at most
probability 1

2 (1− β)
n−1. The maximal expected return is therefore J(πs) ≤ 1

1+2( 1
1−β )n−1 1−γ

γ

J(π∗po) =
1

1 + 2 1−γ
γ

J(πs) =
1

1 + 2( 1
1−β )

n−1 1−γ
γ

J(πunif) =
1

1 + 2n 1−γ
γ

As n → ∞, J(π∗po), J(πs) and J(πunif) will converge to zero. Using asymptotic analysis we can
determine their speed of convergence and find that:

J(π∗po) ∼ γ

2
J(πs) ∼

γ

2( 1
1−β )

n−1
J(πunif) ∼

γ

2n

Using these asymptotics, we find that

J(πs)− J(πunif)

J(π∗po)− J(πunif)
∼ 1

( 1
1−β )

n−1
= (1− β)n−1,

which shows that this ratio can be made arbitrarily small as we increase n.

An aside: deterministic policies While this proposition only discusses the failure mode of stochastic
policies, all deterministic memoryless policies in this environment also fail. A deterministic policy
πd in this environment continually loops through one path in the binary tree repeatedly, and therefore
will only ever reach one goal state, unlike the Bayes-optimal policy which visits both possible goal
states. The best deterministic policy then either constantly takes the “left” action (which is optimal for
M1), or constantly takes the “right” action (which is optimal forM2). Any other deterministic policy
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reaches a final state that is neither the left-most nor the right-most state, and will always get 0 reward.
The expected return of the optimal deterministic policy is J(πd) = γ

2 , receiving γ reward in one of
the MDPs, and 0 reward in the other. When the discount factor γ is close to 1, the maximal expected
return of a deterministic policy is approximately 1

2 , while the expected return of the Bayes-optimal
policy is approximately 1, indicating a sub-optimality gap.

B.5 Proof of Theorem 6.1

Proposition 6.1. Let π, π1, · · ·πn be memoryless , and define rmax = maxi,s,a |rMi
(s, a)|. The

expected return of π in M̂po is bounded below as:

JM̂po(π) ≥
1

n

n∑
i=1

JMi
(πi)−

√
2rmax

(1− γ)2n

n∑
i=1

Es∼dπiMi

[√
DKL (πi(·|s) || π(·|s))

]
, (3)

Proof. Before we begin, we recall some basic tools from analysis of MDPs. For
a memoryless policy π, the state-action value function Qπ(s, a) is given by
Qπ(s, a) = Eπ[

∑
t≥0 γ

tr(st, at)|s0 = s, a0 = a]. The advantage function Aπ(s, a) is de-
fined as Aπ(s, a) = Qπ(s, a)− Ea∼π(·|s)[Q

π(s, a)]. The performance difference lemma [59] relates
the expected return of two policies π and π′ in an MDPM via their advantage functions as

JM(π′) = JM(π) +
1

1− γ
Es∼dπ′M [Ea∼π′ [AπM(s, a)]]. (12)

We now begin the derivation of our lower bound:

JM̂po(π) =
1

n

n∑
i=1

JMi(π)

=
1

n

n∑
i=1

JMi(πi) +
1

n

n∑
i=1

[JMi(π)− JMi(πi)]

=
1

n

n∑
i=1

JMi(πi)−
1

n(1− γ)

n∑
i=1

Es∼dπiMi

[
Ea∼πi

[
AπMi

(s, a)
]]

=
1

n

n∑
i=1

JMi
(πi)−

1

n(1− γ)

n∑
i=1

Es∼dπiMi

[
Ea∼πi

[
AπMi

(s, a)
]
− Ea∼π

[
AπMi

(s, a)
]]

(13)
In the last equality we used the fact that Ea∼π [Aπ(s, a)] = 0. From there we proceed to derive a
lower bound:

JM̂po(π) =
1

n

n∑
i=1

JMi
(πi)−

1

n(1− γ)

n∑
i=1

Es∼dπiMi

[
Ea∼πi

[
AπMi

(s, a)
]
− Ea∼π

[
AπMi

(s, a)
]]

≥ 1

n

n∑
i=1

JMi
(πi)−

2rmax
n(1− γ)2

n∑
i=1

Es∼dπiMi

[DTV (πi(· | s);π(· | s))]

≥ 1

n

n∑
i=1

JMi
(πi)−

√
2rmax

(1− γ)2n

n∑
i=1

Es∼dπiMi

[√
DKL (πi(· | s) || π(· | s))

]
(14)

where the first inequality is since |AπMi
(s, a)| ≤ rmax

1−γ and the second from Pinsker’s inequality.
Our intention in this derivation is not to obtain the tighest lower bound possible, but rather to
illustrate how bounding the advantage can lead to a simple lower bound on the expected return in the
POMDP. The inequality can be made tighter using other bounds on |AπMi

(s, a)|, for example using
Amax = maxi,s,a |AπMi

(s, a)|, or potentially a bound on the advantage that varies across state.
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B.6 Proof of Proposition 6.1

Proposition 6.2. Let f : {πi}i∈[n] 7→ π be a function that maps n policies to a single policy satisfying

f(π, · · · , π) = π for every policy π, and let α be a hyperparameter satisfying α ≥
√

2rmax
(1−γ)2n . Then

letting π∗1 , . . . π
∗
n be the optimal solution to the following optimization problem:

{π∗i }i∈[n] = argmax
π1,··· ,πn

1

n

n∑
i=1

JMi(πi)− α
n∑
i=1

Es∼dπiMi

[√
DKL (πi(·|s) || f({πi})(·|s))

]
, (4)

the policy π∗ := f({π∗i }i∈[n]) is optimal for the empirical epistemic POMDP M̂po.

Proof. By Theorem 6.1 we have that ∀α ≥
√

2rmax
(1−γ)2n :

JM̂po(f({π∗i })) ≥
1

n

n∑
i=1

JMi
(π∗i )− α

n∑
i=1

E
s∼d

π∗
i
Mi

[√
DKL (π∗i (·|s) || f({π∗i })(·|s))

]
. (15)

Now, write π′∗ ∈ argmaxπ JM̂po(π) to be an optimal policy in the empirical epistemic POMDP,
and consider the collection of policies {π′∗, π′∗, . . . , π′∗}. Since {π∗i } is the optimal solution to
Equation 4, we have

JM̂po(f({π∗i })) ≥
1

n

n∑
i=1

JMi(π
′∗)− α

n∑
i=1

Es∼dπ′∗Mi

[√
DKL (π′∗(·|s) || f({π′∗})(·|s))

]
=

1

n

n∑
i=1

JMi
(π′∗)

= JM̂po(π
′∗),

(16)

where the second line here uses the fact that f(π′∗, . . . , π′∗) = π′∗. Therefore π∗ := f({π∗i }) is
optimal for the empirical epistemic POMDP.

C Procgen Implementation and Experimental Setup

We follow the training and testing scheme defined by Cobbe et al. [16] for the Procgen benchmarks:
the agent trains on a fixed set of levels, and is tested on the full distribution of levels. Due to our limited
computational budget, we train on the so-called “easy” difficulty mode using the recommended 200
training levels. Nonetheless, many prior work has found a significant generalization gap between test
and train performance even in this easy setting, indicating it a useful benchmark for generalization
[16, 26, 23]. We implemented LEEP on top of an existing open-source codebase released by Jiang et
al. [23]. Full code is provided in the supplementary for reference.

LEEP maintains n = 4 policies {πi}i∈[n], each parameterized by the ResNet architecture prescribed
by Cobbe et al. [16]. In LEEP, each policy is optimized to maximize the entropy-regularized PPO
surrogate objective alongside a one-step KL divergence penalty between itself and the linked policy
maxi πi; gradients are not taken through the linked policy.

Eπi [min(rt(π)A
π(s, a), clip(rt(π), 1−ε, 1+ε)Aπ(s, a)+βH(πi(a|s))−αDKL(πi(a|s)‖max

j
πj(a|s))]

Note that this update in Equation 6 is not exactly solving the optimization problem dictated by
Equation 5, since it leverages a one-step estimator for the gradient of the KL penalty in the PG
objective, a heuristic known to lead to better optimization in PPO and other deep policy gradient
methods. If the proper estimator for the KL penalty is substituted in, then the Bayes-optimal policy
in the empirical epistemic POMDP is an optimal solution for Equation 6.

The penalty hyperparameter α was obtained by performing a hyperparameter search on the Maze task
for all the comparison methods (including LEEP) amongst α ∈ [0.01, 0.1, 1.0, 10.0]. Since LEEP
trains 4 policies using the same environment budget as a single PPO policy, we change the number of
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environment steps per PPO iteration from 16384 to 4096, so that the PPO baseline and each policy
in our method takes the same number of PPO updates. All other PPO hyperparameters are taken
directly from [23].

In our implementation, we parallelize training of the policies across GPUs, using one GPU for each
policy. We found it infeasible to run more ensemble members due to GPU memory constraints
without significant slowdown in wall-clock time. Running LEEP on one Procgen environment for 50
million steps requires approximately 5 hrs in our setup on a machine with four Tesla T4 GPUs.
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D Procgen Results

D.1 Main Experimental Results
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Figure 7: Training (top) and test (bottom) returns for LEEP and PPO on four Procgen environments.
Results averaged across 5 random seeds. LEEP achieves equal or higher training return compared to
PPO, while having a lower generalization gap between test and training returns.
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Figure 8: Training and test returns for various ablations and comparisons of LEEP.
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Figure 9: Performance of LEEP and PPO as the number of training levels provided varies. While the
learned performance of the PPO policy is worse than a random policy with less training levels, LEEP
avoids this overfitting and in general, demonstrates a smaller train-test performance gap than PPO.

D.2 Ablations of LEEP Hyperparameters

Number of ensemble members (n): We ran an ablation study on the Procgen Maze task to
understand how the number of ensemble members affects the performance of LEEP. We found that
for an equal number of gradient steps per ensemble member, LEEP does equally well with n = 4 and
8 ensemble members, but poorly with only 1 or 2 ensemble members (see Figure attached). These
results indicate that at least on the Maze task, using n=4 ensemble members is an appropriate balance
between approximating the true epistemic POMDP with higher fidelity and minimizing the sample
complexity incurred by needing to train more ensemble members with on-policy RL methods.

# Ensemble members (n) 1 2 4 8
Maze 5.11 ± 0.24 5.85 ± 0.4 6.53 ± 0.12 6.91 ± 0.1

Penalty coefficient (α): We performed a coarse hyperparameter sweem on the four Procgen domains,
testing values α ∈ 10{−2,−1,0,1,2}. The results in the table below indicated that performance is
roughly coniststent for α = {0.1, 1, 10}, so while performance does depend on this hyperparameter,
it is not overly sensitive, and values around 1 are likely to be a good default initialization.

Penalty parameter (α) 0 0.01 0.1 1 10 100
Maze 5.78 5.725 5.94 ± 0.22 6.53 ± 0.12 6.54 ± 0.15 5.7
Heist 3.3 3.4 3.2 ± 0.6 3.73 ± 0.45 3.65 ± 0.5 3.15
Bigfish 1.57 2.35 2.85 ± 0.64 4.16 ± 0.42 3.30 ± 0.38 1.21
Dodgeball 0.65 0.94 0.78 ± 0.2 1.69 ± 0.18 1.42 ± 0.4 1.64

D.3 LEEP and implicit partial observability

One common confusion that may arise is that LEEP seeks to overcome partial observability of the
contexts, as is done for dynamics generalization in POMDPs (e.g. [60]). This is not the case. Works
on dynamics generalization in POMDPs assume that contexts in the true underlying environment
are partially observable (e.g. friction coefficients unobserved by a robot without the proper sensors),
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and the aim to infer this context using memory. In the epistemic POMDP, the context is not partially
observable; rather, what is partially observable is how the system dynamics will behave for any
provided context, capturing the agent’s epistemic uncertainty that stems from the limited training
contexts.

We conducted a didactic experiment on Procgen to empirically support the claim that the partial
observability modelled by dynamics generalization methods [60] does not replace explicit handling of
epistemic uncertainty provided by our method (since this is a different problem). We train a recurrent
context encoder that takes in the trajectory seen so far and predicts the identity of the training level.
The last hidden layer of this encoder is taken as a “context vector” and fed in as input into a policy
alongside the original state, creating an adaptive recurrent policy since this context vector can change
through a trajectory. We tested this model on our four Procgen tasks, and made two observations.
First, the learned policy, despite being recurrent, does not achieve higher test-time performance than
PPO. This is not surprising, because the task is fully observed at training-time. Second, the learned
context encoder is able to predict the identity of the training level with > 99% accuracy; that is, the
contexts are fully observed and so mechanisms that try to predict the context are unlikely to provide
benefit.

The issue is that recurrency and adaptation by themselves are not sufficient to ensure high generaliza-
tion performance; rather they must be combined with the appropriate model of partial observability
that captures the agent’s epistemic uncertainty (for LEEP, by statistical bootstrapping on the set of
training contexts) to achieve good generalization.

Test Return after 25M steps Maze Heist Bigfish Dodgeball
PPO 5.11 ± 0.24 2.84 ± 0.46 3.89 ± 1.64 1.68 ± 0.33
PPO with Recurrent Context Encoder 5.25 ± 0.5 2.83 ± 1.04 2.74 ± 1.1 1.57 ± 0.3
LEEP 6.53 ± 0.12 3.73 ± 0.45 4.16 ± 0.42 1.69 ± 0.18
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