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A Notation

Table 1: Notation table

Name Description

d ∈ N∗ Dimension of the feature vectors
K ∈ N∗ Number of arms
[K] := {1, 2, . . . ,K} Enumeration
m ∈ [K − 1] Number of best arms to return
1{c} Kronecker’s symbol, equal to 1 iff. claim c is true
ε ∈ R∗+ Upper bound on the `∞ norm of the deviation to linearity
M ∈ R∗+ Upper bound on the `∞ norm on the mean vector
L ∈ R∗+ Upper bound on the `2 norm on the arm feature vectors
δ ∈ (0, 1) Upper bound for the probability of error in identification
ek ∈ Rk, k ∈ N kth vector of the canonical basis of Rk
∆K = {p ∈ [0, 1]K |

∑K
k=1 p

k = 1} Set of probability distributions over finite set of size K

φk ∈ Rd, k ∈ [K] Feature vector for arm k
A = [φ1, φ2, . . . , φK ]> ∈ RK×d Feature matrix of arm contexts
∆K = {p ∈ [0, 1]K |

∑K
k=1 p

k = 1} Set of probability distributions on finite set of size K
Vω :=

∑
k≤K ωkφkφ

>
k , ω ∈ ∆K Design matrix associated with ω

Vt :=
∑
s≤t φksφ

>
ks
, t > 0 Design matrix at time t

M⊂ RK Set of realizable models:
{µ ∈ RK | ∃θ ∈ Rd, η ∈ RK : µ = Aθ + η, ‖µ‖∞ ≤M, ‖η‖∞ ≤ ε}

µ ∈M True mean vector: µ = Aθ + η
Nk
t ∈ N, k ∈ [K], t > 0 Number of times arm k has been sampled until time t included

Nt = [N1
t , N

2
t , . . . , N

K
t ]> ∈ NK Vector of numbers of samplings for each arm at time t included

DN ∈ RK×K , N ∈ RK Diagonal matrix with coefficients N1, N2, . . . , NK

ks, s > 0 Arm sampled at time s
Xk
s , s > 0, k ∈ [K] Reward observed at time s from arm k

τδ, δ ∈ (0, 1) Stopping time under δ-correctness
Eτδ Event on δ-correctness: Eτδ :=

{
Ŝm ∈ Sm(µ)

}
µ̂t ∈ RK , t > 0 Empirical mean vector at time t: µ̂at := 1

Nat

∑
s≤tX

a
s 1{ks = a}

µ̃t ∈ RK , t > 0 Projection of µ̂t onto setM at time t
Ŝm ⊆ [K],m ∈ [K − 1] Answer to Top-m identification as returned by the algorithm

S?(µ) ⊆ [K], µ ∈ RK
Set of best arms compared to the mth greatest mean:
S?(µ) :=

{
k ∈ [K] | µk ≥ maxmi∈[K] µ

i
}

Sm(µ), µ ∈M,m ∈ [K − 1]
Set of all subsets of size m in S?(µ):
Sm(µ) := {S ⊆ S?(µ) | |S| = m}

Λm(µ), µ ∈M Set of alternative models to model µ:
Λm(µ) := {λ ∈M | Sm(λ) ∩ Sm(µ) = ∅}

Hµ, µ ∈M
Inverse complexity constant:
Hµ := supω∈∆K

infλ∈Λm(µ)

∑
k∈[K] ω

k KL(µk, λk)

KL Kullback-Leibler divergence
kl Binary relative enthropy
W−1 Negative branch of the Lambert W function
W : x 7→ −W−1(−e−x)

L Learner algorithm
gt(ω), ω ∈ RK , t > 0 Gains fed to the learner at time t

ckt , k ∈ [K], t > 0
Optimistic bonus, such that (µ̃kt − µk)2 ≤ ckt for any k ∈ [K]
and large enough t > 0, with high probability
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Please refer to Table 1. Moreover, if ω ∈ RK , at t > 0, we also introduce the following notation
related to orthogonal parameterizations (see Appendix B):

• Aω := D
1/2
ω A ∈ RK×d.

• Pω := Aω(A>ωAω)†A>ω ∈ RK×K .
• Rω := IK − Pω ∈ RK×K , where IK is the identity matrix of dimension K.
• Vt = A>NtANt = A>DNtA =

∑
k∈[K]N

k
t φkφ

>
k =

∑
s≤t φksφ

>
ks

.

• θ̂t := (A>NtANt)
†A>NtD

1/2
Nt
µ̂t, which is the standard least-squares estimator, where † de-

notes the matrix pseudo-inverse.

• θ̃t and η̃t, parameters for the linear and misspecification parts of the projection µ̃t of
empirical mean µ̂t onto setM, such that µ̃t = Aθ̃t + η̃t.

• θt := (A>NtANt)
†A>NtD

1/2
Nt
µ, such that Aθt = D

−1/2
Nt

PNtD
1/2
Nt
µ if DNt is invertible. θt is

the linear part of the orthogonal parametrization of µ at time t (see paragraph “Estimation”
in Section 4.1 in the main paper).

• ηt := µ−Aθt, equal to D−1/2
Nt

RNtD
1/2
Nt
µ if DNt is invertible, is the misspecification part

of the orthogonal parametrization of model µ at time t.
• St := DNt(µ̂t − µ) ∈ RK .

B The orthogonal parameterization and its properties

Throughout the appendix, we shall adopt an orthogonal parametrization for mean vectors in the
modelM. In particular, we leverage the following observation: any mean vector µ = Aθ + η can be
equivalently represented, at any time t, as µ = Aθt + ηt, where

θt := (A>NtANt)
†A>NtD

1/2
Nt
µ = V −1

t

t∑
s=1

µksφks

is the orthogonal projection (according to the design matrix Vt) of µ onto the feature space and
ηt = µ−Aθt is the residual. We now introduce some important properties of this parameterization.

Projecting the empirical mean When we use the orthogonal projection described above on the
empirical mean µ̂t, the resulting linear part is exactly the standard least squares estimator. That is,

θ̂t := (A>NtANt)
†A>NtD

1/2
Nt
µ̂t

Projection matrices For ω ∈ RK≥0, let us define the projection matrix Pω := Aω(A>ωAω)†A>ω ∈
RK×K and the residual matrix Rω := IK−Pω ∈ RK×K . It is easy to check that both are orthogonal
projection matrices, i.e., they are symmetric and idempotent (P 2

ω = Pω and R2
ω = Rω). Moreover,

PωRω = RωPω = 0. Equipped with these matrices, we have the following useful identities:

ANtθt = PNtD
1/2
Nt
µ = PNtD

1/2
Nt
Aθt,

D
1/2
Nt
ηt = RNtD

1/2
Nt
µ = RNtD

1/2
Nt
ηt.

Distances between mean vectors in the model Often we will need to compute quantities of the
form ‖λ− µ‖2DNt for different mean vectors in the model. The following lemma shows how to
leverage their orthogonal decomposition to split the norm into a distance between their linear parts
and a distance between their deviation from linearity.
Lemma 4 (Linear/non-linear decomposition). For any λ ∈M and t ≥ 1, there exist θ′t ∈ Rd and
η′t ∈ RK such that λ = Aθ′t + η′t and

‖λ− µ‖2DNt = ‖θ′t − θt‖
2
Vt

+
∥∥∥RNtD1/2

Nt
η′t −RNtD

1/2
Nt
ηt

∥∥∥2

2
,

‖λ− µ̂t‖2DNt =
∥∥∥θ′t − θ̂t∥∥∥2

Vt
+
∥∥∥RNtD1/2

Nt
η′t −RNtD

1/2
Nt
µ̂t

∥∥∥2

2
.
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Proof. By leveraging the properties of the orthogonal decomposition and of the matrices PNt , RNt
(in particular, PNtRNt = 0 and PNt +RNt = IK),

‖λ− µ‖2DNt = ‖PNtDNt(λ− µ) +RNtDNt(λ− µ)‖22

=
∥∥∥PNtD1/2

Nt
λ− PNtD

1/2
Nt
µ
∥∥∥2

2
+
∥∥∥RNtD1/2

Nt
λ−RNtD

1/2
Nt
µ
∥∥∥2

2

= ‖PNtANtθ′t − PNtANtθt‖
2
2 +

∥∥∥RNtD1/2
Nt
η′t −RNtD

1/2
Nt
ηt

∥∥∥2

2

= ‖θ′t − θt‖
2
Vt

+
∥∥∥RNtD1/2

Nt
η′t −RNtD

1/2
Nt
ηt

∥∥∥2

2
.

The second result can be shown analogously by noting that the projection of µ̂t onto the linear space
spanned by A is exactly the least-squares estimator θ̂t.

The non-linear part of orthogonal parameterizations When applying the orthogonal parameteri-
zation to a mean vector µ = Aθ + η with ‖η‖∞ ≤ ε, while we get some crucial properties for the
linear part θt (like concentration, see Appendix E), it may be that the resulting non-linear part ηt is
such that ‖ηt‖∞ > ε. However, the following result shows that ηt cannot be too distant from η and,
in particular, that ‖ηt‖∞ still decreases with ε.

Lemma 5 (Maximum deviation). Let t any time step such that Vt is invertible. Consider the
orthogonal parameterization (θt, ηt) for µ = Aθ + η with ‖η‖∞ ≤ ε. Then,

‖ηt‖∞ ≤ (LK + 1)ε.

Proof. By definition of the orthogonal parameterization, it is easy to see that ηt − η = A(θ − θt).
Moreover,

θt := (A>NtANt)
†A>NtD

1/2
Nt
µ = (A>NtANt)

†A>NtD
1/2
Nt

(Aθ + η)

= θ + (A>NtANt)
†A>NtD

1/2
Nt
η = θ + V −1

t A>DNtη = θ + V −1
t

∑
k∈[K]

Nk
t φkη

k.

Therefore, for any arm k ∈ [K]:

∣∣ηkt − ηk∣∣ =

∣∣∣∣∣∣φ>k V −1
t

∑
j∈[K]

N j
t φjη

j

∣∣∣∣∣∣
(a)

≤ ‖φk‖2

∥∥∥∥∥∥V −1
t

∑
j∈[K]

N j
t φjη

j

∥∥∥∥∥∥
2

= ‖φk‖2

∥∥∥∥∥∥
∑
j∈[K]

N j
t φjη

j

∥∥∥∥∥∥
V −2
t

(b)

≤ ‖φk‖2ε
∑
j∈[K]

N j
t ‖φj‖V −2

t

(c)

≤ ‖φk‖2εK,

where (a) is from Cauchy-Schwartz inequality, (b) uses the sub-additivity of the norm, and (c) uses
that, for each j ∈ [K], Vt =

∑
q∈[K]N

q
t φqφ

>
q � N j

t φjφ
>
j (in the sense of the partial order on

positive definite matrices). Using that features are bounded by L in `2-norm,

‖ηt − η‖∞ ≤ LKε,

from which the result easily follows.

The linear parts of different parametrizations We consider mainly two parametrizations of µ:
the orthogonal parametrization with respect to Nt and another (θ, η) for which ‖η‖∞ ≤ ε. We will
now relate the linear parts of these two parametrizations.

Lemma 6. Let t any time step such that Vt is invertible. Consider the orthogonal parameterization
(θt, ηt) for µ = Aθ + η with ‖η‖∞ ≤ ε. Then

‖θt − θ‖Vt ≤
√
tε .
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Proof. We use the expression θt = θ+ V −1
t A>DNtη derived in the last paragraph, the fact that PNt

is a projection and lastly ‖η‖∞ ≤ ε:

‖θt − θ‖Vt =
∥∥V −1

t A>DNtη
∥∥
Vt

=

√
η>DNtAV

−1
t A>DNtη

=
∥∥∥D1/2

Nt
η
∥∥∥
PNt

≤
∥∥∥D1/2

Nt
η
∥∥∥ = ‖η‖DNt ≤

√
tε .

C Tractable lower bound for the general Top-m identification problem

We present here the proofs for the claims made in the main paper in Section 3.

C.1 Proof of Lemma 1 and Theorem 1

Lemma. (Lemma 1 in the main paper) ∀µ, λ ∈ RKs.t. |S?(µ)| = m,

Sm(λ) ∩ Sm(µ) = ∅ ⇔ ∃i /∈ S?(µ) ∃j ∈ S?(µ), λi > λj .

Proof. To see this, first suppose that the condition on the right holds. That is, there exist (i, j) ∈
(S?(µ))

c × S?(µ), where |S?(µ)| = m, such that λi > λj . Then, we have two cases. If j does not
belong to any of the top-m sets of λ, that is, j 6∈ S?(λ), the result follows trivially since j belongs
to the top-m set of µ S?(µ) and Sm(µ) = {S?(µ)}. If, on the other hand, j belongs to at least one
top-m set of λ, that is, j ∈ S?(λ), then i ∈ S?(λ) as well since λi > λj . But i 6∈ S?(µ), which
proves that Sm(λ)∩Sm(µ) = ∅. Suppose now that Sm(λ)∩Sm(µ) = ∅ holds and, by contradiction,
that ∀i /∈ S?(µ) ∀j ∈ S?(µ), λi ≤ λj . This trivially implies that S?(µ) is a valid top-m set of λ.
That is, Sm(λ) ∩ Sm(µ) 6= ∅ and we have our desired contradiction.

Theorem. (Theorem 1 in the main paper) For any δ ≤ 1/2, for any δ-correct algorithm A onM, for
any bandit instance µ ∈M such that |S?(µ)| = m, the following lower bound holds on the stopping
time τδ of A on instance µ:

EA
µ [τδ] ≥

 sup
ω∈∆K

min
i/∈S?(µ)

min
j∈S?(µ)

inf
λ∈M:λi>λj

∑
k∈[K]

ωkKL(µk, λk)

−1

log

(
1

2.4δ

)
.

Proof. We start from Equation 2 (main paper), and using Lemma 1, we can rewrite the inf operator.
That yields the desired expression.

C.2 Proof of Lemma 2

Let Λm(µ,M′) ⊆ M′ denote the set of alternative models to µ ∈ RK in the modelM′ (which
might be different fromM). Consider the lower bound problem

Hµ(M′) := sup
ω∈∆K

inf
λ∈Λm(µ,M′)

∑
k∈[K]

ωk KL(µk, λk) .

A pair of equilibrium strategies for that problem is composed of ω ∈ ∆K and q ∈ P(Λm(µ,M′))
(which is the set of probability distributions on Λm(µ,M′)). Let QM′ be the set of equilibrium
distributions. For q ∈ QM′ , let Λq ⊆ Λm(µ,M′) be its support.

Lemma 7. LetM1,M2 be models such thatM1 ⊆ M2. For any q ∈ QM2
, if Λq ⊆ M1, then

Hµ(M1) = Hµ(M2).
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Proof. First, we haveHµ(M1) ≥ Hµ(M2) sinceM1 ⊆M2. If Λq ⊆M1, then using successively
q ∈ P(Λ(µ,M1)) and q ∈ QM2 ,

Hµ(M1) = sup
ω∈∆K

inf
λ∈Λm(µ,M1)

∑
k∈[K]

ωk KL(µk, λk)

≤ sup
ω∈∆K

Eλ∼q
∑
k∈[K]

ωk KL(µk, λk) = Hµ(M2) .

For λ ∈ RK , let |λ|ε = inf{‖η‖∞ | ∃θ ∈ Rd, λ = Aθ + η}. Let us now considerM as defined in
Equation 1 in the main paper, with misspecification upper bound ε ≥ 0.
Lemma 8. Let M′ ⊆ {λ ∈ RK | ‖λ‖∞ ≤ M} be a set of models such that M ⊆ M′ and
ε > εµ(M′) := infq∈QM′ supλ∈Λq |λ|ε.

6 Then Hµ(M) = Hµ(M′).

Proof. If ε > infq∈QM′ supλ∈Λq |λ|ε, then there exists q ∈ QM′ such that for all λ ∈ Λq, |λ|ε ≤ ε.
Hence Λq ⊆M and we apply Lemma 7.

For any modelM′, there exist equilibrium strategies for which q is supported on K points [11].
Hence εµ(M′) is always finite.

LetMu := RK be the set of unstructured models, and for a, b ∈ R,M[a,b] := {λ ∈ RK | ∀k ∈
[K], λk ∈ [a, b]} be the set of models that verify a boundedness assumption.
Lemma 9. Let µ(K) := minj µ

j and µ(1) := maxj µ
j . For all µ ∈ RK , Hµ(Mu) =

Hµ(M[µ(K),µ(1)]) .

Proof. Let us consider any λ ∈ Λm(µ,Mu), such that there exists k ∈ [K] with λk 6∈ [µ(K), µ(1)].
Let us define λ̃ as the projection of λ onto [µ(K), µ(1)]K . Then λ̃ satisfies λ̃ ∈ Λm(µ,M[µ(K),µ(1)]) ⊆
Λm(µ,Mu), and by monotonicity of the Kullback-Leibler divergence in one-parameter exponential
families, for all k ∈ [K], KL(µk, λ̃k) ≤ KL(µk, λk). Thus for all ω ∈ ∆K∑

k∈[K]

ωk KL(µk, λ̃k) ≤
∑
k∈[K]

ωk KL(µk, λk) .

For q ∈ QMu , let q̃ be the distribution in which every support point λ of q is transported onto its
projection λ̃. Then for all ω ∈ 4K ,

Eλ∼q̃
∑
k∈[K]

ωk KL(µk, λk) ≤ Eλ∼q
∑
k∈[K]

ωk KL(µk, λk) ,

from which we obtain that q̃ has lower objective value than q. Since q ∈ QMu
, then q̃ ∈ QMu

as
well. By construction, its support verifies Λq̃ ⊆M[µ(K),µ(1)]. We conclude with Lemma 7.

Applying Lemma 8 toM[µ(K),µ(1)], together with Lemma 9, we finally obtain Lemma 2 from the
main paper, restated here using the notations we introduced:
Lemma. If ε > µ(1) − µ(K) then Hµ(M) = Hµ(M[µ(K),µ(1)]) = Hµ(Mu) .

C.3 Computing the closest alternative

In order to compute the closest alternative to µ ∈ M in the half-space {λ ∈ M | λk ≥ λj}, the
optimization problem we need to solve is

inf
θ,η

1

2
‖Aθ + η − µ‖2DNt

s.t (ek − ej)>(Aθ + η) ≥ 0

‖Aθ + η‖∞ ≤M
‖η‖∞ ≤ ε .

6Note that indeed quantity εµ(M′) depends on µ, since QM′ is defined with respect to µ.
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In our implementation, and thus in the remainder of this section, we shall drop the boundedness
constraint ‖Aθ + η‖∞ ≤M which has typically a negligible effect on the algorithm’s behavior.

Quadratic problem We express the problem as function of the variable (θ>, η>)>. Up to the
constant term, this problem is equivalent to

inf
θ,η

(
θ
η

)>(
A>DNA A>DN

DNA DN

)(
θ
η

)
−
(
θ
η

)>(
A>DNµ
DNµ

)
s.t.

(
A>(ej − ek)
ej − ek

)>(
θ
η

)
≤ 0

‖η‖∞ ≤ ε .
In the code, we directly solve the problem under this form using a quadratic problem solver.

Computing the closest alternative We now detail the form of the solutions analytically (as much
as possible). Let j, k ∈ [K], j 6= k. We want to compute the closest alternative in the half-space
{λ ∈M | λk ≥ λj} to µ ∈ RK . That is, we compute the solution to

inf
θ,η

1

2
‖Aθ + η − µ‖2DNt

s.t (ek − ej)>(Aθ + η) ≥ 0

η ∈ C
Here, to highlight the generality of the following derivation, we replace the `∞ norm constraint on η
with any convex set C. To simplify the notation, we denote by DN the diagonal matrix with Nt on
the diagonal and u := ej − ek. The problem above is then written as

inf
θ,η

1

2

∥∥∥D1/2
N Aθ +D

1/2
N η −D1/2

N µ
∥∥∥2

2

s.t u>(Aθ + η) ≤ 0

η ∈ C

Assumption 1. At t0, A>DNt0
A = Vt0 is invertible.

See paragraph “Initialization phase” in Subsection 4.1 to see how that assumption is ensured in
practice. We now suppose that t ≥ t0. Minimizing first in θ at fixed η, we solve the problem

inf
θ

1

2

∥∥∥D1/2
N Aθ +D

1/2
N η −D1/2

N µ
∥∥∥2

2

s.t u>(Aθ + η) ≤ 0

The Lagrangian is L(θ, α) = 1
2

∥∥∥D1/2
N Aθ +D

1/2
N η −D1/2

N µ
∥∥∥2

2
+ αu>(η + Aθ) with α ≥ 0. We

get that at the optimal θ,

A>DN (Aθ + η − µ) = −αA>u =⇒ θ = (A>DNA)−1A>(−αu+DNµ−DNη) .

At the optimum, from the KKT conditions, either α = 0 and u>(Aθ + η) ≤ 0, or α > 0 and
u>Aθ = −u>η.

Case α = 0. If α = 0, then θ = (A>DNA)−1A>DN (µ − η), D1/2
N (Aθ + η − µ) =

(D
1/2
N A(A>DNA)−1A>D

1/2
N − I)D

1/2
N (µ − η) and the value of the optimization problem is the

norm of this quantity.

Let PN = D
1/2
N A(A>DNA)−1A>D

1/2
N . Note: it is symmetric and idempotent (P 2

N = PN ),
meaning that it is an orthogonal projection. Let RN = I − PN be the residual matrix. We also have
R2
N = RN . Furthermore, PNRN = RNPN = 0.

With these notations, D1/2
N Aθ = PND

1/2
N (µ − η), D1/2

N (Aθ + η − µ) = −RND1/2
N (µ − η)

and the value of the optimization problem is 1
2‖RND

1/2
N η − RND

1/2
N µ‖2. The case α = 0 is
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possible only if the constraint is then satisfied, that is if u>(Aθ + η) ≤ 0 at the optimum, i.e. if
u>(A>(A>DNA)−1A>DNµ + (I − A>(A>DNA)−1A>DN )η) ≤ 0. The problem we need to
solve in that case is

min
ηN

1

2

∥∥∥RND1/2
N η −RND1/2

N µ
∥∥∥2

2

s.t. u>(I −A>(A>DNA)−1A>DN )η ≤ −u>A>(A>DNA)−1A>DNµ

η ∈ C
If C is convex this is a convex optimization problem. It can happen that there is no feasible point,
which simply means that there is no solution with α = 0.

Case α 6= 0. Consider now the case α > 0. We get

u>Aθ = −u>η
=⇒ u>A(A>DNA)−1A>(−αu+DNµ−DNη) = −u>η
=⇒ αu>A(A>DNA)−1A>u = u>A(A>DNA)−1A>DN (µ− η) + u>η

Then

D
1/2
N Aθ = D

1/2
N A(A>DNA)−1A>(−αu+DNµ−DNη)

= −αD1/2
N A(A>DNA)−1A>u+ PND

1/2
N (µ− η)

D
1/2
N (Aθ + η − µ) = −αD1/2

N A(A>DNA)−1A>u−RND1/2
N (µ− η)

= −u
>A(A>DNA)−1A>DN (µ− η) + u>η

u>A(A>DNA)−1A>u
D

1/2
N A(A>DNA)−1A>u

−RND1/2
N (µ− η)

We can now see thatD1/2
N (Aθ+η−µ) is linear in η and the objective value 1

2

∥∥∥D1/2
N (Aθ + η − µ)

∥∥∥2

is quadratic in η. We need to solve a quadratic optimization problem under the constraint
η ∈ C. Let’s now simplify that optimization problem. We first show that the cross

term in 1
2

∥∥∥D1/2
N (Aθ + η − µ)

∥∥∥2

2
= 1

2

∥∥∥−αD1/2
N A(A>DNA)−1A>u−RND1/2

N (µ− η)
∥∥∥2

2
is

zero. Note: if DN is invertible, then 1
2

∥∥∥−αD1/2
N A(A>DNA)−1A>u−RND1/2

N (µ− η)
∥∥∥2

2
=

1
2

∥∥∥−αPND−1/2
N u−RND1/2

N (µ− η)
∥∥∥2

2
and the fact that the cross term is 0 is a simple consequence

of PNRN = RNPN = 0.

(RND
1/2
N (µ− η))>D

1/2
N A(A>DNA)−1A>u

= ((I − PN )D
1/2
N (µ− η))>D

1/2
N A(A>DNA)−1A>u

= (µ− η)>DNA(A>DNA)−1A>u− (µ− η)>D
1/2
N PND

1/2
N A(A>DNA)−1A>u

= (µ− η)>DNA(A>DNA)−1A>u− (µ− η)>DNA(A>DNA)−1A>DNA(A>DNA)−1A>u

= 0 .

Now that we established that the cross term is zero, the objective value is simply the sum of two
square terms,

1

2

∥∥∥D1/2
N (Aθ + η − µ)

∥∥∥2

2
=

1

2
α2u>A(A>DNA)−1A>u+

1

2
(µ− η)>D

1/2
N RND

1/2
N (µ− η)

=
1

2

(
u>A(A>DNA)−1A>DN (µ− η) + u>η

)2
u>A(A>DNA)−1A>u

+
1

2
(µ− η)>D

1/2
N RND

1/2
N (µ− η)

=
1

2
η>Qη + q>η + C
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where C doesn’t depend on η and

Q = D
1/2
N RND

1/2
N

+
1

u>A(A>DNA)−1A>u

(
(I −DNA(A>DNA)−1A>)u

) (
(I −DNA(A>DNA)−1A>)u

)>
q =

u>A(A>DNA)−1A>DNµ

u>A(A>DNA)−1A>u
(I −DNA(A>DNA)−1A>)u−D1/2

N RND
1/2
N µ .

Again if DN is invertible these have simpler expressions:

Q = D
1/2
N

(
RN +

1

u>D
−1/2
N PND

−1/2
N u

(RND
−1/2
N u)(RND

−1/2
N u)>

)
D

1/2
N

q = D
1/2
N RN

(
u>D

−1/2
N PND

1/2
N µ

u>D
−1/2
N PND

−1/2
N u

D
−1/2
N u−D1/2

N µ

)
.

We are looking for a solution to

arg min
η∈C

1

2
η>Qη + q>η .

This is a quadratic objective. The difficulty of finding the minimum depends on C.

Summary. To compute the closest alternative in a half-space, we compute the solution to two
quadratic problems corresponding to the possibilities that Lagrangian multiplier α satisfies either
α = 0 or α > 0. Then we retain the solution with the minimal objective value.

D The MISLID algorithm

D.1 Initialization

MISLID starts by pulling a deterministic sequence of t0 arms that make the minimum eigenvalue of
the resulting design matrix Vt0 larger than 2L2. Since the rows of A span Rd, such sequence can be
found by taking any subset of d arms that span the whole space (e.g., by computing a barycentric
spanner [4]) and pulling them in a round robin fashion until the desired condition is met.

In order to get an approximation of the length t0 of the initialization phase, let us denote σmin(M)
the minimal singular value of a matrix M . Let us consider B = {b1, b2, . . . , bd} ⊆ [K],
|B| = d, the barycentric spanner of size d computed on matrix A. Then, if we stopped the
round-robin sampling such that each arm in the barycentric spanner is sampled exactly u0 times,
Vt0 = u0

∑
k∈B φkφ

>
k . To ensure that Vt � 2L2Id, we need u0σmin

(∑
k∈B φkφ

>
k

)
≥ 2L2.

Let Γ′(A) := min
{
σmin

(∑
k∈B φkφ

>
k

)
| B d-sized spanner of A

}
. Then u0 =

⌈
2L2

Γ′(A)

⌉
is large

enough.

We obtain the bound t0 ≤ d
⌈

2L2

Γ′(A)

⌉
.

D.2 Projection of the empirical mean onto the set of realizable modelsM

As done in Equation 1 in the main paper, we define the set of realizable models as

M :=
{
µ = Aθ + η ∈ RK | ∃θ ∈ Rd∃η ∈ RK , ‖η‖∞ ≤ ε ∧ ‖Aθ + η‖∞ ≤M

}
.

We require our estimates of µ to be in this set, but the estimate at time t µ̂t might not satisfy the
constraint on its `∞ norm (i.e., ‖µ̂t‖∞ > M ). We then directly project the empirical mean vector
ontoM. Define

(θ̃t, η̃t) := arg min
θ′,η′:Aθ′+η′∈M

‖Aθ′ + η′ − µ̂t‖
2
DNt

. (6)
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Lemma 10. Let µ̃t = Aθ̃t + η̃t,7 where (θ̃t, η̃t) are the solution of (6). Then, all the following hold:

‖µ̃t − µ‖2DNt ≤ ‖µ− µ̂t‖
2
DNt

,∥∥∥θ̃t − θt∥∥∥2

Vt
≤
∥∥∥θ̂t − θt∥∥∥2

Vt
,∥∥∥RNtD1/2

Nt
η̃t −RNtD

1/2
Nt
ηt

∥∥∥2

2
≤
∥∥∥RNtD1/2

Nt
µ̂t −RNtD

1/2
Nt
ηt

∥∥∥2

2
,∥∥∥θ̃t − θ∥∥∥2

Vt
≤
∥∥∥θ̂t − θ∥∥∥2

Vt
,∥∥∥RNtD1/2

Nt
η̃t −RNtD

1/2
Nt
η
∥∥∥2

2
≤
∥∥∥RNtD1/2

Nt
µ̂t −RNtD

1/2
Nt
η
∥∥∥2

2

Proof. The first inequality is easy to check by using µ ∈M together with the non-expansion of the
projection in the optimized norm.

The proof of the other inequalities extends Lemma 9 in [40]. Note that, using Lemma 4, an equivalent
formulation of (6) is

(θ̃t, η̃t) := arg min
θ′,η′:Aθ′+η′∈M

{∥∥∥PNtANtθ′ − PNtD1/2
Nt
µ̂t

∥∥∥2

2
+
∥∥∥RNtD1/2

Nt
η′ −RNtD

1/2
Nt
µ̂t

∥∥∥2

2

}
= arg min
θ′,η′:Aθ′+η′∈M

{∥∥∥θ′ − θ̂t∥∥∥2

Vt
+ ‖η′ − µ̂t‖

2

D
1/2
Nt

RNtD
1/2
Nt

}
This is the minimization of a convex function over a convex set. For any θ′ ∈ Rd, η′ ∈ RK , let

f(θ′) =
∥∥∥θ′ − θ̂t∥∥∥2

Vt
and g(η′) = ‖η′ − µ̂t‖2D1/2

Nt
RNtD

1/2
Nt

. Therefore, using the first-order optimality

conditions for convex functions (see, e.g., Theorem 2.8 in [32]), (θ̃t, η̃t) are minimizers if and only if
for each θ′, η′ : Aθ′ + η′ ∈M,

〈∇θf(θ̃t), θ
′ − θ̃t〉 ≥ 0 =⇒ (θ̃t − θ̂t)TVt(θ′ − θ̃t) ≥ 0

〈∇ηg(η̃t), η
′ − η̃t〉 ≥ 0 =⇒ (η̃t − µ̂t)TD1/2

Nt
RNtD

1/2
Nt

(η′ − η̃t) ≥ 0

Note that µ = Aθt + ηt, thus the orthogonal parametrization (θt, ηt) is such that Aθt + ηt ∈ M.
Thus, (θt, ηt) are feasible solutions. This implies∥∥∥θ̂t − θt∥∥∥2

Vt
=
∥∥∥θ̂t − θ̃t∥∥∥2

Vt
+
∥∥∥θ̃t − θt∥∥∥2

Vt
+ 2(θ̂t − θ̃t)TVt(θ̃t − θt) ≥

∥∥∥θ̃t − θt∥∥∥2

Vt

and

‖µ̂t − ηt‖2D1/2
Nt

RNtD
1/2
Nt

= ‖µ̂t − η̃t‖2D1/2
Nt

RNtD
1/2
Nt

+ ‖η̃t − ηt‖2D1/2
Nt

RNtD
1/2
Nt

+ 2(µ̂t − η̃t)TD1/2
Nt
RNtD

1/2
Nt

(η̃t − ηt)

≥ ‖η̃t − ηt‖2D1/2
Nt

RNtD
1/2
Nt

.

Rearranging concludes the proof of the second and the third inequalities. To show the last two
inequalities, simply use the same argument by noting that (θ, η) is also a feasible solution (since
µ = Aθ + η ∈M).

E Concentration results

E.1 Concentration of the linear part

In this section we derive concentration results for

7Note that the equation θ̂t = θ̃t mentioned in Section 4.1 in the main paper no longer holds, because we
consider the boundedness assumption µ ∈M =⇒ ‖µ‖∞ ≤M
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∥∥∥θ̂t − θt∥∥∥2

Vt
=
∥∥V −1

t A>St
∥∥2

Vt
=
∥∥A>St∥∥2

V −1
t

.

We rewrite the quantities involved to make obvious that this is the usual self-normalized quantity
from the linear bandit literature [1]:

A>St =

t∑
s=1

(
Xks
s − µks

)
A>eks =

t∑
s=1

(
Xks
s − µks

)
φks and Vt =

t∑
s=1

φksφ
>
ks .

We restate here Theorem 20.4 (in combination with the Equation 20.9) of [28], which states a result
due to [1].

Theorem 3. Suppose that for all k ∈ [K], ‖φk‖2 ≤ L. For all x > 0 and δ ∈ (0, 1],

P
(
∃t ∈ N,

1

2

∥∥A>St∥∥2

(Vt+xId)−1 ≥ log
1

δ
+
d

2
log

(
1 +

tL2

xd

))
≤ δ .

Corollary 1. If we ensure that Vt0 � xId (in the sense of positive definite matrices), then

P
(
∃t > t0,

1

2

∥∥∥θ̂t − θt∥∥∥2

Vt
≥ 2 log

1

δ
+ d log

(
1 +

tL2

xd

))
≤ δ .

Proof. If Vt � xId then 2Vt � Vt + xId and∥∥∥θ̂t − θt∥∥∥2

Vt
=
∥∥A>St∥∥2

V −1
t
≤ 2

∥∥A>St∥∥2

(Vt+xId)−1 .

The 2 log(1/δ) term is fine for some steps of the analysis but not for the stopping rule. For the
stopping rule concentration inequality, we need log(1/δ).

Corollary 2. Suppose that Vt0 � xId. Then

P
(
∃t ≥ t0,

1

2

∥∥∥θ̂t − θt∥∥∥2

Vt
≥ 1 + log

1

δ
+

(
1 +

1

log(1/δ)

)
d

2
log

(
1 +

tL2

xd
log

1

δ

))
≤ δ .

Proof. Suppose that Vt0 � xId and let γ(δ) := log(1/δ)−1. For any t ≥ t0,∥∥∥θ̂t − θt∥∥∥2

Vt
=
∥∥A>St∥∥2

V −1
t
≤ (1 + γ(δ))

∥∥A>St∥∥2

(Vt+xγ(δ)Id)−1 .

Then we conclude by applying Theorem 3.

E.2 Unstructured concentration

Let W−1 be the negative branch of the Lambert W function and let W (x) = −W−1(−e−x). Note
that for x ≥ 1, x+ log x ≤W (x) ≤ x+ log x+ min{ 1

2 ,
1√
x
}.

Lemma 11. For t > 1, with probability 1− δ,

1

2
‖µ̂t − µ‖2DNt ≤ 2KW

(
1

2K
log

e

δ
+

1

2
log(8eK log t)

)
.

Proof. See [14, Appendix A, Theorem 4] for that form of the lemma, which is a small reformulation
of a result due to [30].

The concentration inequality of Lemma 11 is also valid for ‖µ̃t − µ‖2DNt since the first inequality of

Lemma 10 states that ‖µ̃t − µ‖2DNt ≤ ‖µ̂t − µ‖
2
DNt

.
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E.3 Elliptic potential lemmas

All lemmas in this section are derived under the following assumption.
Assumption 2. For t ≥ t0, Vt � 2L2Id.

In the remainder of the section, we consider ωt ∈ ∆K , for any time t > 0.
Lemma 12. Under Assumption 2, with probability 1− δ,

t∑
s=t0+1

K∑
k=1

ωks ‖φk‖
2
V −1
s−1
≤
√

2t log
1

δ
+ d log

(
1 +

t

d

)
.

Proof.
t∑

s=t0+1

K∑
k=1

ωks ‖φk‖
2
V −1
s−1

=

t∑
s=t0+1

(
K∑
k=1

ωks ‖φk‖
2
V −1
s−1
− ‖φks‖

2
V −1
s−1

)
+

t∑
s=t0+1

‖φks‖
2
V −1
s−1

.

The first term is the sum of a martingale difference sequence with bounded increments

E

[
K∑
k=1

ωks ‖φk‖
2
V −1
s−1
− ‖φks‖

2
V −1
s−1
| Fs−1

]
= 0 ,∣∣∣∣∣

K∑
k=1

ωks ‖φk‖
2
V −1
s−1
− ‖φks‖

2
V −1
s−1

∣∣∣∣∣ ≤ 1 .

since Vs−1 � 2L2Id and ‖φk‖ ≤ L. By the Azuma-Hoeffding inequality, with probability 1− δ,
t∑

s=t0+1

(
K∑
k=1

ωks ‖φk‖
2
V −1
s−1
− ‖φks‖

2
V −1
s−1

)
≤
√

2t log
1

δ
.

The second term is an elliptic potential, bounded in Lemma 13 below.

Lemma 13. Under Assumption 2, for t > t0,
t∑

s=t0+1

‖φks‖
2
V −1
s−1
≤ d log

(
1 +

t

d

)
.

Proof. Let Vs:t denote the design matrix using only rounds from s to t. We use Lemma 14,
t∑

s=t0+1

‖φks‖
2
V −1
s−1
≤

t∑
s=t0+1

‖φks‖
2
(2L2Id+Vt0+1:s−1)−1 ≤ d log

(
1 +

t

d

)
.

Lemma 14. Under Assumption 2, for t > t0,
t∑

s=t0+1

‖φks‖
2
(Vt0+1:s−1+2L2Id)−1 ≤ d log

(
1 +

t

d

)
.

Proof. By definition of L, for all k ∈ [K], φkφ>k � L2Id. From Lemma 15 below, we have
t∑

s=t0+1

‖φks‖
2
(Vt0+1:s−1+2L2Id)−1 =

t∑
s=t0+1

‖φks‖
2
(Vt0+1:s−1+L2Id+L2Id)−1

≤
t∑

s=t0+1

‖φks‖
2
(Vt0+1:s+L2Id)−1

≤ d log

(
1 +

2t

d

)
.
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A general statement (extracted from [13] but widely known, see for example [28]) is

Lemma 15. Let (ωt)t≥1 be a sequence in the simplex ∆K and x > 0. Let Wt :=
∑t
s=1 ωs and

VWt
:=
∑t
s=1

∑K
k=1 ω

k
sφkφ

>
k . Then

t∑
s=1

K∑
k=1

ωks ‖φk‖
2
(VWs+xId)−1 ≤ d log

(
1 +

tL2

dη

)
.

Proof. Define the function f(W ) = log det(VW + xId) for any W ∈ (R+)K . It is a concave
function since the function V 7→ log det(V ) is a concave function over the set of positive definite
matrices (see Exercise 21.2 of [28]). Its partial derivative with respect to the coordinate k at W is

∇kf(W ) = ‖φk‖2(VW+xId)−1 .

Hence using the concavity of f we have

K∑
k=1

ωks ‖φk‖
2
(VWs+xId)−1 = (Ws −Ws−1)>∇af(Ws) ≤ f(Ws)− f(Ws−1) ,

which implies that

t∑
s=1

K∑
k=1

ωks ‖φk‖
2
VWs+xId

≤ f(Wt)− f(W0) = log

(
det(VWt

+ xId)

det(xId)

)
≤ d log

(
1 +

tL2

dx

)
,

where for the last inequality we use the inequality of arithmetic and geometric means in combination
with Tr(VWt

) ≤ tL2 .

Lemma 16. Let C > 0 be a constant. With probability 1− δ,

t∑
s=t0+1

K∑
k=1

ωks−1 min

{
C,

1

Nk
s−1

}
≤ C

√
2t log

1

δ
+K(C + 1 + log t)

Proof. The first term is due to a martingale argument to bound∑
s

(∑
k ω

k
s−1 min

{
C, 1

Nks−1

}
−min

{
C, 1

Nkss−1

})
. Then

t∑
s=t0+1

min

{
C,

1

Nks
s−1

}
≤ CK +

K∑
k=1

I
{
Nk
t−1 > 0

}Nkt−1∑
j=1

1

j
≤ K(C + 1 + log t) .

E.4 Martingale concentration

Lemma 17. Let µ ∈M (with upper bounds M and ε) and Zs(λ) := (µks − λks)2 − Ek∼ωs [(µk −
λk)2]. For any δ′ ∈ (0, 1),

P

{
∃t ≥ 1 : sup

λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣ > r(t, δ′)

}
≤ δ′,

where

r(t, δ′) := 2M2

√√√√ t

2

(
log

4t2

δ′
+ d log

6(M + ε)Lt√
Γ(A)

+K log max{4εt, 1}

)
+ 2 + 8M ,

Γ(A) := maxω∈∆K
σmin

(∑K
k=1 ω

kφkφ
>
k

)
, and σmin(M) is the minimal eigenvalue of matrix M .
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Proof. First note that ωs is Fs−1-measurable. Thus, for any fixed λ,

E[Zs(λ)|Fs−1] = E[(µks − λks)2|Fs−1]− Ek∼ωs [(µk − λk)2] = 0,

which implies that {Zs}s≥1 is a martingale difference sequence. Moreover, it is easy to check that
|Zs(λ)| ≤ 4M2. Unfortunately, we cannot directly use this martingale property to concentrate the
desired term since λ is adaptively chosen as a function of the whole history up to time t. As a solution,
we shall use a covering argument on the whole model familyM.

Suppose that we have a finite ξ-cover M̄ξ ofM, i.e., for any λ ∈M, there exists λ̄ ∈ M̄ξ such that
‖λ− λ̄‖∞ ≤ ξ. For such a couple (λ, λ̄), this implies that, for any s ≥ 1, k ∈ [K],∣∣(µk − λk)2 − (µk − λ̄k)2

∣∣ =
∣∣(λ̄k − λk)2 + 2(µk − λ̄k)(λ̄k − λk)

∣∣
≤ (λ̄k − λk)2 + 2|µk − λ̄k||λ̄k − λk| ≤ ξ2 + 4Mξ.

Moreover, using this bound in the definition of Zs(λ),∣∣∣∣∣
t∑

s=1

Zs(λ)−
t∑

s=1

Zs(λ̄)

∣∣∣∣∣ ≤ 2tξ2 + 8tMξ.

Let h(t) be some function to be specified later. With some abuse of notation w.r.t. the derivation
above, we shall instantiate a different ξt-cover for each time step t. Then

P

{
∃t ≥ 1 : sup

λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣ > h(t)

}
= P

{
∃t ≥ 1 : sup

λ∈M
inf

λ̄∈M̄ξt

∣∣∣∣∣
t∑

s=1

Zs(λ)± Zs(λ̄)

∣∣∣∣∣ > h(t)

}
(a)

≤ P

{
∃t ≥ 1 : sup

λ̄∈M̄ξt

∣∣∣∣∣
t∑

s=1

Zs(λ̄)

∣∣∣∣∣+ sup
λ∈M

inf
λ̄∈M̄ξt

∣∣∣∣∣
t∑

s=1

Zs(λ)− Zs(λ̄)

∣∣∣∣∣ > h(t)

}
(b)

≤ P

{
∃t ≥ 1, λ̄ ∈ M̄ξt :

∣∣∣∣∣
t∑

s=1

Zs(λ̄)

∣∣∣∣∣ > h(t)− 2tξt
2 − 8tMξt

}
(c)

≤
∞∑
t=1

∑
λ̄∈M̄ξt

P

{∣∣∣∣∣
t∑

s=1

Zs(λ̄)

∣∣∣∣∣ > h(t)− 2tξt
2 − 8tMξt

}
,

where (a) follows by the triangle inequality, (b) from the property of the cover, and (c) from
the union bound and the fact that the cover is finite. Let δ′t ∈ (0, 1). If we choose h(t) :=

2M2
√

t
2 log(2/δ′t) + 2tξt

2 + 8tMξt, using Azuma’s inequality, each probability in the sum above

is bounded by δ′t. Hence, choosing δ′t := δ′

2|M̄ξt |t2
,

∞∑
t=1

∑
λ̄∈M̄ξt

P

{∣∣∣∣∣
t∑

s=1

Zs(λ̄)

∣∣∣∣∣ > h(t)− 2tξt
2 − 8tMξt

}
≤
∞∑
t=1

δ′

2t2
≤ δ′,

where the last inequality can be verified easily. Therefore, putting everything together, we proved that

P

{
∃t ≥ 1 : sup

λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣ > 2M2

√
t

2
log

4|M̄ξt |t2
δ′

+ 2tξt
2 + 8tMξt

}
≤ δ′.

It only remains to build the cover, compute its size, and specify the value of ξt. Recall that each
model λ ∈ M can be written as λ = Aθ′ + η′, where ‖η′‖∞ ≤ ε and ‖λ‖∞ ≤M . Using Lemma
28 below, we have that ‖θ′‖2 ≤ B̄ := M+ε√

Γ(A)
. Then, we can build two separate covers for the linear

and deviation parts. Specifically, we build a ξt/(2L)-cover M̄lin
t in `2-norm for the linear part and a

ξt/2-cover M̄dev
t in `∞-norm for the deviation part. Then, we take the full cover as the (finite) set

M̄t := {λ̄ = Aθ̄+ η̄ : θ̄ ∈ M̄lin
t , η̄ ∈ M̄dev

t }. With this choice, we have that, for any λ = Aθ′ + η′,
there exits λ̄ ∈ M̄t such that

‖λ− λ̄‖∞ = ‖Aθ′ + η′ −Aθ̄ − η̄‖∞ ≤ L‖θ′ − θ̄‖2 + ‖η′ − η̄‖∞ ≤ ξt.
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Let us compute the size of the cover M̄t. It is easy to see that this is |M̄t| = |M̄lin
t ||M̄dev

t |. For the
linear one, it is known that the ξt/(2L)-covering number (in `2-norm) of a ball in Rd with radius
B̄ is at most (6LB̄/ξt)

d. For the deviation, we can have a ξt/2 cover in `∞-norm with at most
max{(4ε/ξt)K , 1} points, where the maximum is to deal with too small values of ε (e.g., ε = 0).
Then, the final cover has size at most |M̄t| ≤ (6B̄L/ξt)

d max{(4ε/ξt)K , 1}. Setting ξt = 1/t, we
get the desired bound.

F δ-correctness and sample complexity analysis

F.1 Correctness

We prove Lemma 3 in the main paper, restated below.

Lemma. Let W−1 be the negative branch of the Lambert W function and let W (x) =
−W−1(−e−x) ≈ x+ log x. For δ ∈ (0, 1), define

βuns
t,δ := 2KW

(
1

2K
log

2e

δ
+

1

2
log(8eK log t)

)
, (7)

βlin
t,δ :=

1

2

(
4
√
tε+

√
2

√
1 + log

1

δ
+

(
1 +

1

log(1/δ)

)
d

2
log

(
1 +

t

2d
log

1

δ

))2

. (8)

Then, for the choice βt,δ := min{βuns
t,δ , β

lin
t,δ}, MISLID is δ-correct.

Proof. δ-correctness is composed of two properties: stopping in a finite time with probability one
and verifying, for all instances µ ∈M, P(Ŝm 6⊆ S?(µ)) ≤ δ. The fact that the stopping time is finite
almost surely is a consequence of the sample complexity bound (see further down in this section).
We now prove the bound on the probability of error in identification.

We first relate the event that the algorithm does not return a correct answer to a large deviation, by
writing that for the algorithm to make a mistake, there must be a time at which the stopping condition
is met and µ̃t is in the alternative to µ:

P(Ŝm 6⊆ S?(µ)) ≤ P
(
∃t ∈ N, inf

λ∈Λm(µ̃t)
‖µ̃t − λ‖2DNt > 2βt,δ ∧ µ̃t ∈ Λm(µ)

)
.

If the two conditions of the right-hand side happen, then µ ∈ Λm(µ̃t) and we get

P(Ŝm 6⊆ S?(µ)) ≤ P
(
∃t ∈ N, ‖µ̃t − µ‖2DNt > 2βt,δ

)
.

It then suffices to prove that we have both

P
(
∃t ∈ N,

1

2
‖µ̃t − µ‖2DNt > βlin

t,δ

)
≤ δ/2 , (9)

and P
(
∃t ∈ N,

1

2
‖µ̃t − µ‖2DNt > βuns

t,δ

)
≤ δ/2 . (10)

The result for (10) is Lemma 11 (and the remark below that lemma stating that it applies to µ̃t). We
now prove the concentration inequality using the linear term (9).

let θ̃t,ε and η̃t,ε be parameters for µ̃t with ‖η̃t,ε‖ ≤ ε, which exist since µ̃t ∈M. On the other hand,
let θ̃t and η̃t be the orthogonal parameters of µ̃t with respect to Nt.

‖µ̃− µ‖DNt = ‖A(θ̃t,ε − θ) + η̃t,ε − η‖DNt
≤ ‖A(θ̃t,ε − θ)‖DNt + ‖η̃t,ε − η‖DNt
= ‖θ̃t,ε − θ‖Vt + ‖η̃t,ε − η‖DNt
≤ ‖θ̃t,ε − θ̃t‖Vt + ‖θ̃t − θt‖Vt + ‖θt − θ‖Vt + ‖η̃t,ε − η‖DNt .
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Lemma 6 bounds the first and third terms by
√
tε. The last term is bounded by

√
t‖η̃t,ε−η‖∞ ≤ 2

√
tε

since both vectors have `∞ norm bounded by ε.

Finally

P
(
∃t ∈ N,

1

2
‖µ̃t − µ‖2DNt > βlin

t,δ

)
≤ P

(
∃t ∈ N,

1

2

∥∥∥θ̂t − θt∥∥∥2

Vt
>

1

2
(
√

2βlin
t,δ − 4

√
tε)2

)
≤ δ/2

by Corollary 2.

F.2 Restriction to a good event

Assumption. We start by pulling arms deterministically until t0, such that Vt0 ≥ 2L2Id. See
paragraph “Initialization phase” in Subsection 4.1 in the main paper.

Definition of the good event. For t ≥ t0 and k ∈ [K], define

αlin
t := log(5t2) + d log

(
1 +

t

2d

)
, αuns

t := 2KW

(
1

2K
log(2e5t3) +

1

2
log(8eK log t)

)
.

Consider the following events. Each of these holds with probability at least 1− 1
5t2 by the indicated

concentration result.

1. Concentration of the projected linear part (Corollary 1)

E1
t :=

{
∀s ≥ t0 :

1

2

∥∥∥θ̃s − θs∥∥∥2

Vs
≤ αlin

t

}
,

2. Unstructured concentration of the projected estimator (Lemma 11)

E2
t :=

{
∀s ≤ t :

1

2
‖µ̃s − µ‖2DNs ≤ α

uns
t

}
,

3. Martingale concentration for sampling (Lemma 17)

E3
t :=

{
sup
λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣ ≤ r (t)

}
,

where r(t) is obtained by setting δ′ = 1
5t2 in r(t, δ′) in Lemma 17, which yields

r(t) = 2M2

√√√√ t

2

(
log(4× 5t4) + d log

6(M + ε)Lt√
Γ(A)

+K log max{4εt, 1}

)
+ 2 + 8M.

4. Elliptical potential with sampling (Lemma 12)

E4
t :=

{
t∑

s=t0+1

K∑
k=1

ωks ‖φk‖
2
V −1
s−1
≤
√

2t log(5t2) + d log

(
1 +

t

d

)}
,

5. Elliptical potential with sampling for the unstructured bound (Lemma 16)

E5
t :=

{
t∑

s=t0+1

K∑
k=1

ωks min

{
4M2,

2αuns
t

Nk
s−1

}
≤ 4M2

√
2t log(5t2) + 4M2K + 2Kαuns

t log(et)

}
.

Then, we define the “good” event Et :=
⋂5
i=1 E it .

Lemma 18. For all t ≥ 1, P(Ect ) ≤ 1/t2 .

Proof. Apply an union bound by noting that each event E it fails with probability at most 1/(5t2).

30



Lemma 19. Let T0(δ) ∈ N be such that for t ≥ T0(δ), Et ⊆ {τδ ≤ t}. Then E[τδ] ≤ T0(δ) + 2 .

Proof. Successively using the definition of T0(δ) and Lemma 18:

E[τδ] =

+∞∑
t=0

P(τδ > t) ≤ T0(δ) +

+∞∑
t=T0(δ)

P(Ect ) ≤ T0(δ) +

+∞∑
t=1

1

t2
≤ T0(δ) + 2 .

Consequences of the good event.
Lemma 20. For t ≥ t0 and k ∈ [K], define

ckt := min

{
8(LK + 1)2ε2 + 4αlin

t2 ‖φk‖
2
V −1
t

,
2αuns

t2

Nk
t

, 4M2

}
,

where we use the convention that 2αuns/Nk
t = +∞ if Nk

t = 0. Then under Et, for all s ∈
{max{t0,

√
t}, . . . , t} and k ∈ [K], (µ̃ks − µk)2 ≤ cks .

Proof. We know that 1
2

∥∥∥θ̃s − θs∥∥∥2

Vt
≤ αlin

t holds for all s ≥ t0 by definition of E1
t . For s ≥

max{t0,
√
t}we also have αlin

s2 ≥ αlin
t , hence 1

2

∥∥∥θ̃s − θs∥∥∥2

Vt
≤ αlin

s2 . Using first (a+b)2 ≤ 2a2+2b2

then the Cauchy-Schwarz inequality on (V
−1/2
s φk)>(V

1/2
s (θ̃s − θs)) and Lemma 5,

(µ̃ks − µk)2 ≤ 2(φ>k (θ̃s − θs))2 + 2(η̃ks − ηks )2 ≤ 2 ‖φk‖2V −1
s

∥∥∥θ̃s − θs∥∥∥2

Vs
+ 8(LK + 1)2ε2

≤ 8(LK + 1)2ε2 + 4αlin
s2 ‖φk‖

2
V −1
s

.

Moreover by definition of E2
t , for all s ≤ t, 1

2 ‖µ̃s − µ‖
2
DNs
≤ αuns

t . For s ≥ max{t0,
√
t} we have

αuns
s2 ≥ αuns

t , hence 1
2 ‖µ̃s − µ‖

2
DNs
≤ αuns

s2 . Therefore,

(µ̃ks − µk)2 = (e>k (µ̃s − µ))2 ≤ ‖ek‖2D−1
Ns

‖µ− µ̃s‖2DNs ≤
2αuns

s2

Nk
s

.

Finally, (µ̃ks − µk)2 ≤ ‖µ̃s − µ‖2∞ ≤ 4M2.

Lemma 21. For all t ≥ 1, under the good event Et,

∀s ∈ {t0, t0 + 1, . . . , t} : ‖µ̃s − µ‖2DNs ≤ f(t) := 2 min{αuns
t , αlin

t + 2t(LK + 1)2ε2}.

Proof. That for all s ≤ t, ‖µ̃s − µ‖2DNs ≤ 2αuns
t directly follows from the definition of E2

t . To see
the second inequality, we first decompose the norm on the lefthand-side into its linear and deviation
components

‖µ̃s − µ‖2DNs =
∥∥∥θ̃s − θs∥∥∥2

Vs
+
∥∥∥RNsD1/2

Ns
η̃s −RNsD

1/2
Ns
ηs

∥∥∥2

.

The deviation part can be bounded by 4t(LK + 1)2ε2 for all s ≤ t using Lemma 5. The linear part
can be bounded by 2αlin

t for all s ≥ t0 by the definition of E1
t .

F.3 Analysis under a good event

Fix any time step t ≥ t0. Suppose that the good event Et of Section F.2 holds and the algorithm does
not stop at time t. We proceed in different steps.
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Stopping rule analysis.
Theorem 4. If the algorithm does not stop at time t then under Et, using stopping threshold βt,δ as
defined in Lemma 3 in the main paper,

2βt,δ ≥ inf
λ∈Λm(µ)

‖µ− λ‖2DWt − hδ(t)− r(t) .

where

• hδ(t) =
√

8βt,δf(t) + f(t), with f(t) a bound on ‖µ− µ̃t‖2DNt (see Lemma 21) ,

• r(t) = 2M2

√
t
2

(
log(4× 5t4) + d log 6(M+ε)Lt√

Γ(A)
+K log max{4εt, 1}

)
+ 2 + 8M ,

and Wt :=
∑t
s≤1 ωs is the sum over time of the weight vectors played by the learner.

The proof of this theorem is detailed in Steps 1 to 3 below.

Step 1. From Λm(µ̃t) to Λm(µ).
Lemma 22. For all µ, µ′ ∈M, for any non-negative function f : RK × RK → R with f(x, x) = 0,

inf
λ∈Λm(µ)

f(µ, λ) ≥ inf
λ∈Λm(µ′)

f(µ, λ) .

Proof. Either Λm(µ) = Λm(µ′) and the two expressions are equal, or Λm(µ) 6= Λm(µ′). In the
second case, µ ∈ Λm(µ′). The right-hand side is then equal to zero, which is lower than the left-hand
side since f is non-negative.

Since the algorithm does not stop at time t, from the stopping rule

2βt,δ ≥ inf
λ∈Λm(µ̃t)

‖µ̃t − λ‖2DNt ,

where Λm(µ̃t) is the set of alternative models to µ̃t. We change the alternative set over which the
minimization is performed using Lemma 22:

2βt,δ ≥ inf
λ∈Λm(µ̃t)

‖µ̃t − λ‖2DNt ≥ inf
λ∈Λm(µ)

‖µ̃t − λ‖2DNt . (11)

Step 2. From µ̃t to µ. The next step is to replace the estimated mean µ̃t in the norm with the true
mean µ. For all λ ∈M, using the triangle inequality,

‖µ̃t − λ‖DNt ≥ ‖µ− λ‖DNt − ‖µ̃t − µ‖DNt ≥ ‖µ− λ‖DNt −
√
f(t) ,

where the last inequality uses Lemma 21 to concentrate ‖µ̃t − µ‖2DNt . Using this for the specific

choice of λt ∈ arg minλ∈Λm(µ) ‖µ̃t − λ‖
2
DNt

in combination with (11), we obtain(√
2βt,δ +

√
f(t)

)2

≥ ‖µ− λt‖2DNt ⇒ 2βt,δ ≥ inf
λ∈Λm(µ)

‖µ− λ‖2DNt − hδ(t) , (12)

where hδ(t) :=
√

8βt,δf(t) + f(t) is a sub-linear function of both t and log(1/δ).

Step 3. From Nt to Wt. We now show that it is possible to replace Nt with Wt :=
∑t
s=1 ωs in the

norm at the price of subtracting another low-order term. Let Zs(λ) := (µks − λks)2 − Ek∼ωs [(µk −
λk)2]. Note that ‖µ− λ‖2DNt =

∑t
s=1(µks − λks)2 and ‖µ− λ‖2DWt =

∑t
s=1 ‖µ− λ‖

2
Dωs

=∑t
s=1 Ek∼ωs [(µk − λk)2]. Therefore, from (12),

2βt,δ ≥ inf
λ∈Λm(µ)

(
‖µ− λ‖2DNt − ‖µ− λ‖

2
DWt

+ ‖µ− λ‖2DWt
)
− hδ(t)

= inf
λ∈Λm(µ)

(
‖µ− λ‖2DWt +

t∑
s=1

Zs(λ)

)
− hδ(t)

≥ inf
λ∈Λm(µ)

‖µ− λ‖2DWt − sup
λ∈M

∣∣∣∣∣
t∑

s=1

Zs(λ)

∣∣∣∣∣− hδ(t) .
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Using the good event E3
t , we can finally write

2βt,δ ≥ inf
λ∈Λm(µ)

‖µ− λ‖2DWt − hδ(t)− r(t) , (13)

which ends proving Theorem 4.

Sampling rule analysis. Let Hµ = supω∈∆ infλ∈Λm(µ)
1
2 ‖µ− λ‖

2
Dω

(the inverse complexity
at µ). In the first part of the sampling rule analysis, we introduce the optimistic estimates gt(ω)
mentioned in Algorithm 1 in the main paper, which will be used by the learner for ωt.

Theorem 5. Let (µ̃s)s≤t ∈M[t] be estimates such that under Et, we have a bound cks on (µ̃ks −µk)2

for all k ∈ [K] and s ∈ [t]. Then define the optimistic estimate

gs(ω) :=

K∑
k=1

ωk
(∣∣µ̃ks−1 − λks

∣∣+
√
cks−1

)2

where λs := arg min
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs .

Under Et,

inf
λ∈Λm(µ)

‖µ− λ‖2DWt ≥
t∑

s=t0+1

gs(ωs)− 4Ct − 4
√

2tCtHµ ,

with Ct :=
∑t
s=t0+1

∑K
k=1 ω

k
s c
k
s−1.

The proof of this theorem is detailed in the Steps 4 to 7 below. Once this result is established, we will
use the regret property of the learner to exhibit the final bound (Steps 8 to 10).

Step 4. From Λm(µ) back to Λm(µ̃s−1) for s ∈ [t]. We now start moving from
infλ∈Λm(µ) ‖µ− λ‖

2
DWt

to the actual gain fed into the online learner at time t. We first need
to go back to the estimated set of alternative models at each time s = 0, . . . , t− 1. We have

inf
λ∈Λm(µ)

‖µ− λ‖2DWt = inf
λ∈Λm(µ)

t∑
s=1

‖µ− λ‖2Dωs ≥
t∑

s=1

inf
λ∈Λm(µ)

‖µ− λ‖2Dωs (14)

≥
t∑

s=1

inf
λ∈Λm(µ̃s−1)

‖µ− λ‖2Dωs , (15)

where the first inequality follows by the concavity of the infimum, and the second one is an application
of Lemma 22.

Step 5. Drop the first rounds. The first t0 rounds are dedicated to making sure that Vt is sufficiently
large (for the partial order on positive definite matrices). Also, our upper bounds on the deviation of µ̃kt
from µk are valid from max{t0,

√
t}. We define t′0(t) = max{t0,

√
t}. We drop the corresponding

nonnegative terms from the sum to keep only the rounds for which t is large enough:
t∑

s=1

inf
λ∈Λm(µ̃s−1)

‖µ− λ‖2Dωs ≥
t∑

s=t′0(t)+1

inf
λ∈Λm(µ̃s−1)

‖µ− λ‖2Dωs .

Step 6. From µ back to µ̃s−1 for s ∈ [t]. We can now use the concentration of µ̃s−1 to replace
µ in all terms ‖µ− λ‖2Dωs for s ∈ [t]. Let λµs := arg minλ∈Λm(µ̃s−1) ‖µ− λ‖

2
Dωs

. Using first the
triangle inequality, then the inequality ‖a− b‖ ≥ ‖a‖ − ‖b‖ for an `2 norm in dimension t− t′0(t),√√√√ t∑

s=t′0(t)+1

‖µ− λµs ‖2Dωs ≥

√√√√ t∑
s=t′0(t)+1

(
‖µ̃s−1 − λµs ‖Dωs − ‖µ− µ̃s−1‖Dωs

)2

≥

√√√√ t∑
s=t′0(t)+1

‖µ̃s−1 − λµs ‖
2
Dωs
−

√√√√ t∑
s=t′0(t)+1

‖µ− µ̃s−1‖2Dωs .
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We now remark that
∑t
s=t′0(t)+1 ‖µ̃s−1 − µ‖2Dws ≤ Ct and get, by the definition of λµs√√√√ t∑

s=t′0(t)+1

‖µ− λµs ‖2Dωs +
√
Ct ≥

√√√√ t∑
s=t′0(t)+1

‖µ̃s−1 − λµs ‖
2
Dws

(16)

≥

√√√√ t∑
s=t′0(t)+1

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dws . (17)

Step 7. Optimistic gains. We now replace the term on the right-hand side in (17) by the optimistic
gains fed into the online learner. At time s, we define optimistic estimates

gs(ω) :=

K∑
k=1

ωk
(∣∣µ̃ks−1 − λks

∣∣+
√
cks−1

)2

where λs := arg min
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs .

Lemma 23. For all ω ∈ ∆K and s ≥ t′0(t), gs(ω) ≥ infλ∈Λm(µ) ‖µ− λ‖
2
Dω

.

Proof. For all k ∈ [K], s > t′0(t), and λ ∈ RK , using Lemma 20 (to write (µk − µ̃ks−1)2 ≤ cks−1):(
µk − λk

)2
=
(
µ̃ks−1 − λk + µk − µ̃ks−1

)2 ≤ (∣∣µ̃ks−1 − λk
∣∣+
∣∣µk − µ̃ks−1

∣∣)2
≤
(∣∣µ̃ks−1 − λk

∣∣+
√
cks−1

)2

.

Then, for any ω ∈ ∆K , by noticing that function f : λ 7→∑K
k ω

k
(∣∣µ̃ks−1 − λk

∣∣2 + 2
∣∣µ̃ks−1 − λk

∣∣√cks−1

)
is nonnegative and that f(µ̃ks−1) = 0:

gs(ω) :=

K∑
k=1

ωk
(∣∣µ̃ks−1 − λks

∣∣+
√
cks−1

)2

≥ inf
λ∈Λm(µ̃s−1)

K∑
k=1

ωk
(∣∣µ̃ks−1 − λk

∣∣+
√
cks−1

)2

=

K∑
k=1

ωkcks−1 + inf
λ∈Λm(µ̃s−1)

K∑
k=1

ωk
(∣∣µ̃ks−1 − λk

∣∣2 + 2
∣∣µ̃ks−1 − λk

∣∣√cks−1

)

≥
K∑
k=1

ωkcks−1 + inf
λ∈Λm(µ)

K∑
k=1

ωk
(∣∣µ̃ks−1 − λk

∣∣2 + 2
∣∣µ̃ks−1 − λk

∣∣√cks−1

)
(due to Lemma 22)

= inf
λ∈Λm(µ)

K∑
k=1

ωk
(∣∣µ̃ks−1 − λk

∣∣+
√
cks−1

)2

≥ inf
λ∈Λm(µ)

K∑
k=1

ωk
(
µk − λk

)2
(using the previously derived coordinate-wise majoration)

= inf
λ∈Λm(µ)

‖µ− λ‖2Dω .

We now prove an upper bound on gw(ω), which will be useful later.

Lemma 24. For all s ≥ t0 and all ω ∈ 4K , gs(ω) ≤ 36M2
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Proof. Using the definition of ckt , k ∈ [K], t ≥ 0 in Lemma 20, and µ, λs ∈ M: gs(ω) =∑K
k=1 ω

k
(∣∣µ̃ks−1 − λks

∣∣+
√
cks−1

)2

≤
∑K
k=1 ω

k
(∣∣µk − λks ∣∣+ 2

√
cks−1

)2

≤
∑K
k=1 ω

k (6M)
2

=

36M2.

We have proved that the estimates are indeed optimistic in the sense that they are an upper-bound
to the value of interest, as mentioned in paragraph “Optimistic gains” in Subsection 4.1 in the main
paper. We now bound by how much they overestimate the empirical value.

Lemma 25. √√√√ t∑
s=t′0(t)+1

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs ≥

√√√√ t∑
s=t′0(t)+1

gs(ωs)−
√
Ct . (18)

Proof. We start by a bound for a single s ∈ N. Using the triangle inequality for an `2 norm,

√
gs(ωs) =

√√√√ K∑
k=1

ωks

(∣∣µ̃ks−1 − λks
∣∣+
√
cks−1

)2

≤

√√√√ K∑
k=1

ωks
(
µ̃ks−1 − λks

)2
+

√√√√ K∑
k=1

ωks c
k
s−1 .

Reordering this inequality, we get

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs ≥

√gs(ωs)−
√√√√ K∑
k=1

ωks c
k
s−1

2

.

Then, summing over s ∈ [t′0(t) + 1, t] and using ‖a− b‖ ≥ ‖a‖ − ‖b‖,√√√√ t∑
s=t′0(t)+1

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs ≥

√√√√√ t∑
s=t′0(t)+1

√gs(ωs)−
√√√√ K∑
k=1

ωks c
k
s−1

2

≥

√√√√ t∑
s=t′0(t)+1

gs(ωs)−

√√√√ t∑
s=t′0(t)+1

K∑
k=1

ωks c
k
s−1 .

Summary of Steps 4 to 7. Putting together Equations (15), (17) and (18), we proved that under
event Et, for estimates (µ̃s)s≤t such that we have a bound cks on (µ̃ks − µk)2 for all s ∈ {t′0(t) +
1, . . . , t} and k ∈ [K],

√
inf

λ∈Λm(µ)
‖µ− λ‖2DWt + 2

√
Ct ≥

√√√√ t∑
s=t′0(t)+1

gs(ωs) .

Note that infλ∈Λm(µ) ‖µ− λ‖
2
DWt

≤ tmaxω∈∆K
infλ∈Λm(µ) ‖µ− λ‖

2
Dω

= 2tHµ. We then get

inf
λ∈Λm(µ)

‖µ− λ‖2DWt ≥
t∑

s=t′0(t)+1

gs(ωs)− 4Ct − 4
√

2tCtHµ ,

which ends proving Theorem 5.
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Step 8. No-regret property. The first t0 rounds are used to initialize our algorithm. After that, we
use a learner with small regret. We will bound the gains between t0 and t′0(t) = max{t0,

√
t} by

36M2 (see Lemma 24). We use the regret bound of the learner (refer to Definition 2 in the main
paper) to get that, for some additional low-order term CL(K,B)

√
t, and by combining Theorems 4

and 5:

2βt,δ ≥
t∑

s=t′0(t)+1

gs(ωs)− hδ(t)− r(t)− 4Ct − 4
√

2tCtHµ

≥
t∑

s=t0+1

gs(ωs)− hδ(t)− r(t)− 4Ct − 4
√

2tCtHµ −max{
√
t− t0, 0}36M2

≥ max
ω∈∆K

t∑
s=t0+1

gs(ω)− hδ(t)− r(t)− 4Ct − 4
√

2tCtHµ − CL(K,B)
√
t

−max{
√
t− t0, 0}36M2 .

A specific upper bound on the regret for the learner AdaHedge used in the implementation of MISLID
is mentioned in Lemma 27.

Step 9. From the optimal gain to the lower bound value. Finally, we can relate the optimal
optimistic gain of the learner to the value of the lower bound. Using the optimism (Lemma 23),

max
ω∈∆K

t∑
s=t0+1

gs(ω) ≥ max
ω∈∆K

t∑
s=t0+1

inf
λ∈Λm(µ)

‖µ− λ‖2Dω = (t− t0) max
ω∈∆K

inf
λ∈Λm(µ)

‖µ− λ‖2Dω︸ ︷︷ ︸
= 2Hµ

.

Step 10. Computing the sample complexity. We thus have obtained an inequality of the form

2βt,δ ≥ 2tHµ − hδ(t)− r(t)− 4Ct − 4
√

2tCtHµ − CL(K,B)
√
t− 2t0Hµ

−max{
√
t− t0, 0}36M2 ,

from which we can obtain the desired sample complexity bound. Remember that

• βt,δ := min
{
βuns
t,δ , β

lin
t,δ

}
• r(t) := M2

√
2t

(
log(4× 5t4) + d log 6(M+ε)Lt√

Γ(A)
+K log max{4εt, 1}

)
+ 2 + 8M

• hδ(t) :=
√

8βt,δf(t) + f(t)

• f(t) := 2 min
{
αuns
t , αlin

t + 2t(LK + 1)2ε2
}

where:
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βuns
t,δ := 2KW

(
1

2K
log

2e

δ
+

1

2
log(8eK log t)

)
,

βlin
t,δ :=

1

2

(
4
√
tε+

√
2

√
1 + log

1

δ
+

(
1 +

1

log(1/δ)

)
d

2
log

(
1 +

t

2d
log

1

δ

))2

,

αuns
t := 2KW

(
1

2K
log(14et3) +

1

2
log(8eK log t)

)
= βuns

t,1/5t3 ,

αlin
t := log(5t2) + d log

(
1 +

t

2d

)
,

ckt := min

{
8(LK + 1)2ε2 + 4αlin

t2 ‖φk‖
2
V −1
t

,
2αuns

t2

Nk
t

, 4M2

}
,

Ct :=

t∑
s=t0+1

K∑
k=1

wks c
k
s−1 ≤ 8(LK + 1)2ε2t+ 2αlin

t2

(√
2t log(5t2) + d log

(
1 +

t

d

))
,

Ct ≤ 4M2
√

2t log(5t2) + 4M2K + 2Kαuns
t2 log(et) .

Combining this bound with Lemma 19 proves Theorem 2 in the main paper.

F.4 Using several estimates

If we employ two sets of estimates, with corresponding optimism functions (gis(ω))i∈{1,2} and
bounds cki,s, we get for i ∈ {1, 2},

inf
λ∈Λm(µ)

‖µ− λ‖2DWt ≥ max
i∈{1,2}

(
t∑

s=t0+1

gis(ωs)− 4Cit − 4
√

2tCitHµ

)

≥
t∑

s=t′0(t)+1

min
i∈{1,2}

gis(ωs)− min
i∈{1,2}

(
4Cit + 4

√
2tCitHµ

)
,

where the quantity Cit is similarly defined as Ct, with respect to gains git.

Since the minimum of concave functions is concave, gs : ω 7→ mini∈{1,2} g
i
s(ω) is concave (which

allows the use of a regret-minimizing algorithm, see Subsection F.6). It satisfies the inequality of
Lemma 23 and its gradient is the gradient of gi

?

s (ω) for i? ∈ arg mini∈{1,2} g
i
s(ω).

F.5 Aggressive Optimism

If we are happy with an algorithm which is within a factor 2 of the lower bound for the log 1
δ term

instead of insisting on a factor 1, we can use a different, more aggressive optimism. Take

ĝs(ωs) := 2

K∑
k=1

ωk
(
(µ̃ks−1 − λks)2 + cks−1

)
where λs := arg min

λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs .

The main difference is that the term added to (µ̃ks−1 − λks)2 is of order cks−1 instead of
√
cks−1. In an

unstructured bandit, that means 1/Nk
t instead of 1/

√
Nk
t . Let us prove the counterpart to Lemma 23

for these new gains:

Lemma 26. For all ω ∈ ∆K , ĝs(ωs) ≥ infΛ∈λm(µ) ‖µ− λ‖
2
Dω

.

Proof. For all k ∈ [K] and λ ∈ RK , using Lemma 20

(µk − λk)2 ≤ 2(µ̃ks−1 − λk)2 + 2(µk − µ̃ks−1)2 ≤ 2(µ̃ks−1 − λk)2 + 2cks−1 .
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Then, since ω ∈ ∆K

2

K∑
k=1

ωk
(
(µ̃ks−1 − λk)2 + cks−1

)
≥

K∑
k=1

ωk(µk − λks)2 = ‖µ− λs‖2Dω ≥ inf
Λ∈λm(µ)

‖µ− λ‖2Dω .

Then, using Lemma 26 and the definition of λs, we have

ĝs(ω)− 2 inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs =

K∑
k=1

ωks
[
2(µ̃ks−1 − λks)2 + 2cks−1 − 2(µ̃ks−1 − λks)2

]
= 2

K∑
k=1

ωks c
k
s−1 .

So now we can prove a counterpart to Step 7 in the proof of Theorem 5:

t∑
s=t0+1

inf
λ∈Λm(µ̃s−1)

‖µ̃s−1 − λ‖2Dωs

=
1

2

t∑
s=t0+1

ĝs(ωs)−
1

2

t∑
s=t0+1

(
ĝs(ωs)− 2 inf

λ∈Λm(µ̃s−1)
‖µ̃s−1 − λ‖2Dωs

)

≥ 1

2

t∑
s=t0+1

ĝs(ωs)− Ct .

F.6 Regret of AdaHedge

Lemma 27 ([10]). On the online learning problem with K arms and gains gs(ω) :=
∑
k∈[K] ω

kUks
for s ∈ [t], AdaHedge, predicting (ωs)s∈[t], has regret

Rt := max
ω∈∆K

t∑
s=1

gs(ω)− gs(ωs) ≤ 2σ
√
t log(K) + 16σ(2 + log(K)/3) ,

where σ := max
s≤t

(
max
k∈[K]

Uks − min
k∈[K]

Uks

)
.

We recall here the “gradient trick”, which we can use to employ AdaHedge on any concave gains.If
for any time t > 0, the loss function `t at that time is convex, then for all ω ∈ ∆K ,

t∑
s=1

`t(ωt)− `t(ω) ≤
t∑

s=1

(ωt − ω)>∇`t(ωt)

Running a regret-minimizing algorithm with loss ¯̀
t(ω) = ω>∇`t(ωt) then leads to a regret bound

on `t.

F.7 Technical tools

Generic bounds on vector norms.
Lemma 28. Let θ ∈ Rd, η ∈ RK be such that ‖η‖∞ ≤ ε and ‖Aθ + η‖∞ ≤M . Then

‖θ‖2 ≤
M + ε√

Γ(A)
,

where Γ(A) := maxω∈∆K
σmin

(∑K
k=1 ω

kφkφ
>
k

)
, where σmin(M) is the minimal singular value

of matrix M .
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Proof. For λ := Aθ + η with ‖η‖∞ ≤ ε and ‖λ‖∞ ≤M ,

‖Aθ‖∞ = max
k∈[K]

∣∣φ>k θ∣∣ ≥ ‖θ‖2 min
u∈Rd:‖u‖2=1

max
k∈[K]

∣∣φ>k u∣∣ , (19)

using that the value for θ/ ‖θ‖2 is larger than the minimum over u ∈ Rd with ‖u‖2 = 1. On the other
hand, successively using the triangle inequality and the boundedness assumptions,

‖Aθ‖∞ ≤ ‖Aθ + η‖∞ + ‖η‖∞ ≤M + ε . (20)

Note also that

min
u∈Rd:‖u‖2=1

max
k∈[K]

∣∣φ>k u∣∣2 = min
u∈Rd:‖u‖2=1

max
ω∈∆K

‖u‖2(∑K
k=1 ω

kφkφ>k ) ≥ max
ω∈∆K

σmin

(
K∑
k=1

ωkφkφ
>
k

)
︸ ︷︷ ︸

:= Γ(A)

,

(21)

where the inequality stems from the min-max theorem (principle for singular values). Finally, by
combining the three inequalities (19), (20) and (21), ‖θ‖2 ≤

M+ε√
Γ(A)

.

The term Γ(A) depends only on the set of linear features {φk}k∈[K]. In the unstructured case (where
φk = ek), we have Γ(A) = 1

K . However, in a structured case with d � K, Γ(A) can be much
smaller. For instance, when A contains the canonical basis of Rd, we have Γ(A) ≥ 1

d .

G Experimental evaluation

G.1 Computational architectures

Experiments on simulated datasets (Experiments (A), (B), (C)) were run on a personal computer
(processor: Intel Core i7− 8750H, cores: 12, frequency: 2.20GHz, RAM: 16GB).

Experiment (D) was run on a personal computer (processor: Intel Core i7 − 9700K, cores: 8,
frequency: 3.60GHz, RAM: 16GB).

Experiment (E) was run on a internal cluster (processor: Westmere E56xx/L56xx/X56xx
(Nehalem−C), cores: 24, frequency: 3.2GHz, RAM: 155GB).

G.2 License for the assets

Experiment (D). The drug repurposing dataset for epilepsy was proposed in [35], and made publicly
available under the MIT license.

Experiment (E). The original dataset Last.fm is publicly available online at
https://www.last.fm/ under CC BY-SA 4.0.

Experimental code. The code hosted at https://github.com/clreda/misspecified-top-m
is under MIT license.

G.3 Extracting representations from real datasets

We describe in detail the procedure we adopted to extract misspecified linear representations from the
real-world datasets of Experiment (D) and (E). In both cases, we adopted a very similar procedure
based on training neural networks as the one used in [34]. We describe all its steps for the sake of
completeness.

Step 1. (Data preprocessing) First, we start from preprocessing the raw data to obtain a dataset
containing tuples of the form (φ, x), where φ ∈ Rd is an arm feature and x ∈ R is a reward. The drug
repurposing dataset used in [35] (hosted on their repository) is already available in this form, with a
total of 509 arms representing different drugs, d = 67 features representing genes, and, for each of
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them, 18 reward samples representating the responses of 18 different patients to such drugs. Out of
those 509 arms, we filter out those which outcomes are unknown (associated “true” scores are set
to 0, according to the file of scores available on the same repository). Then 175 arms (representing
either antiepileptics, with score equal to 1, and proconvulsants, with score equal to −1) are left.

On the other hand, the Last.fm dataset is in a different form; it contains information about the music
artists listened by each user of the system. As done in [34, Appendix F.4], we first preprocessed
the data by keeping only artists listened by at least 120 users and users that listened at least to 10
different artists. We thus obtained U = 1, 322 users and A = 103 artists. The result is a matrix in
RU×A containing the number of times each user listened to each artist (which we treat as reward).
We then extract user-artist features by applying low-rank Singular Value Decomposition on this
matrix and keeping only the top 80 singular values. This yields U d-dimensional user features, and A
d-dimensional artist features, where d = 80. The final user-artist features are the concatenation of the
two, which yields a dataset with U ×A tuples (φ, x) ∈ Rd × N in our desired form.

Step 2. (Neural-network training) For both datasets, the second step consists in training a neural
network to regress from φ to x. First, we split the datasets randomly into 80% training set and 20%
test set. Then, we train a neural network with two hidden layers of size 256, rectified linear unit
activations, and a linear output layer of 8 neurons. We obtain an R2 score on the test set of 0.92 for
the drug repurposing data, and 0.85 for the Last.fm one.

Step 3. (Extracting a linear representation) Finally, we extract a linear model from the trained
neural network by taking, for each input φ ∈ Rd in our data, the 8-dimensional features (i.e.,
activations) computed in the last layer together with the corresponding parameters. When specified, a
subset of arm features is considered instead of the whole dataset. Then, in that case, we apply a lossless
dimensionality reduction to make sure these features span the whole space. The reduced features are
the one we feed into our learning algorithms (Experiment (D): d = 5, K = 10; Experiment (E.i):
d = 8, K = 103; Experiment (E.ii): d = 7, K = 50). Moreover, we compute the maximum absolute
error of this linear model in predicting the original data, and use that as a proxy for ε.

Note that, since the Last.fm data is in the form of user-artist features and, in our problem, we consider
the artists only as arms, the representation we select for our experiments is obtained by choosing a
user randomly among the available U = 1, 322 ones.

Moreover, in Step 3, we apply a dimension reduction procedure on features to ensure the fea-
ture matrix is not ill-conditioned, at the cost of increasing the norm of misspecification ε. This
is needed in order to reduce the length t0 of the initialization sequence ; remember that in
Appendix D.1 we showed that t0 is upper-bounded by quantity d

⌈
2L2

Γ′(A)

⌉
, where Γ′(A) :=

min
{
σmin

(∑
k∈B φkφ

>
k

)
| B barycentric spanner of A of size d

}
crucially relies on the condition-

ing of A. How much misspecification is required to improve the conditioning of the matrix is an open
question (which has also been raised in other recent works [34]). Ideally, one would want to learn a
representation of the data which balances those two effects, but we leave such a method to future
investigations.

G.4 Numerical results for sample complexity

Table 2: Statistics (mean ± standard deviation rounded up to the next integer) for Experiment (A).
Names are similar to those in the first two leftmost plots of Figure 1. Values are averaged across 500
iterations. LinGapE is not δ-correct in the setting where ε = 5 (with δ = 0.05).

Sample complexity LinGapE MISLID

ε = 0 577± 348 890± 546
ε = 5 553± 536 5, 156± 3, 629
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Table 3: Statistics (mean ± standard deviation rounded up to the next integer) for Experiments (D)
and (E). Names are similar to those in the plots of Figure 2. Values are averaged across 100 iterations.
Note that LinGapE is not δ-correct (with δ = 0.05) in Experiment E.

Sample complexity LinGapE MISLID

Experiment D 21, 593± 8, 296 42, 751± 13, 942
Experiment E 10, 907± 4, 474 289, 703± 185, 205

G.5 Tricks to reduce sample and computational complexity on large instances (D) and (E)

In large instances (more particularly on our real-life datasets in Section 5 in the main paper), the
number of arms can be large, and the theoretically supported version of the algorithm MISLID might
become too slow. Based on our experiments, we have decided to change some parts of the algorithm.

No optimism. As shown in the rightmost plot in Figure 1 in the main paper, empirical gains (i.e.,
without any optimistic bonus) actually considerably improve sample complexity.

Restriction of the set of arms used in the sampling rule. In order to compute the gains which are
fed to the learner, MISLID needs to compute the closest alternative, which implies solving m(K−m)
quadratic optimization problems, one for each pair of arms (i, j), with i among the m best arms and
j among the K −m worse arms (as defined in Theorem 1 in the main paper). We observed that
the majority of arms never realize the minimum over (i, j) of the distance to the alternative, and in
hindsight they could be ignored. We mimicked that behavior by only considering a subset of arms
at each step. We kept m + d arms in memory, consisting of the recent argmins i, j for the closest
alternative model, and sampled d more among the K −m worse arms. The resulting set of at most
m+ 2d arms is then used to compute the closest alternative. The gain in computational complexity
is large when K � d, since we solve m(m + 2d) minimization problems instead of m(K −m).
We don’t use that trick to compute the stopping rule, since we would not be guaranteed to preserve
δ-correctness.

Geometric grid for testing the stopping rule. Instead of checking the stopping criterion at each
learning round of the algorithm, we suggest testing it on a geometric grid (that is, testing it for the
first time at t1, and then retest it at γt1, then at γ2t1, etc. where 1 < γ ≤ 1.3 in practice), and restrict
the computation of the stopping rule to a random subset of arms. In our experiments, we have actually
used γ = 1.2. When using the geometric grid, we can obtain a sample complexity bound of the same
form as in Theorem 2 in the main paper, except that T0(δ) is replaced by γT0(δ).

Together, the sampling and stopping rule changes reduce the time needed to complete a run of the
algorithm by a factor 29 on Experiment (D), while increasing the sample complexity by a factor 1.2
(refer to Table 4, comparing algorithmic versions named “AdaHedge” and “Default”). See the middle
plot of Figure 3 for a comparison of the sample complexity.

Table 4: Statistics (mean ± standard deviation rounded up to the next integer) for Experiment (D),
with different versions of MISLID. Names are similar to those in the center plot of Figure 3. Values
are averaged across 100 iterations.

Per run AdaHedge Greedy Default

Average runtime (in sec.) 69± 20 76± 178 1, 993± 1, 311
Average sample complexity 51, 965± 15, 260 52, 108± 125, 230 42, 751± 13, 943

We have also tested another learner which is less conservative than AdaHedge, to check if this
improves sample complexity (note that we did not show any experiment using this trick in the main
paper):

Change of learner. We replace AdaHedge by a Greedy/Follow-The-Leader learner combination for
the computation of (ωt, λt).
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Figure 3: Comparison between default MISLID, modified MISLID using learner AdaHedge, and
modified MISLID using learner Greedy (Experiment (D) (left), Experiment (E)). Unfortunately, one
outlier in the runs using learner Greedy in Experiment (D), above 1, 200, 000 rounds, would prevent
the readability of the plot if figured. To overcome this issue, we have cropped out the y-axis above
200, 000 in this plot.

We have run three versions of MISLID on the dataset of Experiment (D): the default MISLID, the
modified version with learner AdaHedge, and another modified version with the Greedy learner. We
have also launched the latter two on Experiment (E). See Figure 3.
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