
CHARTING AND NAVIGATING THE SPACE OF
SOLUTIONS FOR RECURRENT NEURAL

NETWORKS
SUPPLEMENTARY MATERIAL

Elia Turner
Department of Mathematics

Technion, Israel Institute of Technology
eliaturner@campus.technion.ac.il

Kabir Dabholkar
Department of Mathematics

Technion, Israel Institute of Technology
kabir@campus.technion.ac.il

Omri Barak
Rappaport Faculty of Medicine and Network Biology Research Laboratory

Technion, Israel Institute of Technology
omri.barak@gmail.com

A python code for the figures and results is partially available at https://github.com/
eliaturner/space-of-solutions-RNN/.

1 Two-neuron RNN

1.1 Discrete and continuous solution manifolds in the linear two-neuron RNN

In this section, we analyze a simplified linear discrete-time version. This allows an analytical solution
of the weights required to perform the task and demonstrates the nature of the space of solutions. The
equations are now

xt+1 = Wxt (1)

x0 =

[
1
0

]
(2)

where W ∈ R2×2.

The task requires that xn =

[
0
1

]
. This can be solved either analytically (below) or numerically by

minimizing the following loss by running gradient descent on W from an initial W0:

L =

∥∥∥∥xn −
[
0
1

]∥∥∥∥
2

(3)

We observe that different random initializations converge to different points in the space of solutions.
In this document, we try to describe and visualize this space.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/eliaturner/space-of-solutions-RNN/
https://github.com/eliaturner/space-of-solutions-RNN/

1.1.1 The space of solutions

We need solutions to the following equations:[
0
1

]
= A

[
1
0

]
(4)

A = Wn (5)
This breaks down the problem into a feedforward problem of solving (4) for A and a recurrent
problem of solving (4) and (5) for W.

The space of solutions to the feedforward problem is simple:
A := {A ∈ R2×2 such that A11 = 0 and A21 = 1}. (6)

To solve the recurrent problem, we need to additionally find the nth real roots of A ∈ A if they exist.
For simplicity, we focus on a task of only two time steps n = 2.

1.1.2 Solutions of a two time step task

We begin by considering only nonsingularA (A12 6= 0 in this case). The existence and number of real
W (branches), such that A = W 2 is given by spectrum of A. If A has any real negative eigenvalues,
then there are no real solutions. If A has no real negative eigenvalues then A has 2r+c square roots
where r is number of real eigenvalues and c is the number of complex eigenpairs ((?) Theorem 7).

First we study the case of A with complex eigenvalues θ ± iµ with µ 6= 0.
AC = {A ∈ A such that Tr(A)2 − 4 det(A) < 0} (7)

= {A ∈ A and A2
22 + 4A12 < 0} (8)

A ∈ AC has 21 real roots given by W = ±(α1 + 1
2α (A− θ1)) where (α+ iβ)2 = θ + iµ. (Eq 4.6

in (?))

Next we identify the the As with eigendecomposition A = V

[
θ1 0
0 θ2

]
V −1 where the θis are real

and positive.

AR,>0 = {A ∈ A such that Tr(A)2 − 4 det(A) > 0 and Tr(A) >
√

Tr(A)2 − 4 det(A)} (9)

= {A ∈ A and A2
22 + 4A12 > 0 and A22 > 0 and A12 < 0} (10)

There are 22 real roots of A ∈ AR,>0 given by W = V

[
±
√
θ1 0

0 ±
√
θ2

]
V −1 taking each of the

four combinations of the ±s.

We numerically verify these statements by running gradient descent from random initialization
W

(i,j)
0 ∼ U(−3, 3). Figure 1 shows these solutions on the non-zero elements of the A matrix. The

left panel shows the continuous nature of the feed-forward problem. In contrast, the right panel shows
a highly non-uniform distribution, matching the regions predicted from the analysis above.

We see that while the feedforward problem has a plane of degeneracy, the recurrent problem has two
modes of degeneracy: firstly solutions fall somewhere in a subset of the same feedforward plane of
degeneracy and secondly, at each point on the plane the solution can fall on one of several branches.
While the first mode is continuous in nature, the second mode is disjoint.

1.1.3 Visualizing the Recurrent solutions

To visualize the branching of solutions in the recurrent problem we can plot them in 3D (Figure 2),
where the added axis of W11 allows us to see the multiple branches arising from square roots of A.

1.1.4 Dynamics in different regions

The above analysis indicated that the solution space can be divided into different regions. But are
solutions from these different regions also characterized by different dynamics? Figure 3 shows this
is indeed the case, by sampling solutions from the two regions and plotting their trajectories.

2

−1 1
A12

−1

1

A
2
2

A

−1 1
A12

−1

1

B

AR,>0

4 branches
AC

2 branches

Figure 1: Solutions of gradient descent from random initialization to the feedforward problem (A) and
the recurrent problem (B) in the space of A matrices. We only plot the two unconstrained elements
A12 and A22.

A12
−202 A 22

−2
0

2

W
1
1

−2

0

2

Figure 2: Space of solutions to the recurrent (n=2) problem in the space of the two unconstrained
elements of A: A12 and A22 and one element of W : W11. The surfaces are analytical solutions and
dots are solutions obtained numerically by gradient descent from random initial conditions.

3

−2 0 2
x(1)

−4

−2

0

2

x
(2

)

AR,>0

AC
x0

x2

Figure 3: Trajectories of recurrent solutions (n=2 time steps) from the two classes AC and AR,>0.

1.2 Nonlinear two-neuron RNN details and ReLU version

1.2.1 Training methods

The four parameters, W ∈ R2×2, were iid sampled from a uniform distribution U(−1.5, 1.5). We
implemented the continuous time dynamics of the RNN in PyTorch (1) using the package torchdiffeq
(2; 3) enabling the calculation of gradients ∂L

∂W using back-propagtion through time. We trained
parameters using Adam (4).

1.2.2 Different nonlinearity

To examine the effect of training hyperparameters on the space of solutions, we used φ := ReLU
instead of φ := tanh that was used in the main text. We find that this choice indeed leads to different
solution types. Specifically, ReLU RNNs did not converge to limit-cycle solutions. Some converged
to non-zero fixed points, accompanied by a saddle point at the origin, as in the main text. In addition,
two other solution types arose in this setting. A stable origin with large transient amplification, as in
the yellow curve of Figure 4), and a diverging trajectory, shown by the dark curve in the same figure.
The effect of the different non-linearity is also seen in the distribution of trace and determinants of
the solutions (Figure 5), where limit cycles are absent for ReLU, and stable solutions (bottom-right
quadrant) are present but uncommon for tanh.

2 Neuroscience Tasks

2.1 Training process

2.1.1 Network architecture

We studied three different RNN architectures and their exact equations are all summarized below.
The trained parameters are the weights W and biases b. The function σ(z) = (1 + exp(−z))−1 is
the sigmoid function, ht ∈ RN and ut ∈ {0, 1}2 are the state and the input at time t.

Vanilla (5)
ht = tanh (Wihut + bih +Whhht−1 + bhh) (11)

4

https://github.com/rtqichen/torchdiffeq

0

5

x 1
(t)

0 5 10 15 20
t

0

5

x 2
(t)

transient amplification
divergence

1 0 1
x1(t)

1

0

1

x 2
(t)

0.00

0.05

0.10

0.15

0.20

Im
(

1)

Figure 4: Trajectories of several 2D RNN solutions for φ := ReLU.

2 0 2 4
6

4

2

0

2

2 0 2 4
0

5

10

15

20

co
un

t

0

5

10

15

co
un

t

Figure 5: A 2D histogram of trace τ and determinant ∆ of W of the 2D RNN solutions for the task
specified in the main text. φ := tanh (left) and φ := ReLU (right).

GRU (6)
rt = σ (Wirut + bir +Whrht−1 + bhr) (12)
zt = σ (Wizut + biz +Whzht−1 + bhz) (13)
nt = tanh (Winut + bin + rt ∗ (Whnht−1 + bhn)) (14)
ht = (1− zt) ∗ nt + zt ∗ ht−1 (15)

LSTM (7)
it = σ (Wiiut + bii +Whiht−1 + bhi) (16)
ft = σ (Wifut + bif +Whfht−1 + bhf) (17)
gt = tanh (Wigut + big + rt ∗ (Whght−1 + bhg)) (18)
ot = σ (Wiout + bio +Whoht−1 + bho) (19)
ct = ft ∗ ct−1 + it ∗ gt (20)
ht = ot ∗ tanh(ct) (21)

The units had N = 20, . . . , 50 hidden neurons and the output of the network at every time-step is an
affine readout of the internal state. h0 was always initialized to zero.

2.1.2 Task and trial structure

In all of the trials below, there are two input channels, one for each input pulse, and one output
channel. Both inputs and the required output were binary sequences with ones during each pulse and

5

zero elsewhere. Each task is divided into seven epochs - before the first pulse, the first pulse, between
pulses, the second pulse, before output pulse, output pulse, and after output pulse.

Delayed Discrimination (8) The first pulse with amplitude f1 ∈ [2, 10] arrives after five steps. The
second input pulse with amplitude f1 ∈ [2, 10],where f1 6= f2 arrives after 5 + td, where td ∈ [0, 24].
After 15 additional steps, the network is supposed to respond with a five-steps output pulse with
amplitude sign(f2 − f1).

Interval Discrimination (9) The first pulse is given after t1 steps, where t1 ∈ [10, 30]. The second
pulse is given t2 steps after t1. Both pulses last for two steps and have unit amplitude. After 15
additional steps, the network is supposed to respond with two-steps output pulse with amplitude
sign(t1 − t2).

Interval Reproduction (10) The Ready pulse was given after 10− 20 steps. When working with
intervals from the range [tminin , tmaxin], the length of all trials was set to 2tmaxin + 100. This allowed
the network time to relax back to rest for at least 70 steps after emitting a Go pulse. All pulses were 5
steps long. For training tminin = 20 and tmaxin = 50

The training set always included 512 random trials so, on average, every interval was included more
than 5 times.

2.1.3 Training protocol

All networks were trained using Adam (4) for 10000 epochs with a batch size of 64 and a decaying
learning rate starting from 1e − 3 up until 1e − 5. Unless stated otherwise, the training set was
comprised of 512 trials and their order was shuffled at the beginning of each epoch. We estimated the
network’s performance with mean squared error (MSE), and training was halted when the minimal
threshold of 10−4 was achieved over the training set.

2.2 Reduced dynamics

As we discussed in the main text, defining what is a solution is not trivial. We follow the dynamical
system approach (11; 12) and wish to obtain a compact description of the dynamics of the network
and their relation to behavioral inputs and outputs. Previous work mostly focused on fixed points and
their vicinity (13; 14). Because transient dynamics are at the heart of some of the tasks studied here,
we opted for a different approach. To this end, we devised a tool that, given the network weights and
task inputs, builds a directed graph that captures the essence of the calculation, which we call reduced
dynamics. This process can be divided into two steps; representation of the dynamics as a directed
graph, and pruning all irrelevant information from it. We will describe each of these steps next.

2.2.1 Dynamics to Directed Graph

Each set of dynamical trajectories and input-driven transitions between them can be interpreted as
a directed graph, where each node holds a state and its corresponding readout as attributes, and
each edge is weighted according to the input it represents. However, this representation is highly
redundant because autonomous trajectories converge often to a lower-dimensional dynamical object.
Hence, a more exact graph representation of the dynamics would recognize trajectories at the point
of convergence as identical. Using this observation, we derived an iterative process to represent the
dynamics of a network faithfully with a graph:

1. Create a graph from the autonomous trajectory of the network, from a chosen initial state.

2. Inject task inputs to states at the appropriate locations (see below) and obtain the immediate
states afterward.

3. For each such state:

(a) Run the dynamics from an initial state until a cycle is found or the neural speed is low.
(b) Create a subgraph from that trajectory.
(c) Connect the subgraph to the graph by the appropriate edge.
(d) Try and merge the subgraph to other previously-existing branches.

6

There is a choice to make on how to collect candidate trajectories for this process. In principle, one
could follow the autonomous dynamics, and from each state inject every possible input, and follow
their outcome and so forth. Such a procedure can lead to an exponential increase in the number of
trajectories and is thus not feasible. We chose to extend the autonomous parts of trajectories beyond
those required by the task. The inputs, however, were only provided in a task-consistent manner.
For example, in the interval reproduction task, we gave only one Ready pulse and one Set pulse for
each trial. The product of this process is a directed graph that faithfully represents the dynamics and
contains the least information possible.

Branch-Merging The algorithm tries to match each new branch to the previously existing ones. If
the branch contains a cycle, it would be compared to all existing cyclic components. Otherwise, it
will be compared to non-cyclic components. In any case, for each such component, we estimate the
convergence-score of each pair of states, according to the formula:

score(h1t1 , h
2
t2) =

2
∥∥h1t1 − h2t2

∥∥
2

q(h1t1) + q(h2t2)
, h1t1 , h

2
t2 ∈ Rn

where we quantified the neural velocity in phase space (13) as

q(ht) = ‖ht+1 − ht‖2, t ∈ N (22)

Intuitively, the score measures the separation between trajectories using their velocity as the unit of
measurement. A lower score indicates a better chance for convergence. By storing all such pairs in a
matrix, we can look for sub-lower diagonals that contain values below a threshold as an appropriate
candidate. In the end, the chosen branch will have the earliest connection point with the new branch.
Importantly, the threshold can be tuned and used for different purposes - a lower threshold would
generally lead to a higher resolution of the dynamics, and vice versa.

2.2.2 Full dynamics graph to a reduced dynamics graph

In this part, we remove parts from the graph iteratively until we reach an irreducible representation
that contains the essence of the computation. To achieve this, we created a list of rules that operate on
a local level - structures of up to four nodes. Each rule specifies a different condition under which a
structure can be compressed, without causing information loss. The main rules are shown in Figure 6,
and the exact implementation is deposited in the accompanying code. Stages of the process are shown
for a specific network in Figure 7. Note that this is not a lossless compression; Some properties of
the solution do not remain in the final form. For instance, the temporal distance between different
states is eliminated. For the interval reproduction task, this does not allow to "see" the logic of the
task from the graph, but it does allow to differentiate the major solution categories as described in the
main text. The rules can be modified to include such information, and in general, the set of rules is
flexible so that the user can define what type of information will remain in the final product.

2.3 Feature extraction

As described in the main text, we extracted various features from the neural activity from zero-input
epochs within the training set. These were related to the major dynamical objects and task epochs.
For each task, epochs corresponding to one- or two- dimensional manifolds were extracted as detailed
below.

Interval reproduction task We extracted the 1D trajectory between Ready and Set (until tmaxin)
that is shared across trials, and a 2D manifold by extracting for each task parameter tin its following
Set-Go trajectory and combining the results.

Interval discrimination task We extracted the 1D trajectory during the first interval (until tmax1)
that is shared across trials, and a 2D manifold by extracting for each task parameter t1 the activity
during the interval that follows it and combining the results.

7

Any node

Zero node

Output node

Zero edge

Nonzero edge

And/or

Figure 6: Reduced-dynamics rules

Delayed discrimination We extracted for each task parameter (f1) the trajectory during the delay
that follows it, and combined the results into a 2D manifold. The two trajectories between the second
pulse and the output of the network corresponding to (10, 2) and (2, 10). In total one 2D object and
two 1D objects. We extracted features from each 1D trajectory, from each 2D manifold, and similarity
measures between pairs of 1D and 2D objects.

1D features The shape of a trajectory can indicate whether the network will eventually converge to
a limit cycle. We thus considered the minimal and maximal curvature, the speed at its end, and the
ratio between its initial and final speed. All these features were measured on a logarithmic scale.

2D features Because this is a 2D manifold (time by trials), we calculated the aspect ratio as follows.
The nominator was the cumulative length of the trajectory corresponding to the initial states across
all trials. The denominator was the length of the full trajectory of the longest trial. Similarly, we
extracted the aspect ratio to the final states of the manifold. Later, we calculated how the length of

8

Figure 7: Stages of reduced-dynamics applied to an example network

each trajectory within the manifold changes as a function of the task parameter (p) it corresponds to,
by fitting a linear regressor to the mapping p→ ||Manifold(p)||22 and extracting its slope as a feature.
For each trajectory within the manifold, we left out the first and last five time steps.

Cross epoch features Here, we focused on the relationship between the trajectory of the one-
dimensional epoch and the longest trajectory out of the 2D epoch. We extracted as features the
Pearson correlation and the angle between them, the ratio between their speeds, and the margin of
their separating hyper-plane obtained from Linear SVM.

2.4 Different views of same object

To see whether the neural data from the training set contains information about the topology of
the networks, we evaluated the ability of the neural features to predict the reduced dynamics we
described earlier. This was done by a cross-validation procedure that included 50 repetitions of fitting
a Random-Forest classifier to a randomly selected 90% training set of the networks. We evaluate the
Kappa-Cohen score (15) and the confusion matrix of the classification on the remaining 10%. The
results of averaging across all repetitions appear on Figures 8 to 11 and in the main text.

3 Variability in Context-dependent integration

Not all tasks display qualitative variability (14). Even without such variability, there can be substantial
quantitative variability. Here we highlight several features of such variability (Figure 12).

We train several independently initialized vanilla (11) networks on the context-dependent integration
(CDI) task, following the task protocol from (14). All networks form an approximate line attractor
(14). For each network, we inject zero channel input along with one of the context, and thus allow

9

=0.46

predicted

tr
ue

0.0

0.2

0.4

0.6

0.8

1.0

f 1 f 1 f 1 f 1 f 1 f 1 f 1

Reduced-Dynamics type
0

20

40

60

80

100

co
un

t

69%

Figure 8: The space of solutions for the delayed discrimination task. A Representative extrapolation
plots (top) and reduced dynamics graphs (bottom) for the eight most common solution types. B
Distribution of solution types for the 400 networks trained. The eight solutions shown account for
69% of the networks. C Neural features obtained during the training set can partially predict the
solution type that includes extrapolation dynamics. The confusion matrix shows the result of this
prediction.

the network to converge to the origin of the line attractor (13). Following previous works, we analyze
the linearized system around this point. We characterize the network with the following neural
measurements.

1. Participation ratio (PR) at t=3: to the linearized system, we deliver an input ut ∼ N (0, 1)
for t consecutive time steps and compute the participation-ratio, a measure of linear dimen-
sionality defined as (

∑
i λi)

2∑
i λ

2
i

where the λis are the eigenvalues of Ct =< hth
T
t >trials of the

network hidden-state at time t across several trials.

2. Decoder MSE k=3: to the linearized system, we deliver ut ∼ N (0, 1) for T = 30 time
steps and we perform linear regression to decode uT−k from hT . We use the decoder MSE
as a proxy measure for information held by the network about previous inputs.

3. ‖l0‖: norm of the left eigenvector of the linearized system corresponding to eigenvalue with
the largest absolute value, i.e the selection vector (16).

4. ρ(w
(0)
in , r0): Correlation of input weight vector win with the right eigenvector of the lin-

earized system corresponding to eigenvalue with the largest absolute value, i.e. the direction
along the line attractor (16).

10

t2

t 1

t2

t 1

t2

t 1

t2

t 1

predicted

tr
ue

0.0

0.2

0.4

0.6

0.8

1.0
=0.45

Reduced-Dynamics type
0

20

40

60

80

100

120

140

co
un

t

88%

Figure 9: The space of solutions for the interval discrimination task. A Representative extrapolation
plots (left) and reduced dynamics graphs (right) for the four most common solution types. B
Distribution of solution types for the 400 networks trained. The four solutions shown account for
88% of the networks. C Neural features obtained during the training set can partially predict the
solution type that includes extrapolation dynamics. According to the confusion matrix, the classifier
is able to discriminate solutions that contain limit cycles from the ones which do not.

5. Second largest |λi|: Eigenvalue of linearized recurrent dynamics with second largest absolute
value.

Figure 12 shows each of these neural measures compared to each other.

In addition we evaluate several behavioral measures. We run the networks on a selection of designed
inputs. In all cases, we provide input only along one of the channels along with the corresponding
context input. The five choices of channel inputs are shown in the top row of Figure 13 (A,B,C,D,E).
The inputs are designed such that integral is zero at the end, to facilitate visualization of the error In
each case we evaluate MSE of the output from the target of zero. We then compare this MSE with
training MSE and the aforementioned neural measurements for each of the networks.

Our neural and behavioral measures indicate a large degree of quantitative variability across networks.
The measurements are only weakly correlated to each other, showing that there are many axes of
variability. We note that even for networks with very low training MSE, there is still considerable
variability in the behavioral challenges (the horizontal nature of the second row of Figure 13). We
note, however, that extensive training results in step-like decreases in the training MSE. These steps

11

Time in trial

t in

Time in trial

t in

Time in trial

t in

Time in trial

t in

Time in trial

t in

predicted

tr
ue

0.0

0.2

0.4

0.6

0.8

1.0
=0.61

Reduced-Dynamics type
0

20

40

60

80

100

120

co
un

t 87%

Figure 10: The space of solutions for the time reproduction task, for GRU networks. A Representative
extrapolation plots (left) and reduced dynamics graphs (right) for the five most common solution
types. B Distribution of solution types for the 400 networks trained. The five solutions shown account
for 87% of the networks. C Neural features obtained during the training set can partially predict the
solution type that includes extrapolation dynamics. The confusion matrix shows the result of this
prediction.

are accompanied by a reduction in the variability of the behavioral challenges, but the latter variability
remains much larger for all cases.

References
[1] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch.”

[2] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary
differential equations,” in Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31.
Curran Associates, Inc. [Online]. Available: https://proceedings.neurips.cc/paper/2018/file/
69386f6bb1dfed68692a24c8686939b9-Paper.pdf

[3] R. T. Q. Chen, B. Amos, and M. Nickel. Learning Neural Event Functions for Ordinary
Differential Equations. [Online]. Available: http://arxiv.org/abs/2011.03902

[4] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. [Online]. Available:
http://arxiv.org/abs/1412.6980

[5] J. L. Elman, “Finding Structure in Time,” vol. 14, no. 2, pp. 179–211. [Online]. Available:
http://doi.wiley.com/10.1207/s15516709cog1402_1

[6] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural

12

https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
http://arxiv.org/abs/2011.03902
http://arxiv.org/abs/1412.6980
http://doi.wiley.com/10.1207/s15516709cog1402_1

t in
t in

t in
t in

Time in trial

t in
Time in trial

Time in trial

Time in trial

Time in trial

Reduced-Dynamics type

co
un

t

predicted

tr
ue

0.0

0.2

0.4

0.6

0.8

1.0
=0.52

0

20

40

60

80

100

120

140

87%

Reduced-Dynamics type
0

20

40

60

80

100

120

140

co
un

t

87%

Figure 11: The space of solutions for the time reproduction task, for LSTM networks. A Representa-
tive extrapolation plots (left) and reduced dynamics graphs (right) for the five most common solution
types. B Distribution of solution types for the 400 networks trained. The five solutions shown account
for 87% of the networks. C Neural features obtained during the training set can partially predict the
solution type that includes extrapolation dynamics. The confusion matrix shows the result of this
prediction.

Language Processing (EMNLP). Association for Computational Linguistics, pp. 1724–1734.
[Online]. Available: http://aclweb.org/anthology/D14-1179

[7] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” vol. 9, no. 8, pp. 1735–1780.
[Online]. Available: https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735

[8] R. Romo, C. D. Brody, A. Hernández, and L. Lemus, “Neuronal correlates of parametric
working memory in the prefrontal cortex,” vol. 399, no. 6735, pp. 470–473. [Online]. Available:
http://www.nature.com/articles/20939

[9] Z. Bi and C. Zhou, “Understanding the computation of time using neural network models,” vol.
117, no. 19, pp. 10 530–10 540. [Online]. Available: http://www.pnas.org/lookup/doi/10.1073/
pnas.1921609117

[10] M. Jazayeri and M. N. Shadlen, “Temporal context calibrates interval timing,” vol. 13, no. 8, pp.
1020–1026. [Online]. Available: http://www.nature.com/articles/nn.2590

[11] S. Vyas, M. D. Golub, D. Sussillo, and K. V. Shenoy, “Computation Through
Neural Population Dynamics,” vol. 43, no. 1, pp. 249–275. [Online]. Available:
https://www.annualreviews.org/doi/10.1146/annurev-neuro-092619-094115

[12] O. Barak, “Recurrent neural networks as versatile tools of neuroscience research,” vol. 46, pp.
1–6. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0959438817300429

[13] D. Sussillo and O. Barak, “Opening the Black Box: Low-Dimensional Dynamics in
High-Dimensional Recurrent Neural Networks,” vol. 25, no. 3, pp. 626–649. [Online].
Available: https://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00409

13

http://aclweb.org/anthology/D14-1179
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
http://www.nature.com/articles/20939
http://www.pnas.org/lookup/doi/10.1073/pnas.1921609117
http://www.pnas.org/lookup/doi/10.1073/pnas.1921609117
http://www.nature.com/articles/nn.2590
https://www.annualreviews.org/doi/10.1146/annurev-neuro-092619-094115
https://linkinghub.elsevier.com/retrieve/pii/S0959438817300429
https://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00409

10−1

1.2

1.4

1.6

1.8

P
R

at
t=

3

10−1

0.2

0.4

0.6

0.8

D
ec

o
d

er
M

S
E

k
=

3

1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

10−1

4

6

8

10

||l
0
||

1.2 1.4 1.6 1.8

4

6

8

10

0.2 0.4 0.6 0.8

4

6

8

10

10−1

0.2

0.4

0.6

0.8

ρ
(w

(0
)

in
,r

0
)

1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

4 6 8 10

0.2

0.4

0.6

0.8

10−1

Train MSE

0.2

0.3

0.4

0.5

0.6

S
ec

on
d

la
rg

es
t
|λ
i|

1.2 1.4 1.6 1.8

PR at t=3

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8

Decoder MSE k=3

0.2

0.3

0.4

0.5

0.6

4 6 8 10

||l0||

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6 0.8

ρ(w
(0)
in , r0)

0.2

0.3

0.4

0.5

0.6

Figure 12: Comparison of neural measurements along with training MSE loss against each other
across independently initialized Vanilla networks (25,30,35 hidden units) networks trained on context
dependent integration (CDI) task.(16; 14) Each dot corresponds to measurements on a single network.

[14] N. Maheswaranathan, A. Williams, M. Golub, S. Ganguli, and D. Sussillo, “Universality
and individuality in neural dynamics across large populations of recurrent networks,”
in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., pp. 15 629–15 641. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf

[15] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational and Psychological
Measurement, vol. 20, no. 1, pp. 37–46, Apr. 1960.

[16] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, “Context-dependent computation by
recurrent dynamics in prefrontal cortex,” vol. 503, no. 7474, pp. 78–84. [Online]. Available:
http://www.nature.com/articles/nature12742

14

https://proceedings.neurips.cc/paper/2019/file/5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf
http://www.nature.com/articles/nature12742

−2

2

In
p

u
t

A

0 10 20 30

time steps

−2.5

0.0

2.5

O
u

tp
u

t

10−3

10−2

10−1

100

T
ra

in
M

S
E

1.2

1.4

1.6

1.8

P
R

at
t=

3

0.2

0.4

0.6

0.8

D
ec

o
d

er
M

S
E

k
=

3

4

6

8

10

||l
0
||

0.2

0.4

0.6

0.8

ρ
(w

(0
)

in
,r

0
)

10−2 100

Etrials 1
10(
∑30

t=20 yt)
2

0.2

0.3

0.4

S
ec

on
d

la
rg

es
t
|λ
i|

−2

2

B

0 10 20 30

−2.5

0.0

2.5

10−3

10−2

10−1

100

1.2

1.4

1.6

1.8

0.2

0.4

0.6

0.8

4

6

8

10

0.2

0.4

0.6

0.8

10−2 100

Etrials 1
10(
∑30

t=20 yt)
2

0.2

0.3

0.4

−2

2

C

0 10 20 30

−2.5

0.0

2.5

10−3

10−2

10−1

100

1.2

1.4

1.6

1.8

0.2

0.4

0.6

0.8

4

6

8

10

0.2

0.4

0.6

0.8

10−2 100

Etrials 1
10(
∑30

t=20 yt)
2

0.2

0.3

0.4

−2

2

D

0 10 20 30

−2.5

0.0

2.5

10−3

10−2

10−1

100

1.2

1.4

1.6

1.8

0.2

0.4

0.6

0.8

4

6

8

10

0.2

0.4

0.6

0.8

10−2 100

Etrials 1
10(
∑30

t=20 yt)
2

0.2

0.3

0.4

−2

2

E

0 10 20 30

−2.5

0.0

2.5

10−3

10−2

10−1

100

1.2

1.4

1.6

1.8

0.2

0.4

0.6

0.8

4

6

8

10

0.2

0.4

0.6

0.8

10−2 100

Etrials 1
10(
∑30

t=20 yt)
2

0.2

0.3

0.4

Figure 13: Comparison of neural and behavioral measurements for RNNs trained on CDI (see
Figure 12 for details about the colors). We run the networks on five different input protocols, one in
each of the columns A,B,C,D,E. First two rows show example inputs and outputs/targets for each
of the tasks. Rows 3 to 8 show behavioral MSE for each task versus the neural measurements from
Figure 12 wherein each dot indicates measurements for a single network.

15

	Two-neuron RNN
	Discrete and continuous solution manifolds in the linear two-neuron RNN
	The space of solutions
	Solutions of a two time step task
	Visualizing the Recurrent solutions
	Dynamics in different regions

	Nonlinear two-neuron RNN details and ReLU version
	Training methods
	Different nonlinearity

	Neuroscience Tasks
	Training process
	Network architecture
	Task and trial structure
	Training protocol

	Reduced dynamics
	Dynamics to Directed Graph
	Full dynamics graph to a reduced dynamics graph

	Feature extraction
	Different views of same object

	Variability in Context-dependent integration

