
Canonical Capsules:
Self-Supervised Capsules in Canonical Pose

Weiwei Sun1,4,⇤ Andrea Tagliasacchi2,3,⇤ Boyang Deng3 Sara Sabour2,3

Soroosh Yazdani3 Geoffrey Hinton2,3 Kwang Moo Yi1,4

1University of British Columbia, 2University of Toronto,
3Google Research, 4University of Victoria, ⇤equal contributions

https://canonical-capsules.github.io

Abstract

We propose a self-supervised capsule architecture for 3D point clouds. We compute
capsule decompositions of objects through permutation-equivariant attention, and
self-supervise the process by training with pairs of randomly rotated objects. Our
key idea is to aggregate the attention masks into semantic keypoints, and use these
to supervise a decomposition that satisfies the capsule invariance/equivariance prop-
erties. This not only enables the training of a semantically consistent decomposition,
but also allows us to learn a canonicalization operation that enables object-centric
reasoning. To train our neural network we require neither classification labels nor
manually-aligned training datasets. Yet, by learning an object-centric representa-
tion in a self-supervised manner, our method outperforms the state-of-the-art on
3D point cloud reconstruction, canonicalization, and unsupervised classification.

1 Introduction

Understanding objects is one of the core problems of computer vision [32, 14, 38]. While this
task has traditionally relied on large annotated datasets [42, 22], unsupervised approaches that
utilize self-supervision [5] have emerged to remove the need for labels. Recently, researchers have
attempted to extend these methods to work on 3D point clouds [59], but the field of unsupervised 3D
learning remains relatively uncharted. Conversely, researchers have been extensively investigating
3D deep representations for shape auto-encoding1 [61, 19, 33, 16], making one wonder whether these
discoveries can now benefit from unsupervised learning for tasks other than auto-encoding.

Importantly, these recent methods for 3D deep representation learning are not entirely unsupervised.
Whether using point clouds [61], meshes [19], or implicits [33], they owe much of their success
to the bias within the dataset that was used for training. Specifically, all 3D models in the popular
ShapeNet [3] dataset are “object-centric” – they are pre-canonicalized to a unit bounding box, and,
even more importantly, with an orientation that synchronizes object semantics to Euclidean frame
axes (e.g. airplane cockpit is always along +y, car wheels always touch z = 0). Differentiable
3D decoders are heavily affected by the consistent alignment of their output with an Euclidean
frame [8, 16] as local-to-global transformations cannot be easily learnt by fully connected layers.
As we will show in Section 4.2, these methods fail in the absence of pre-alignment, even when data

1Auto-encoding is also at times referred to as “reconstruction” or “shape-space” learning.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.

https://canonical-capsules.github.io

augmentation is used. A concurrent work [45] also recognizes this problem and proposes a separate
learnt canonicalizer, which is shown helpful in downstream classification tasks.

In this work, we leverage the modeling paradigm of capsule networks [23]. In capsule networks,
a scene is perceived via its decomposition into part hierarchies, and each part is represented with
a (pose, descriptor) pair: 1� The capsule pose specifies the frame of reference of a part, and hence
should be transformation equivariant; 2� The capsule descriptor specifies the appearance of a part,
and hence should be transformation invariant. Thus, one does not have to worry how the data is
oriented or translated, as these changes can be encoded within the capsule representation.

We introduce Canonical Capsules, a novel capsule architecture to compute a K-part decomposition
of a point cloud. We train our network by feeding pairs of a randomly rotated/translated copies
of the same shape (i.e. siamese training) hence removing the requirement of pre-aligned training
datasets. We then decompose the point cloud by assigning each point into one of the K parts via
attention, which we aggregate into K keypoints. Equivariance is then enforced by requiring the two
keypoint sets to only differ by the known (relative) transformation (i.e. a form of self-supervision).
For invariance, we simply ask that the descriptors of each keypoint of the two instances match.

With Canonical Capsules, we exploit our decomposition to recover a canonical frame that allows
unsupervised “object-centric” learning of 3D deep representations without requiring a semantically
aligned dataset. We achieve this task by regressing canonical capsule poses from capsule descriptors
via a deep network, and computing a canonicalizing transformation by solving a shape-matching
problem [44]. This not only allows more effective shape auto-encoding, but our experiments confirm
this results in a latent representation that is more effective in unsupervised classification tasks. Note
that, like our decomposition, our canonicalizing transformations are also learnt in a self-supervised
fashion, by only training on randomly transformed point clouds.

Contributions. In summary, in this paper we:

• propose an architecture for 3D self-supervised learning based on capsule decomposition;
• enable object-centric unsupervised learning by introducing a learned canonical frame of reference;
• achieve state-of-the-art performance 3D point cloud auto-encoding/reconstruction, canonicalization,

and unsupervised classification.

2 Related works

Convolutional Neural Networks lack equivariance to rigid transformations, despite their pivotal role
in describing the structure of the 3D scene behind a 2D image. One promising approach to overcome
this shortcoming is to add equivariance under a group action in each layer [49, 9]. In our work, we
remove the need for a global SE(3)-equivariant network by canonicalizing the input.

Capsule Networks. Capsule Networks [23] have been proposed to overcome this issue towards a
relational and hierarchical understanding of natural images. Of particular relevance to our work,
are methods that apply capsule networks to 3D input data [64, 65, 46], but note these methods are
not unsupervised, as they either rely on classification supervision [65], or on datasets that present
a significant inductive bias in the form of pre-alignment [64]. In this paper, we take inspiration
from the recent Stacked Capsule Auto-Encoders [30], which shows how capsule-style reasoning
can be effective as long as the primary capsules can be trained in a self-supervised fashion (i.e. via
reconstruction losses). The natural question, which we answer in this paper, is “How can we engineer
networks that generate 3D primary capsules in an unsupervised fashion?”

Deep 3D representations. Reconstructing 3D objects requires effective inductive biases about
3D vision and 3D geometry. When the input is images, the core challenge is how to encode 3D
projective geometry concepts into the model. This can be achieved by explicitly modeling multi-view
geometry [28], by attempting to learn it [13], or by hybrid solutions [60]. But even when input is 3D,
there are still significant challenges. It is still not clear which is the 3D representation that is most
amenable to deep learning. Researchers proposed the use of meshes [53, 31], voxels [54, 55], surface
patches [19, 12, 10], and implicit functions [35, 33, 7]. Unfortunately, the importance of geometric
structures (i.e. part-to-whole relationships) is often overlooked. Recent works have tried to close
this gap by using part decomposition consisting of oriented boxes [50], ellipsoids [17, 16], convex
polytopes [11], and grids [2]. However, as previously discussed, most of these still heavily rely on a

2

Figure 1: Framework – We learn a capsule encoder for 3D point clouds by relating the decomposi-
tion result of two random rigid transformations Ta and T

b, of a given point cloud, i.e., a Siamese
training setup. We learn the parameters of an encoder E , a per-capsule decoder Dk, as well as a
network that represents a learnt canonical frame K. For illustrative purposes, we shade-out the outputs
that do not flow forward, and with ⌃ summarize the aggregations in (2).

pre-aligned training dataset; our paper attempts to bridge this gap, allowing learning of structured 3D
representations without requiring pre-aligned data.

Canonicalization. One way to circumvent the requirement of pre-aligned datasets is to rely on meth-
ods capable of registering a point cloud into a canonical frame. The recently proposed CaSPR [39]
fulfills this premise, but requires ground-truth canonical point clouds in the form of normalized
object coordinate spaces [52] for supervision. Similarly, [20] regresses each view’s pose relative
to the canonical pose, but still requires weak annotations in the form of multiple partial views.
C3DPO [34] learns a canonical 3D frame based on 2D input keypoints. In contrast to these methods,
our solution is completely self-supervised. The concurrent Compass [45] also learns to canonicalize
in a self-supervised fashion, but as the process is not end-to-end, this results in a worse performance
than ours, as it will be shown in Section 4.3.

Registration. Besides canonicalization, many pairwise registration techniques based on deep learning
have been proposed (e.g. [56, 63]), even using semantic keypoints and symmetry to perform the
task [15]. These methods typically register a pair of instances from the same class, but lack the ability
to jointly and consistently register all instances to a shared canonical frame.

3 Method

Our network trains on unaligned point clouds as illustrated in Figure 1: we train a network that
decomposes point clouds into parts, and enforce invariance/equivariance through a Siamese training
setup [48]. We then canonicalize the point cloud to a learnt frame of reference, and perform auto-
encoding in this coordinate space. The losses employed to train E , K, and D, will be covered
in Section 3.1, while the details of their architecture are in Section 3.2.

Decomposition. In more detail, given a point cloud P 2 RP⇥D of P points in D dimensions (in
our case D=3), we perturb it with two random transformations Ta,Tb 2 SE(D) to produce point
clouds Pa,Pb. We then use a shared permutation-equivariant capsule encoder E to compute a K-fold
attention map A 2 RP⇥K for K capsules, as well as per-point feature map F 2 RP⇥C with C
channels:

A,F = E(P) , (1)

where we drop the superscript indexing the Siamese branch for simplicity. From these attention
masks, we then compute, for the k–th capsule its pose ✓k 2 R3 parameterized by its location in 3D
space, and the corresponding capsule descriptor �k 2 RC :

✓k =

P
p Ap,kPpP
p Ap,k

, �k =

P
p Ap,kFpP
p Ap,k

. (2)

Hence, as long as E is invariant w.r.t. rigid transformations of P, the pose ✓k will be transformation
equivariant, and the descriptor �k will be transformation invariant. Note that this simplifies the design
(and training) of the encoder E , which only needs to be invariant, rather than equivariant [49, 46].

Canonicalization. Simply enforcing invariance and equivariance with the above framework is not
enough to learn 3D representations that are object-centric, as we lack an (unsupervised) mechanism to
bring information into a shared “object-centric” reference frame. Furthermore, the “right” canonical

3

frame is nothing but a convention, thus we need a mechanism that allows the network to make a
choice – a choice, however, that must then be consistent across all objects. For example, a learnt
canonical frame where the cockpit of airplanes is consistently positioned along +z is just as good as
a canonical frame where it is positioned along the +y axis. To address this, we propose to link the
capsule descriptors to the capsule poses in canonical space, that is, we ask that objects with similar
appearance to be located in similar Euclidean neighborhoods in canonical space. We achieve this
by regressing canonical capsules poses (i.e. canonical keypoints) ✓̄ 2 RK⇥3 using the descriptors
� 2 RK⇥C via a fully connected deep network K:

✓̄ = K (�) (3)

Because fully connected layers are biased towards learning low-frequency representations [27], this
regressor also acts as a regularizer that enforces semantic locality.

Auto-encoding. Finally, in the learnt canonical frame of reference, to train the capsule descriptors
via auto-encoding, we reconstruct the point clouds with per-capsule decoders Dk:

P̃ = [k

�
Dk(R̄✓k + t̄,�k)

, (4)

where [denotes the union operator. The canonicalizing transformation T̄ = (R̄, t̄) can be readily
computed by solving a shape-matching problem [44], thanks to the property that our capsule poses
and regressed keypoints are in one-to-one correspondence:

R̄, t̄ = argmin
R,t

1

K

X

k

k(R✓k + t)� ✓̄kk22 . (5)

While the reconstruction in (4) is in canonical frame, note it is trivial to transform the point cloud
back to the original coordinate system after reconstruction, as the transformation T̄

�1 is available.

3.1 Losses

As common in unsupervised methods, our framework relies on a number of losses that control the
different characteristics we seek to obtain in our representation. Note none of these losses require
ground truth labels. We organize the losses according to the portion of the network they supervise:
decomposition, canonicalization, and reconstruction.

Decomposition. While a transformation invariant encoder architecture should be sufficient to
achieve equivariance/invariance, this does not prevent the encoder from producing trivial solu-
tions/decompositions once trained. As capsule poses should be transformation equivariant, the poses
of the two rotation augmentations ✓a

k and ✓b
k should only differ by the (known) relative transformation:

Lequivariance =
1

K

X

k

k✓a
k � (Ta)(Tb)�1✓b

kk22 . (6)

Conversely, capsule descriptors should be transformation invariant, and as the two input points clouds
are of the same object, the corresponding capsule descriptors � should be identical:

Linvariance =
1

K

X

k

k�a
k � �b

kk22 . (7)

We further regularize the capsule decomposition to ensure each of the K heads roughly represent the
same “amount” of the input point cloud, hence preventing degenerate (zero attention) capsules. This
is achieved by penalizing the attention variance:

Lequilibrium =
1

K

X

k

kak � 1
K⌃kakk22 , (8)

where ak = ⌃p(Ap,k) denotes the total attention exerted by the k-th head on the point cloud.

Finally, to facilitate the training process, we ask for capsules to learn a localized representation
of geometry. We express the spatial extent of a capsule by computing first-order moments of the
represented points with respect to the capsule pose ✓k:

Llocalization =
1

K

X

k

1
ak

X

p

Ap,kk✓k �Ppk22 . (9)

4

Canonicalization. To train our canonicalizer K, we relate the predicted capsule poses to regressed
canonical capsule poses via the optimal rigid transformation from (5):

Lcanonical =
1

K

X

k

k(R̄✓k + t̄)� ✓̄kk22 . (10)

Recall that R̄ and T̄ are obtained through a differentiable process. Thus, this loss is forcing the
aggregated pose ✓k to agree with the one that goes through the regression path, ✓̄k. Now, since ✓̄k is
regressed solely from the set of capsule descriptors, similar shapes will result in similar canonical
keypoints, and the coordinate system of ✓̄k is one that employs Euclidean space to encode semantics.

Reconstruction. To learn canonical capsule descriptors in an unsupervised fashion, we rely on an
auto-encoding task. We train the decoders {Dk} by minimizing the Chamfer Distance (CD) between
the (canonicalized) input point cloud and the reconstructed one, as in [61, 19]:

Lrecon = CD
⇣
R̄P+ t̄, P̃

⌘
. (11)

3.2 Network Architectures

We briefly summarize our implementation details, including the network architecture; for further
details, please refer to the supplementary material.

Encoder – E . Our architecture is based on the one suggested in [47]: a pointnet-like architecture
with residual connections and attentive context normalization. We utilize Batch Normalization [26]
instead of the Group Normalization [58], which trained faster in our experiments. We further extend
their method to have multiple attention maps, where each attention map corresponds to a capsule.

Decoder – D. The decoder from (4) operates on a per-capsule basis. Our decoder architecture is
similar to AtlasNetV2 [12] (with trainable grids). The difference is that we translate the per-capsule
decoded point cloud by the corresponding capsule pose.

Regressor – K. We concatenate the descriptors and apply a series of fully connected layers with
ReLU activation to regress the P capsule locations. At the output layer we use a linear activation and
subtract the mean of the outputs to make our regressed locations zero-centered in the canonical frame.

Canonicalizing the descriptors. As our descriptors are only approximately rotation invariant (via
Linvariance), we found it useful to re-extract the capsule descriptors �k after canonicalization. Specifi-
cally, we compute F̄ with the same encoder setup, but with P̄=R̄P+T̄ instead of P and use it to
compute �̄k; we validate this empirically in the supplementary material.

4 Results

We first discuss the experimental setup, and then validate our method on a variety of tasks: auto-
encoding, canonicalization, and unsupervised classification. While the task differs, our learning
process remains the same: we learn capsules by reconstructing objects in a learnt canonical frame. We
also provide an ablation study, which is expanded in detail in the supplementary material,
where we provide additional qualitative results.

4.1 Experimental setup

To evaluate our method, we rely on the ShapeNet (Core) dataset [3]2. We follow the category choices
from AtlasNetV2 [12], using the airplane and chair classes for single-category experiments, while for
multi-category experiments we use all 13 classes: airplane, bench, cabinet, car, chair, monitor, lamp,
speaker, firearm, couch, table, cellphone, and watercraft. To make our results most compatible with
those reported in the literature, we also use the same splits as in AtlasNetV2 [12]: 31747 shapes in
the train, and 7943 shapes in the test set. Unless otherwise noted, we randomly sample 1024 points
from the object surface for each shape to create our 3D point clouds.

De-canonicalizing the dataset. As discussed in the introduction, ShapeNet (Core) contains substan-
tial inductive bias in the form of consistent semantic alignment. To remove this bias, we create random

2Available to researchers for non-commercial research and educational use.

5

SE(3) transformations, and apply them to each point cloud. We first generate uniformly sampled
random rotations, and add uniformly sampled random translations within the range [�0.2, 0.2], where
the bounding volume of the shape ranges in [�1,+1]. Note the relatively limited translation range
is chosen to give state-of-the-art methods a chance to compete with our solution. We then use the
relative transformation between the point clouds extracted from this ground-truth transformation
to evaluate our methods. We refer to this unaligned version of the ShapeNet Core dataset as the
unaligned setup, and using the vanilla ShapeNet Core dataset as the aligned setup. For the aligned
setup, as there is no need for equivariance adaptation, we simply train our method without the random
transformations, and so Lequivariance and Linvariance are not used. This setup is to simply demonstrate
how Canonical Capsules would perform in the presence of a dataset bias.

We emphasize here that a proper generation of random rotation is important. While some existing
works have generated them by uniformly sampling the degrees of freedom of an Euler-angle repre-
sentation, this is known to be an incorrect way to sample random rotations [41], leading to biases in
the generated dataset; see the supplementary material.

Implementation details. For all our experiments we use the Adam optimizer [29] with an initial
learning rate of 0.001 and decay rate of 0.1. We train for 325 epochs for the aligned setup to match
the AtlasNetV2 [12] original setup. For the unaligned setting, as the problem is harder, we train for
a longer number of 450 epochs. We use a batch size of 16. The training rate is ⇠2.5 iters/sec. We
train each model on a single NVidia V100 GPU. Unless stated otherwise, we use k=10 capsules
and capsule descriptors of dimension C=128. We train three models with our method: two that are
single-category (i.e., for airplane and chairs), and one that is multi-category (i.e., all 13 classes). To
set the weights for each loss term, we rely on the reconstruction performance (CD) in the training set.
We set weights to be one for all terms except for Lequivariance (5) and Lequilibrium (10�3). In the aligned
case, because Lequivariance and Linvariance are not needed (always zero), we reduce the weights for the
other decomposition losses by 103; Llocalization to 10�3 and Lequilibrium to 10�6.

4.2 Auto-encoding – Figure 2 and Table 1

Table 1: Auto-encoding / quantitative – Per-
formance in terms of Chamfer distance with
1024 points per point cloud – metric is multi-
plied by 103 as in [12].

Method Airplane Chair Multi

A
lig

ne
d 3D-PointCapsNet [64] 1.94 3.30 2.49

AtlasNetV2 [12] 1.28 2.36 2.14
Our method 0.96 1.99 1.76

U
na

lig
ne

d 3D-PointCapsNet [64] 5.58 7.57 4.66
AtlasNetV2 [12] 2.80 3.98 3.08
AtlasNetV2 [12] w/ STN 1.90 2.99 2.60
Our method 1.11 2.58 2.22

We evaluate the performance of our method for the
task that was used to train the network – reconstruc-
tion / auto-encoding – against three baselines (trained
in both single-category and multi-category variants):
1� 3D-PointCapsNet [64], an auto-encoder for 3D
point clouds that utilize a capsule architecture; 2� At-
lasNetV2 [12], a state-of-the-art auto-encoder which
utilizes a multi-head patch-based decoder; 3� Atlas-
NetV2 [12] with a spatial-transformer network (STN)
aligner from PointNet [36], a baseline with canoni-
calization. We do not compare against [46], as unfor-
tunately source code is not publicly available.

Quantitative analysis – Table 1. We achieve state-of-the-art performance in both the aligned and
unaligned settings. The wider margin in the unaligned setup indicates tackling this more challenging
scenario damages the performance of AtlasNetV2 [12] and 3D-PointCapsNet [64] much more than
our method3. We also include a variant of AtlasNetV2 for which a STN (Spatial Transformer
Network) is used to pre-align the point clouds [36], demonstrating how the simplest form of pre-
aligner/canonicalizer is not sufficient.

Qualitative analysis – Figure 2. We illustrate our decomposition-based reconstruction of 3D
point clouds, as well as the reconstructions of 3D-PointCapsNet [64] and AtlasNetV2 [12]. As
shown, even in the unaligned setup, our method is able to provide semantically consistent capsule
decompositions – e.g. the wings of the airplane have consistent colours, and when aligned in the
canonical frame, the different airplane instances are well-aligned. Compared to AtlasNetV2 [12] and
3D-PointCapsNet [64], the reconstruction quality is also visibly improved: we better preserve details
along the engines of the airplane, or the thin structures of the bench; note also that the decompositions

3Results in this table differ slightly from what is reported in the original papers as we use 1024 points to
speed-up experiments throughout our paper. However, in the supplementary material the same trend
holds regardless of the number of points, and match with what is reported in the original papers with 2500 points.

6

Input Our capsule
decomposition

Our
reconstruction in
canonical frame

Our
reconstruction in

input frame

3D-PointCapsNet [64]
reconstruction

AtlasNetV2 [12]
reconstruction

Figure 2: Auto-encoding / qualitative – Example decomposition and reconstruction results setup
using Canonical Capsules on several unaligned point cloud instances from the test set. We color each
Canonical Capsule with a unique colour, and similarly color “patches” from the reconstruction heads
of 3D-PointCapsNet [64] and AtlasNetV2 [12]. Canonical Capsules provide semantically consistent
decomposition that is aligned in canonical frame, leading to improved reconstruction quality.

are semantically consistent in our examples. Results are better appreciated in our supplementary
material, where we visualize the performance as we continuously traverse SE(3).

4.3 Canonicalization – Table 2

We compare against three baselines: 1� Deep Closest Points [56], a deep learning-based pairwise
point cloud registration method; 2� DeepGMR [63] a state-of-the-art pairwise registration method
that decomposes clouds into Gaussian mixtures and utilizes Rigorously Rotation-Invariant (RRI)
features [4]; 3� Compass [45] a concurrent work on learnt alignment/canonicalization. For all
compared methods we use the official implementation. For DeepGMR we use both RRI and
the typical XYZ coordinates as input. We also try our method with the RRI features, following
DeepGMR’s training protocol and train for 100 epochs.

Metrics. To evaluate the canonicalization performance, we look into the stability of the canonicaliza-
tion – the shakiness shown in the videos in our supplementary material– represented as the
mean standard deviation of the rotations (mStd):

mStd =
1

n

Xn

i=1

r
1

m

Xm

j=1
(\(Rij ,Ri

mean))
2 , (12)

where \ is the angular distance between two rotation matrices [18, 62, 63], Rij is the rotation matrix
of the j-th instance of the i-th object in canonical frame, and R

i
mean is the mean rotation [21] of the

i-th object. Note that with mStd we measure the stability of canonicalization with respect to rotations
to accommodate for methods that do not deal with translation [45]. To allow for comparisons with
pairwise registration methods, we also measure performance in terms of the RMSE metric [63, 66].

Quantitative analysis – Table 2. Compared to Compass [45], our method provides improved
stability in canonicalization. This also provides an advantage in pairwise registration, delivering
state-of-the-art results when XYZ-coordinates are used. Note that while pairwise methods can align

7

Table 2: Canonicalization – Quantitative evaluation for canonicalization, where we highlight signifi-
cantly better performance than the concurrent work Compass [45]. While pairwise registration is
not our main objective, the global alignment frame created by our method still allows for effective
registration (on par, or better) than the state-of-the-art.

Canonicalization (mStd) # Pairwise registration (RMSE) #
Method Airplane Chair Multi Airplane Chair Multi

X
Y

Z-
co

or
d. Deep Closest Points [56] – – – 0.318 0.160 0.131

DeepGMR [63] – – – 0.079 0.082 0.077
Compass [45] 19.105 19.508 51.811 0.412 0.482 0.515
Our method 8.278 5.730 21.210 0.022 0.027 0.074

R
R

I DeepGMR [63] – – – 0.0001 0.0001 0.0001
Our method (unstable) (unstable) (unstable) 0.0006 0.0009 0.0016

two sets of given point clouds, creating a canonical frame that simultaneously registers all point
clouds is a non-trivial extension to the problem.

When RRI is used as input, our method is on par with DeepGMR [63], up to a level where registration
is near perfect – alignment differences when errors are in the 10�4 ballpark are indiscernible. We
note that the performance of Deep Closest Points [56] is not as good as reported in the original paper,
as we uniformly draw rotations from SO(3). When a sub-portion of SO(3) is used, e.g. a quarter
of what we are using, DCP performs relatively well (0.008 in the multi-class experiment). While
curriculum learning could be used to enhance the performance of DCP, our technique does not need
to rely on these more complex training techniques.

We further note that, while RRI delivers good registration performance, using RRI features cause
the learnt canonicalization to fail – training becomes unstable. This hints that RRI features may be
throwing away too much information to achieve transformation invariance. Our method using raw
XYZ coordinates as input, on the other hand, provides comparable registration performance, and is
able to do significantly more than just registration (i.e. classification, reconstruction).

4.4 Unsupervised classification – Table 3

Beyond reconstruction and canonicalization, we evaluate the usefulness of our method via a classifi-
cation task that is not related in any way to the losses used for training. We compute the features from
the auto-encoding methods from Section 4.2 against those from our method (where we build features
by combining pose with descriptors) to perform 13-way classification with two different techniques:

Table 3: Classification – Top-1 accuracy(%)
Method SVM K-Means

A
lig

ne
d 3D-PointCapsNet [64] 93.81 65.87

AtlasNetV2 [12] 94.07 61.66
Our method 94.21 69.82

U
na

lig
ne

d 3D-PointCapsNet [64] 71.13 14.59
AtlasNetV2 [12] 64.85 17.12
AtlasNetV2 [12] w/ STN 78.55 20.03
Our method 87.33 43.04

• We train a supervised linear Support Vector Ma-
chine (SVM) on the extracted features [1, Ch. 7];

• We perform unsupervised K-Means clustering [1,
Ch. 9] and then label each cluster via bipartite
matching with the actual labels through the Hun-
garian algorithm.

Note the former provides an upper bound for unsu-
pervised classification, while better performance on
the latter implies that the learnt features are able to
separate the classes into clusters that are compact (in an Euclidean sense).

Analysis of results – SVM. Note how our method provides best results in all cases, and when the
dataset is not unaligned the difference is significant. This shows that, while 3D-PointCapsNet and
AtlasNetV2 (with and without STN) are able to somewhat auto-encode point clouds in the unaligned
setup, what they learn does not translate well to classification. However, the features learned with
Canonical Capsules are more related to the semantics of the object, which helps classification.

Analysis of results – K-Means. The performance gap becomes wider when K-Means is used – even
in the aligned case. This could mean that the features extracted by Canonical Capsules are better
suited for other unsupervised tasks, having a feature space that is close to being Euclidean in terms of
semantics. The difference is striking in the unaligned setup. We argue that these results emphasize
the importance of the capsule framework – jointly learning the invariances and equivariances in the
data – is cardinal to unsupervised learning [25, 24].

8

Table 4: Effect of losses – Reconstruction perfor-
mance, and canonicalization performance when loss
terms are removed.

Full ¬Linvar ¬Lequiv ¬Lcanonical ¬Llocalization ¬Lequilibrium

CD 1.11 1.12 1.16 1.12 1.44 1.60
Std 8.278 9.983 110.174 8.421 113.204 92.970

Table 5: Backbone – Auto-encoding per-
formance (Chamfer distance) when we use
various permutation-invariant backbones.

PointNet PointNet++ DGCNN ACNe

CD 1.28 1.34 1.21 1.11

4.5 Ablation study

To make the computational cost manageable, we perform all ablations with the airplane category (the
category with most instances), and in the unaligned setup (unless otherwise noted). Please also see
supplementary material for more ablation studies.

Losses – Table 4. We analyze the importance of each loss term, with the exception of Lrecon which
is necessary for training. All losses beneficially contribute to reconstruction performance, but note
how Lequiv, Llocalization and Lequilibrium affect it to a larger degree. By considering our canonicalization
metric, we can motivate this outcome by observing that the method fails to perform canonicalization
when these losses are not employed (i.e. training collapses).

Encoder architecture – Table 5. Our method can be used with any backbone, as our main con-
tribution lies in the self-supervised canonicalization architecture. For completeness, we explore
variants of our method using different back-bones: PointNet [36], PointNet++ [37], DGCNN [57],
and ACNe [47]. Among these, the ACNe backbone performs best; note that all the variants in Table 5,
regardless of backbone choice, significantly outperforms all other methods reported in Table 1.

5 Conclusions

In this paper, we provide a self-supervised framework to train primary capsule decompositions for
3D point clouds. We rely on a Siamese setup that allows self-supervision and auto-encoding in
canonical space, circumventing the customary need to train on pre-aligned datasets. Despite being
trained in a self-supervised fashion, our representation achieves state-of-the-art performance across
auto-encoding, canonicalization and classification tasks. These results are made possible by allowing
the network to learn a canonical frame of reference. We interpret this result as giving our neural
networks a mechanism to construct a “mental picture” of a given 3D object – so that downstream
tasks are executed within an object-centric coordinate frame.

Future work. As many objects have natural symmetries that we do not consider at the moment [12],
providing our canonicalizer a way to encode such a prior is likely to further improve the representation.
We perform decomposition at a single level, and it would be interesting to investigate how to
effectively engineer multi-level decompositions [51]; one way could be to over-decompose the input
in a redundant fashion (with large K), and use a downstream layers that “selects” the decomposition
heads to be used [6]. We would also like to extend our results to more “in-the-wild” 3D computer
vision and understand whether learning object-centric representations is possible when incomplete
(i.e., single view [35] or occluded) data is given in input, when an entire scene with potentially
multiple objects is given [43], or where our measurement of the 3D world is a single 2D image [48],
or by exploiting the persistence of objects in video [40].

Broader impact. While our work is exclusively on 3D shapes, and thus not immediately subject
to any societal concerns, it enhances how Artificial Intelligence (AI) can understand and model 3D
geometry. Thus, similar to how image recognition could be misused, one should be careful when
extending the use of our method. In addition, while not subject to how the data itself is aligned, the
learnt canonical frame of our method is still data-driven, thus subject to any data collection biases
that may exist – canonicalization will favour shapes that appear more often. This should also be taken
into account with care to prevent any biased decisions when utilizing our method within a decision
making AI platform.

9

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant, NSERC Collaborative Research and Development Grant, Google, Com-
pute Canada, and Advanced Research Computing at the University of British Columbia.

References
[1] Christopher M Bishop. Pattern Recognition and Machine Learning. springer, 2006.
[2] Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard

Newcombe. Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction. In European
Conference on Computer Vision, 2020.

[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An Information-Rich 3D Model Repository.
arXiv Preprint, 2015.

[4] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng Wang, and Liang Lin. Clusternet: Deep
Hierarchical Cluster Network with Rigorously Rotation-Invariant Representation for Point Cloud Analysis.
In Conference on Computer Vision and Pattern Recognition, 2019.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for
Contrastive Learning of Visual Representations. International Conference on Machine Learning, 2020.

[6] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary space
partitioning. In Conference on Computer Vision and Pattern Recognition, 2020.

[7] Zhiqin Chen and Hao Zhang. Learning Implicit Fields for Generative Shape Modeling. In Conference on
Computer Vision and Pattern Recognition, 2019.

[8] Boyang Deng, JP Lewis, Timothy Jeruzalski, Gerard Pons-Moll, Geoffrey Hinton, Mohammad Norouzi,
and Andrea Tagliasacchi. NASA: Neural Articulated Shape Approximation. In European Conference on
Computer Vision, 2020.

[9] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas Guibas.
Vector neurons: a general framework for so(3)-equivariant networks, 2021.

[10] Zhantao Deng, Jan Bednařík, Mathieu Salzmann, and Pascal Fua. Better Patch Stitching for Parametric
Surface Reconstruction. arXiv Preprint, 2020.

[11] Deng, Boyang and Genova, Kyle and Yazdani, Soroosh and Bouaziz, Sofien and Hinton, Geoffrey and
Tagliasacchi, Andrea. CvxNet: Learnable Convex Decomposition. In Conference on Computer Vision and
Pattern Recognition, 2020.

[12] Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, and Mathieu Aubry.
Learning Elementary Structures for 3D Shape Generation and Matching. In Advances in Neural Information
Processing Systems, 2019.

[13] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A Point Set Generation Network for 3D Object Recon-
struction from a Single Image. In Conference on Computer Vision and Pattern Recognition, 2017.

[14] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A Discriminatively Trained, Multiscale,
Deformable Part Model. In Conference on Computer Vision and Pattern Recognition, 2008.

[15] Clara Fernandez-Labrador, Ajad Chhatkuli, Danda Pani Paudel, Jose J Guerrero, Cédric Demonceaux, and
Luc Van Gool. Unsupervised Learning of Category-Specific Symmetric 3D Keypoints from Point Sets. In
European Conference on Computer Vision, 2020.

[16] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Deep Structured
Implicit Functions. In Conference on Computer Vision and Pattern Recognition, 2020.

[17] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas Funkhouser.
Learning Shape Templates with Structured Implicit Functions. In International Conference on Computer
Vision, 2019.

[18] Zan Gojcic, Caifa Zhou, Jan D Wegner, Leonidas J Guibas, and Tolga Birdal. Learning multiview 3D point
cloud registration. In Conference on Computer Vision and Pattern Recognition, 2020.

[19] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A Papier-Mâché
Approach to Learning 3D Surface Generation. In Conference on Computer Vision and Pattern Recognition,
2018.

[20] Jiayuan Gu, Wei-Chiu Ma, Sivabalan Manivasagam, Wenyuan Zeng, Zihao Wang, Yuwen Xiong, Hao Su,
and Raquel Urtasun. Weakly-Supervised 3D Shape Completion in the Wild. In European Conference on
Computer Vision, 2020.

[21] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong Li. Rotation averaging. International Journal
of Computer Vision, 2013.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In Conference on Computer Vision and Pattern Recognition, 2016.

10

[23] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming Auto-Encoders. In International
Conference on Artificial Neural Networks, 2011.

[24] Geoffrey E Hinton and Kevin J Lang. Shape Recognition and Illusory Conjunctions. In International Joint
Conference on Artificial Intelligence, 1985.

[25] Geoffrey F Hinton. A Parallel Computation that Assigns Canonical Object-based Frames of Reference. In
International Joint Conference on Artificial Intelligence, 1981.

[26] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In International Conference on Machine Learning, 2015.

[27] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and Generaliza-
tion in Neural Networks. In Advances in Neural Information Processing Systems, 2018.

[28] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a Multi-View Stereo Machine. In Advances
in Neural Information Processing Systems, 2017.

[29] D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimisation. In International Conference on
Learning Representations, 2015.

[30] Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E Hinton. Stacked Capsule Autoencoders. In
Advances in Neural Information Processing Systems, 2019.

[31] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. Deformable Shape Completion with
Graph Convolutional Autoencoders. In Conference on Computer Vision and Pattern Recognition, 2018.

[32] David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of
Computer Vision, 60:91–110, 2004.

[33] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
Networks: Learning 3D Reconstruction in Function Space. In Conference on Computer Vision and Pattern
Recognition, 2019.

[34] David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, and Andrea Vedaldi. C3dpo: Canonical
3d pose networks for non-rigid structure from motion. In Conference on Computer Vision and Pattern
Recognition, 2019.

[35] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF:
Learning Continuous Signed Distance Functions for Shape Representation. In Conference on Computer
Vision and Pattern Recognition, 2019.

[36] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep Learning on Point Sets for 3D
Classification and Segmentation. In Conference on Computer Vision and Pattern Recognition, 2017.

[37] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space. Advances in Neural Information Processing Systems, 2017.

[38] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once: Unified,
Real-Time Object Detection. In Conference on Computer Vision and Pattern Recognition, 2016.

[39] Davis Rempe, Tolga Birdal, Yongheng Zhao, Zan Gojcic, Srinath Sridhar, and Leonidas J. Guibas. CaSPR:
Learning Canonical Spatiotemporal Point Cloud Representations. In Advances in Neural Information
Processing Systems, 2020.

[40] Sara Sabour, Andrea Tagliasacchi, Soroosh Yazdani, Geoffrey E. Hinton, and David J. Fleet. Unsupervised
part representation by flow capsules, 2021.

[41] Ken Shoemake. Uniform random rotations. In Graphics Gems III (IBM Version), pages 124–132. Elsevier,
1992.

[42] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. International Conference on Learning Representations, 2015.

[43] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser. Semantic
scene completion from a single depth image. Proceedings of 30th IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[44] Olga Sorkine-Hornung and Michael Rabinovich. Least-Squares Rigid Motion Using SVD. Computing,
2017.

[45] Riccardo Spezialetti, Federico Stella, Marlon Marcon, Luciano Silva, Samuele Salti, and Luigi Di Stefano.
Learning to Orient Surfaces by Self-supervised Spherical CNNs. Advances in Neural Information Processing
Systems, 2020.

[46] Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov. Geometric Capsule Autoencoders for 3D Point
Clouds. arXiv Preprint, 2019.

[47] Weiwei Sun, Wei Jiang, Eduard Trulls, Andrea Tagliasacchi, and Kwang Moo Yi. ACNe: Attentive
Context Normalization for Robust Permutation-Equivariant Learning. In Conference on Computer Vision
and Pattern Recognition, 2020.

[48] Supasorn Suwajanakorn, Noah Snavely, Jonathan J Tompson, and Mohammad Norouzi. Discovery of
Latent 3D Keypoints via End-to-End Geometric Reasoning. 2018.

[49] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor Field Networks: Rotation-and Translation-Equivariant Neural Networks for 3D Point Clouds. arXiv
Preprint, 2018.

11

[50] Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. Learning shape ab-
stractions by assembling volumetric primitives. In Conference on Computer Vision and Pattern Recognition,
2017.

[51] Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel Shamir, and Daniel Cohen-Or.
Co-hierarchical analysis of shape structures. ACM SIGGRAPH, 2013.

[52] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas. Normal-
ized Object Coordinate Space for Category-level 6d Object Pose and Size Estimation. In Conference on
Computer Vision and Pattern Recognition, 2019.

[53] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In European Conference on Computer Vision, 2018.

[54] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-CNN: Octree-Based Convolu-
tional Neural Networks for 3d Shape Analysis. ACM Transactions on Graphics, 36(4):1–11, 2017.

[55] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. Adaptive o-cnn: A patch-based deep represen-
tation of 3d shapes. ACM Transactions on Graphics (TOG), 37(6):1–11, 2018.

[56] Yue Wang and Justin M Solomon. Deep Closest Point: Learning Representations for Point Cloud
Registration. In International Conference on Computer Vision, 2019.

[57] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics, 2019.

[58] Yuxin Wu and Kaiming He. Group Normalization. In European Conference on Computer Vision, 2018.
[59] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas J. Guibas, and Or Litany. PointContrast:

Unsupervised Pre-training for 3D Point Cloud Understanding. In European Conference on Computer Vision,
2020.

[60] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective Transformer Nets:
Learning Single-View 3D Object Reconstruction without 3D Supervision. In Advances in Neural Information
Processing Systems, 2016.

[61] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. FoldingNet: Point Cloud Auto-Encoder via Deep
Grid Deformation. In Conference on Computer Vision and Pattern Recognition, 2018.

[62] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point matching using learned features. In Conference on
Computer Vision and Pattern Recognition, 2020.

[63] Wentao Yuan, Ben Eckart, Kihwan Kim, Varun Jampani, Dieter Fox, and Jan Kautz. DeepGMR: Learning
Latent Gaussian Mixture Models for Registration. In European Conference on Computer Vision, 2020.

[64] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3D Point Capsule Networks. In
Conference on Computer Vision and Pattern Recognition, 2019.

[65] Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele Menegatti, Leonidas Guibas, and Federico
Tombari. Quaternion Equivariant Capsule Networks for 3D Point Clouds. In European Conference on
Computer Vision, 2020.

[66] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global registration. In European Conference on
Computer Vision, 2016.

12

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Abstract and Section 1.

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] There are no direct ethics concerns for the paper.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] In addition to
the public code release that we will do, we have included the code in the supplementary

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.1.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Due to the large amount of compute requirement for
repeated experiments we have not been able to include them in the submission. How-
ever, the results do not vary much from one run to the other in our experience, and we
will release code to reproduce the results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1. Note that to
preserve anonymity we have decided not to include exact detail.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.1.
(b) Did you mention the license of the assets? [Yes] See Section 4.1.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related works
	Method
	Losses
	Network Architectures

	Results
	Experimental setup
	Auto-encoding – Figure 2 and Table 1
	Canonicalization – Table 2
	Unsupervised classification – Table 3
	Ablation study

	Conclusions
	Architectural details
	Capsule Encoder – E
	Capsule Decoder – D
	Regressor– K

	Additional ablation studies
	Per-class results for auto-encoding

