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Abstract

Single image reflection separation (SIRS), as a representative blind source sepa-
ration task, aims to recover two layers, i.e., transmission and reflection, from one
mixed observation, which is challenging due to the highly ill-posed nature. Exist-
ing deep learning based solutions typically restore the target layers individually,
or with some concerns at the end of the output, barely taking into account the
interaction across the two streams/branches. In order to utilize information more
efficiently, this work presents a general yet simple interactive strategy, namely
your trash is my treasure (YTMT), for constructing dual-stream decomposition
networks. To be specific, we explicitly enforce the two streams to communicate
with each other block-wisely. Inspired by the additive property between the two
components, the interactive path can be easily built via transferring, instead of
discarding, deactivated information by the ReLU rectifier from one stream to the
other. Both ablation studies and experimental results on widely-used SIRS datasets
are conducted to demonstrate the efficacy of YTMT, and reveal its superiority over
other state-of-the-art alternatives. The implementation is quite simple and our code
is publicly available at https://github.com/mingcv/YTMT-Strategy.

1 Introduction

Blind source separation, a long-standing problem in signal processing, aims to recover multiple
intrinsic components from their mixture, the difficulty of which comes from its ill-posedness, i.e.,
without extra information, there is an infinite number of feasible decompositions. Particularly in
computer vision, image reflection separation (IRS) is a representative scenario that often occurs when
taking pictures through a transparent medium such as glass. In such cases, the captured images will
contain both the scene transmitted through the medium (transmission) and reflection. On the one
hand, reflections are annoying for high-quality imaging, and may interfere with the performance of
most, if not all, of classic and contemporary vision oriented algorithms such as object detection and
segmentation. On the other hand, one may also want to see what happens in the reflection. Hence,
developing effective transmission-reflection decomposition techniques is desired.

Formally, the captured superimposed image I can be typically modeled as a linear combination of
a transmission layer T and a reflection R, i.e. I = T + R.1 Over last decades, a large number
of schemes have been devised to solve the decomposition problem. Various statistical priors and
regularizers have been proposed to mitigate the ill-posed dilemma, while diverse deep networks have
been recently built for the sake of performance improvement, please see Sec. 2 for details. However,
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1Many problems follow the same additive model, such as denoising (I = B +N , where B and N denote

clean image and noise, respectively), and intrinsic image decomposition (log I = logA+ logS, where A and
S stand for albedo and shading, respectively.) The proposed strategy can be potentially applied to all these tasks,
but due to page limit, we concentrate on the task of SIRS to verify primary claims in this paper.
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in the literature, the additive property, say I = T +R, has been hardly investigated, except for acting
as a reconstruction constraint.

Let us consider that, for any estimation pair T̂ and R̂ satisfying the additive property, there always
exists an error/residual Q subject to I = T̂ + R̂ = (T +Q)+(R−Q). Once Q is somehow obtained,
the only thing needed to do is subtracting it from T̂ , and adding it into R̂ instead of simply discarding.
Under the circumstances, no information is trash, only misplaced. To be symmetric, we rewrite Q
as Q := QT − QR, yielding T = T̂ − QT + QR and R = R̂ − QR + QT . In other words, the
two targets including T̂ and R̂ can gain from each other by exchanging, rather than discarding, their
respective “trash” factors QT and QR. Driven by the above fact, a question naturally arises: Can
such an interaction/exchange be applied to intermediate deep features of dual-stream networks?

Contributions. This paper answers the above question by designing a general interactive dual-
stream/branch strategy, namely your trash is my treasure (YTMT). An obstacle to realizing YTMT
was how to determine exchanging information. Intuitively, activation functions are competent for
the job, which are developed to select (activate) a part of features from inputs. In this work, we
adopt the ReLU that is arguably the most representative and widely-used activation manner, while
others could be also qualified like [4, 24, 12, 2]. Please notice that, instead of simply discarding the
deactivated features (trash) of the one stream, we alternatively deliver them to the other stream as
compensation (treasure). By doing so, there are two main merits: 1) the information losing and dead
ReLU problems can be consequently mitigated, and 2) the decreasing speed in training error can be
significantly accelerated. The implementation is quite simple and flexible. We provide two optional
YTMT blocks as examples and apply them on both plain and UNet architectures to verify the primary
claims. Both ablation studies and experimental results on widely-used SIRS datasets are conducted to
demonstrate the efficacy of YTMT, and reveal its superiority over other state-of-the-art alternatives.

2 Related Work

Over the past decades, much attention to resolving the image reflection separation problem has been
drawn from the community. From the perspective of the required input amount, existing methods can
be divided into two classes, i.e., multi-image based and single image based methods.

Multiple Image Reflection Separation (MIRS). Utilizing multiple images [7, 28, 33, 27, 1, 8, 31,
22, 9, 29, 40, 32, 41, 10] used to be a prevalent way to cope with the task, as more information
complementary to single superimposed images, like varied conditions and relative motions, can
be explored from a sequence of images to accomplish the task. For instance, Agrawal et al. [1]
use flash and no-flash image pairs to remove reflections and highlights, while Szeliski et al. [33]
employ focused and defocused pairs. A variety of approaches [7, 27, 8, 22, 33, 40, 41] have been
proposed to seek relationships between different images, among which Farid and Adelson [7] employ
independent component analysis to reduce reflections and lighting. Gai et al. [8] alternatively develop
an algorithm to estimate layer motions and linear mixing coefficients for the recovery. Li and Brown
[22] adopt the SIFT-flow to align the images, while Xue et al. [40] enforce a heavy tailed distribution
on the obstruction and background components to penalize the overlapped gradients, making the
two layers independent. Moreover, Yang et al. [41] introduce a generalized double-layer brightness
consistency constraint to connect optical flow estimation and layer separation. Despite the satisfactory
performance of MIRS methods, the need for specified shooting conditions and/or professional tools
heavily limits their applicability.

Single Image Reflection Separation (SIRS). In practice, single image based schemes are more
attractive. No doubt that, compared with those MIRS techniques, single image based ones are also
more challenging due to less information available, demanding extra priors to regularize the solution.
To mitigate the ill-posedness, Levin et al. [19, 18] favor decompositions that have fewer edges and
corners by imposing sparse gradients on the layers, in the same spirit as [40]. Levin and Weiss [17]
allow users to manually annotate some dominant edges for the layers as explicit constraints for the
problem, which requires careful human efforts to obtain favorable results. Li and Brown [23] assume
one layer is smoother than the other, and penalize differently on the two layers in the gradient domain
to split the reflection and transmission. Despite a progress made toward addressing the problem, the
assumption and requirement could be frequently violated in real situations. Besides, these methods
all rely on handcrafted features that may considerably restrict their performance.
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Figure 1: The functional behaviors of ReLU and negative ReLU are plotted in (a). Two YTMT block
options are given in (b) and (c). To fuse features from the normal and YTMT connections, the first
option uses channel concatenation and 1 × 1 convolutions, while the second simply uses feature
addition. Pixel and channel attention mechanism (denoted by Att.) is utilized in both (b) and (c).

With the emergence of deep neural networks, learning based methods [6, 44, 42, 38, 20, 39] have
shown their power and become dominant for the task. Concretely, CEILNet [6] comprises of two
stages, similarly to [17, 37]. An edge map is estimated in the first stage, which performs as the
guidance for the second stage to produce the final transmission layer. However, the network is hard
to capture high-level information, thus having trouble guaranteeing the perceptual quality. Zhang et
al. [44] further take the perception cue into consideration by coordinating hyper-column features
[11], the perceptual and adversarial losses. The exclusivity loss (see also the gradient production
penalization in [40]) is designed for assuring gradients to be exclusive between the two components.
This manner is also adopted by [38]. The main drawback is the insufficient capacity in processing
cases with large transmission-reflection overlapped regions. Recently, ERRNet [38] was proposed,
which enlarges the receptive field by introducing channel attention and pyramid pooling modules.
It does not explicitly predict the reflection layer, which directly discards possible benefit from the
supervision of reflection. IBCLN [20] proposes an iterative boost convolutional LSTM network
to progressively split the two layers. However, such an iterative scheme slows down the training
and predicting procedure. The errors will also be accumulated due to the high dependency on the
outputs of previous stages. Though the learning based strategies have further stepped forward in
single image reflection separation compared with the traditional methods, they either restore the target
layers individually, or together with some concerns dealing with outputs (e.g., enforcing the linear
combination constraint and/or concatenating them together as input). In other words, they barely take
into account the interaction across the two streams/branches, which is key to the target task and also
other dual-stream decomposition tasks. This study is mainly to demonstrate the effectiveness of such
an interaction consideration.

3 Deep Interactive Dual-Stream Learning for SIRS

3.1 YTMT Strategy

In this part, the proposed deep interactive dual-stream strategy will be detailed by centering around
the concept that your trash is my treasure, which would be beneficial to a variety of two-component
decomposition tasks using dual-branch networks. Prior works [21, 35] have shown evidence on the
effectiveness of passing information between two branches though, our YTMT strategy performs in a
novel and principled way. We first give the definition of the negative ReLU function as follows:

ReLU−(x) := x− ReLU(x) = min(x, 0), (1)

where ReLU(x) := max(x, 0). By the negative ReLU, the deactivated features can be easily retained.
Figure 1 (a) exhibits the behaviors of the ReLU and negative ReLU.

Here, let x0 be the input to the first layer of the network, and x̃l
i (i ∈ {1, 2} for two branches) denotes

the feature obtained by the i-th branch after l stacked layers, i.e. x̃l
i := Hl

i(x
0). The inputs to the
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Figure 2: Illustration of the YTMT networks. (a) and (b) offer the YTMT versions modified on the
U-shape and plain network architectures, respectively. The input is first augmented by hyper column
[44] and then fed into the YTMT blocks. (c) shows a visualized example of producing xL

1 and xL
2

from x̃L
1 and x̃L

2 at the sixth YTMT block of the trained U-shaped YTMT network. For better view,
all the features are normalized by softmax.

(l + 1)-th layer are as follows:

xl
1 := ReLU(x̃l

1)⊕ ReLU−(x̃l
2); xl

2 := ReLU(x̃l
2)⊕ ReLU−(x̃l

1), (2)

where ⊕ can be either the concatenation operation or the addition between features activated by
the ReLU function (called normal connection) and those by the ReLU− (YTMT connection), as
shown in Fig. 1 (b) and (c). As can be obtained from Eq. (2), the amount of information in xl

1 and xl
2

is equivalent to that in x̃l
1 and x̃l

2. This property guarantees no information flowing away from the
interaction, which substantially avoids the problems of vanishing/exploding gradients and dead ReLU.
Figure 2 (c) depicts a visual example of producing xL

1 and xL
2 from x̃L

1 and x̃L
2 (in this case, L = 6).

It shows that ReLU−(x̃L
1 ) is complementary to the ReLU(x̃L

2 ) and ReLU−(x̃L
2 ) is complementary

to the ReLU(x̃L
1 ). By merging the complementary counterparts, there is no information wasted by

the rectifiers. In addition, this strategy can significantly speed up the decreasing of training error
similarly to the ResNet design [13], which will be empirically validated in Sec. 4. Moreover, generally
speaking, our strategy can be compatible with most, if not all, of the activation pairs (e.g. Softmax
and Softmin). But for the additive problems, the pair of ReLU and negative ReLU is more suitable
due to its “either A or B” nature that satisfies the task of SIRS.

We again emphasize that the proposed YTMT strategy is general and flexible, which can be imple-
mented in various forms according to different demands. Figure 1 provides two YTMT block options.
The one in (b) fuses features from the normal and YTMT connections by channel concatenation and
1× 1 convolutions, while the second in (c) simply employs feature addition. In addition, pixel and
channel attention mechanism is introduced in both (b) and (c) to select and re-weight the merged
features (see [25] for details). Moreover, the YTMT blocks can be applied to most, if not all, of dual-
stream backbones by simple modification. In Fig. 2 (a) and (b), two commonly-used architectures,
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i.e. U-shaped [26] and plain [43] networks, are present. We will shortly show how to construct these
YTMT based networks, and demonstrate their improvement over the backbones and the superior
performance on specific applications over other competitors.

3.2 YTMT based Design for SIRS

As shown in Fig. 2 (a), we adopt the U-shaped network as the backbone for the task of SIRS, which
can be readily implemented by replacing the convolutional blocks in the UNet architecture with
proposed YTMT block options. Following the prior work, the input images are first augmented by the
hypercolumn [44], gaining 1475 channels, then mapped to 64 via a 1× 1 convolution to fuse VGG
features and the original input. Each YTMT block is an interactive dual-stream module containing
two convolutional layers, both followed by a dual-ReLU rectifier pair. The activations produced
by the negative ReLU rectifiers are exchanged between the two streams, then merged by feature
addition or concatenation operator before being fed into the attention block. We here use max-pooling
and bilinear interpolation to squeeze and expand the feature maps. Like in the single-stream UNet,
there are skip connections between the encoder layers and the decoder layers (represented by dashed
arrows in orange in Fig. 2 (a)), but an extra skip connection is added between each encoder-decoder
layer pair for the dual-stream design (represented by dashed arrows in blue). The features in skip
connections are first fused with the up-sampled features and then fed into the YTMT blocks. After
training the first stage to converge, we then freeze its parameters and initialize the second stage
with them. The outputs of the first stage are then fed into the second one for training until it also
converges. Under this design, the information of the transmission and reflection pairs will further
interact during passing through the second stage. To be concluded, with consideration of YTMT
block options (“C” for channel concatenation and “A” for feature addition) and using two-stage or
not (“S” for single-stage and “T” for two-stage), YTMT based design for SIRS has several variants,
including YTMT-{UCS, UAS, UCT, UAT}, based on the choice of model architecture (“U” stands
for the U-shaped architecture. We omit the plain architecture for its inferior efficiency compared with
the U-shaped on the task of SIRS). The performance difference between these YTMT variants will
be studied in Sec. 4.3.

The objective function considered for SIRS consists of reconstruction loss, perceptual loss, exclusion
loss, and adversarial loss. In what follows, each term is explained.

Reconstruction loss. Preceding methods have revealed that edges are essential for a valid separation
[17, 40, 6, 35]. To make our model sensitive to the gradients, we follow [6, 38] to penalize the
gradient difference between predictions and targets besides the MSE term, via:

Lrec := a‖T̂ − T‖22 + b‖R̂−R‖22 + c‖∇T̂ −∇T‖1 + d‖T̂ + R̂− I‖1, (3)

where ‖ · ‖1 stands for the `1 norm, and ‖ · ‖2 the `2 norm. In addition, we empirically set a = 0.3,
b = 0.9, c = 0.6, d = 0.2 in all of our experiments. Since reflections are usually weak, the
penalization on∇R̂−∇R is omitted for stable training.

Perceptual Loss. The perceptual loss [14] assists models in achieving high perceptual quality. We
minimize the `1 difference between the features of predicted components and those of ground-truths
at layers ‘conv2_2’, ‘conv3_2’, ‘conv4_2’, and ‘conv5_2’ of a VGG-19 model [30] pretrained on the
ImageNet dataset [3]. Denoting the features of the input at layer i as φi(·), we have the following
function:

Lper :=
∑
j

ωj‖φj(T )− φj(T̂ )‖1 +
∑
j

ωj‖φj(R)− φj(R̂)‖1, (4)

where ωjs balance the weights of different layers, {0.38, 0.21, 0.27, 0.18, 6.67} as default.

Exclusion Loss. Prior work [40, 44] shows that enforcing the exclusivity on the two components in
the gradient domain is beneficial to separation tasks, which is defined as:

Lexc :=
1

N

N−1∑
n=0

‖Ψ(T̂ ↓n, R̂↓n)‖22 with Ψ(T̂, R̂) := tanh
(
λT |∇T̂ |

)
◦ tanh

(
λR|∇R̂|

)
, (5)

where T̂ ↓n and R̂↓n are T̂ and R̂ down-sampled by 2n times. In addition, λT and λR are normalization
factors and ◦ represents element-wise multiplication.
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Table 1: Quantitative results on four real-world benchmark datasets of different methods. The best
results are indicated in red and the second best results in blue.

Datasets Metrics Input CEILNet Zhang et al. BDN ERRNet IBCLN Lei et al. YTMT-UCT

Real20 (20) PSNR 19.16 18.45 22.55 18.41 22.89 21.86 22.35 23.26
SSIM 0.732 0.690 0.788 0.726 0.803 0.762 0.793 0.806

Objects (200) PSNR 23.74 23.62 22.68 22.72 24.87 24.87 23.81 24.87
SSIM 0.878 0.867 0.879 0.856 0.896 0.893 0.882 0.896

Postcard (199) PSNR 21.31 21.24 16.81 20.71 22.04 23.39 21.48 22.91
SSIM 0.877 0.834 0.797 0.859 0.876 0.875 0.873 0.884

Wild (55) PSNR 26.06 22.36 21.52 22.36 24.25 24.71 23.84 25.48
SSIM 0.890 0.821 0.832 0.830 0.853 0.886 0.866 0.890

Table 2: Quantitative comparison in reflection re-
covery between the top-3 methods in transmission
recovery. The best results are highlighted in red and
the second best results in blue.

Datasets Metrics ERRNet IBCLN YTMT-UCT

Real20 (20) PSNR 23.55 22.36 24.30
SSIM 0.446 0.469 0.542

Objects (200) PSNR 26.02 19.97 26.45
SSIM 0.446 0.226 0.499

Postcard (199) PSNR 22.47 13.16 23.41
SSIM 0.419 0.230 0.478

Wild (55) PSNR 25.52 20.83 27.33
SSIM 0.460 0.298 0.590

Figure 3: Training error on our training data of
YTMT-UCS and a dual-stream UNet without
any feature interaction (w/o FI). The proposed
interaction strategy leads to a much faster de-
creasing speed.

Adversarial Loss. The adversarial loss regulates the SIRS solution on the real-world image manifold.
With the adversarial training of the main network G and a discriminator D, they seek the equilibrium
by optimizing the adversarial loss Ladv [15], as follows:

LG
adv := − log(D(T, T̂ ))− log(1−D(T̂, T )); LD

adv := − log(1−D(T, T̂ ))− log(D(T̂, T )), (6)

where D stays invariant with [38].

Our overall objective function turns out to be:

Ltot := Lrec + λ1Lper + λ2Lexc + λ3Ladv, (7)

with λ1 = 0.1, λ3 = 1, and λ3 = 0.01 empirically set.

4 Experimental Validation on SIRS

4.1 Implementation Details

Our training data consists of both real-world and synthesis images, as used in [38]. Among these
data, 90 pairs of input and transmission groundtruth are collected by Zhang et al. [44], and 7,643
image pairs chosen from the PASCAL VOC dataset [5] to synthesize superimposed images following
CEILNet [6]. The models are implemented in PyTorch and optimized with Adam optimizer, keeping
β1 = 0.9, and β2 = 0.999. The learning rate is initialized as 10−4 and then reduced by half at epoch
60, 80, and 100, respectively. The training is stopped at epoch 120. All the models are trained on a
single RTX 2080 Ti graphics card.

4.2 Comparison with State-of-the-art Methods

We select the proposed YTMT-UCT network to compare with the state-of-the-art methods, including
Zhang et al. [44], BDN [42], ERRNet [38], IBCLN [20] and Lei et al.[16], on four real-world dataset,
involving Real20 [44] and three subsets of SIR2 [34]. The PSNR and SSIM metrics are utilized
to evaluate all the competing methods as shown in Table 1. Generally speaking, each component
for blind source separation tasks should be treated equally. For the SIRS task, the reflection layer
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Input Zhang et al. [44] BDN [42] ERRNet [38] IBCLN [20] Ours GT

Figure 4: Visual comparison of state-of-the-art methods and ours on real-world testing dataset,
including Real20 [44] and SIR2 [6]. It shows that the results by our method are more visually striking
compared with those by the competitors, with less artifacts and color distortion (please pay attention
to the regions framed by red boxes).

Table 3: Quantitative results on the testing samples from Nature dataset of different methods. The
best results are highlighted in red and the second best results in blue.

Metrics CEILNet-F Zhang et al. BDN-F RmNet ERRNet-F IBCLN YTMT-UCS
PSNR 19.33 19.56 18.92 19.36 22.18 23.57 23.85
SSIM 0.745 0.736 0.737 0.725 0.756 0.783 0.810

can be a critical part of the information to reproduce the image shooting scene, as discussed in [36].
Therefore, we report the performance difference of the reflection recovery in Table 2, among the
methods with the top-3 transmission recovery. The visual comparison is also conducted in Fig. 6.
Given ERRNet does not output reflection layers and the predicted reflections of IBCLN still mingle
with large parts of transmission layers, we compare their reflection layers by I − T̂ for fairness.

It turns out that the YTMT-UCT achieves the best results on almost all of the testing datasets, in
terms of the recovery of both transmission and the reflection layers, which indicates that the YTMT
strategy gives the most accurate separations with the help of frequent feature interaction between
the transmission and reflection streams. The difficulty raising in Real20 comes from the largely
overlapped regions and various reflection patterns, while the challenge of SIR2 is mainly low-quality
transmission layers and reflections blended with the monochromatic background. Therefore, we
further conduct the qualitative comparison among these methods in Fig. 4 to show our capacity for
these challenging samples. As can be observed, the method proposed by Zhang et al. produces results
with severe color distortion and cannot handle the aforementioned globally overlapping problem.
BDN and IBCLN generalize unsatisfyingly on the Real20 dataset, failing to remove conspicuous
reflections in several cases, and some reflections are even enhanced by the BDN due to the inaccurate
reflection estimation amplified by the cascade structure. Meanwhile, both the methods refine the
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Input CEILNet [6] Zhang et al. [44] BDN [42] ERRNet [38] IBCLN [20] Ours

Figure 5: Visual comparison of YTMT-UAT and state-of-the-art methods on real45 dataset[6]. It
shows that our method produces results with fewer residual reflections.

separations stage-by-stage or iteration-by-iteration, where new outputs are concatenated to be fed into
the next stage/iteration, instead of inner interaction or feature exchanging. As a consequence, the error
would be rather accumulated. However, in the YTMT strategy, there are more chances for the network
(e.g., 14 times in the YTMT-UCT). Moreover, the separations are estimated in a single network,
rather than several sub-networks. We train the first stage of the network to converge, and then use it
to initialize the second stage. The training of the second stage depends on not only the preliminary
separations, but also the knowledge learned in the first stage. If there is no better separation the
network can exploit, the second stage will produce a solution close to the preliminary separations.
ERRNet introduces some useful network building blocks, but still leaves some obvious reflections.
It merely estimates the transmission layer, discarding the interaction between two components. In
conclusion, feature interaction is highly desired for the satisfactory separations. Moreover, the
training error shown in Fig. 3 further accounts for the information efficacy of YTMT strategy, given
the large margin of the convergence between the dual-stream UNet without any feature interaction
and the YTMT-UCS solution. To evaluate our generalization ability to different data distributions, we
also follow the training setting of IBCLN [20] and report our results on the testing data of the Nature
dataset proposed by it. We achieve 23.85 and 0.810 for PSNR and SSIM, respectively, compared with
23.57 and 0.783 of IBCLN, and surpass previous methods more than a lot as shown in Table 3. Note
that we reuse the numerical results proposed in the paper of IBCLN, since the same experimental
setup is kept.

4.3 Ablation Study

To further assess the capacity of the YTMT strategy for the task, we have developed two baselines to
illustrate the effectiveness of our proposed YTMT strategy (see results in Table 4). The first model
is a dual-stream UNet without any feature interaction. One might think it is identical to a single
UNet. However, constrained by the reconstruction loss term ‖T̂ + R̂− I‖1, the estimations of the
two layers T̂ and R̂ are highly related to each other. Moreover, supervised by the ground-truth of
both transmission and reflection layers, the optimization constrained by multiple regularizers are
more likely to improve the generalization ability of the network. Thus we adopt it as one of the
baseline networks, which means any interactive method should not have lower performance than it.
The second model replaces all the negative ReLU rectifiers by the normal ReLU in the YTMT-UCS
to validate if the YTMT strategy really works to preserve the discarded information. The rest four
models are the YTMT variants introduced in the Sec. 3.2.
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Table 4: Ablation study on different network architectures, including a dual-stream UNet without any
feature interaction (FI), a YTMT-UCS with all the negative ReLU rectifiers replaced by the normal
ReLU and four YTMT variants. The best results are highlighted in red and the second best results in
blue.

Datasets Metrics w/o FI ReLU only YTMT-UCS YTMT-UCT YTMT-UAS YTMT-UAT

Real20 PSNR 20.57 22.79 23.05 23.09 23.26 23.39
SSIM 0.752 0.802 0.805 0.802 0.801 0.809

Objects PSNR 23.85 24.06 24.46 24.58 24.71 25.40
SSIM 0.883 0.886 0.891 0.891 0.893 0.899

Postcard PSNR 20.82 22.02 22.66 22.75 22.45 23.01
SSIM 0.863 0.869 0.885 0.884 0.871 0.874

Wild PSNR 24.20 24.71 25.24 25.46 24.49 25.19
SSIM 0.881 0.859 0.887 0.892 0.870 0.880

Zhang et al. [44] BDN [42] IBCLN [20] Ours GT

Figure 6: Visual comparison on the layer decomposition between YTMT-UCT and state-of-the-art
methods that output transmission-reflection layer pairs.

With approximate number of parameters, YTMT solutions show obvious superiority over other
alternatives, benefiting from the strategy introducing the complementary interaction between dual
streams. Obviously, without any feature interaction, a dual-stream UNet is apparently inferior to
those with feature interaction, which partly explains the performance gap between the IBCLN and
ours. With only the positive ReLU rectifiers, the dual streams in the network will have the same
activations, leading to degraded performance. Moreover, it can be seen that the YTMT-UAT shows
leading results on the first two datasets, while YTMT-UCT exhibits better overall performance over
other state-of-the-art methods, thus it is opted as the default architecture for SIRS tasks. Also, it
shows that a two-stage architecture can indeed further improve the results.

5 Conclusion

In this paper, we proposed a general rule for deep interactive dual-stream/branch learning, namely
your trash is my treasure (denoted as YTMT), which says that two branches should communicate with
each other frequently by exchanging, rather than discarding, the information useless to themselves.
Activation functions are deemed to be suitable for determining which part of information to exchange.
As an example, the widely-used ReLU was chosen to validate the primary claims of this work. In
addition, we offered several YTMT based designs based on both U-shaped and plain backbones to
show the flexibility. Extensive experimental results on public SIRS datasets have been provided to
verify the effectiveness of YTMT, and demonstrate the clear advantages of our method in comparison
with other state-of-the-art alternatives. Another merit of YTMT comes from its acceleration in
decreasing error during training. It is positive that our strategy can derive diverse designs and be
beneficial to many two-component decomposition tasks.
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