
A Additional Remarks

A.1 Second-order terms in the upper and lower bounds

In terms of the convergence rate, Theorem 2.1 and Theorem 2.2 admit large second-order terms which
may dominate the MSEs when n � d

3. However, our results improve the sample complexity for the
high-accuracy regime. More precisely, as a direct corollary of Theorem 2.1, the `2 sample complexity
is O

⇣
max

⇣
1
" ,

kpk1/2

n2b ,
d3 log dp

" log(1/")4b

⌘⌘
. In addition, the n � poly(d) requirement is necessary for all

of the previous global minimax schemes. For instance, all the minimax upper and lower bounds for
distribution estimation (without any additional assumptions on the target distribution) in previous
works [4, 5, 7, 8] require n � d

2.

That being said, with additional prior knowledge on the target distribution such as sparse/near-
sparse assumptions, we can easily improve our two-stage scheme by replacing the uniform grouping
localization step with other sparse estimation schemes [28], and the resulting sample size requirement
can be decreased to n � poly(s, log d).

A.2 Achieving centralized convergence without the knowledge of kpk1/2

We note that when the goal is to achieve the centralized rate with minimal communication (instead of
achieving the best convergence rate for a fixed communication budget as we have assumed so far), the
performance promised in the above corollary can be achieved without knowing H1/2(p) beforehand.
We can do that by modifying our proposed scheme to include an initial round for estimating H1/2(p).
More precisely, we can have the first n/2 clients communicate only 1 bit about their sample and
estimate H1/2(p) within 1 bit accuracy. When n is sufficiently large (e.g. n = ⌦̃(d3)), this estimation
task will be successful with negligible error probability. Then the remaining n/2 of clients can
implement the two-round scheme we propose to estimate p (i.e. the scheme described in Section 4)
by using Ĥ1/2(p) + 1 bits per client. Under this strategy, we are guaranteed to achieve the centralized
performance while each client communicates no more than H1/2(p) + 2 bits.

B Adaptive grouping algorithm

In this section, we describes the details of the adaptive grouping algorithm used in Section 4 and
Algorithm 2.

Algorithm 3: gen_groups
Input: p̂, d
Output: G1, ...,Gd

Compute ⇡̂j and nj according to (2);�
n�(1), ..., n�(d)

 
 sort({n1, ..., nd}) ; // Sort {nj} in non-increasing order.

G1, ...,Gd  ;;
for i 2 [n+ 1 : 2n] do

for t  2b do

for j  d do

if
��G�(j)

�� < n�(j) then

G�(j)  i;
t t+ 1;

else

j  j + 1;
end

end

end

t 2b;
end

return G1, ...,Gd
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C Proof of Theorem 2.2

Again, consider the scheme in Section 4 but with ⇡j(p) ,
3
p
pjP

k2[d]
3
p
pk

. Let J↵ , {j 2 [d]|pj � ↵}
and

E1 ,
\

j2[d]

n
3
p
p̂j 2

⇥
3
p
pj � 3

p
"n,

3
p
pj + 3

p
"n

⇤o
,

where ↵ > 0 will be determined later. Notice that by Lemma 5.1, P {E1} > 1� 1
n , so we have the

following bounds on the `1 error:
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4
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As in the `2 case, the server computes p̌j , 1
nj
Binom(nj , pj). For the ease of analysis, we partition

[d] into three disjoint subsets:

J + , {j 2 [d]|nj = n} , J↵ ,
�
j 2 [d] \ J +

��pj � ↵
 

and J c , [d] \
�
J + [ J↵

�
,

where ↵ > 0 will be specified later. For each subset, we will apply different lower bound on nj :

• for j 2 J +, we have nj =
n
2 ;

• for j 2 J↵, we use nj � n2b⇡̂j

4 ;

• for j 2 J c, we use nj � n2b

4d .

We can then compute the estimation error by
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where (a) holds since conditioned on E1, p̌ ⇠ 1
nBinom(nj , pj), (b) holds by the definition of nj , (c)

is due to Cauchy-Schwartz inequality, (d) follows from the definition of ⇡̂j and finally (d) is due to
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Lemma 5.1. If we pick ↵ = 8"n, then we can further bound (5) by
s
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where (a) holds since
p
a+ b 

p
a +
p
b and in (b) we use the following Young’s inequality:

a
1
3 b

2
3  a

3 + 2b
3  a+ b.

Remark C.1 For general `q error with q 2 [1, 2], we pick ⇡j(p) = p
1� 2

q+1

j (
P

k p
1� 2

q+1

j )�1
, and the

local `q error under our scheme becomes

E
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D Proof of Theorem 2.3

Let s , bhc and observe that Ps,d , {p 2 Pd|kpk0  s} ✓
n
p 2 Pd

���kpk1/2  h

o
. Then the proof

is complete since
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where the last inequality holds by [10].

E A complete characterization for the local complexity of Zipf distributions

Below we characterize the local complexity of Zipf distributions for all regime � > 0. Interestingly,
as � decreases, we see different dependency on d.

Corollary E.1 (Truncated Zipf distributions with � � 2) Let p , Zipf�,d be a truncated Zipf

distribution with � � 2. That is, for d, k 2 N, Zipf�,d(k) ,
1

k� {kd}Pd
k0=1

1
(k0)�

. Then the skewness of p is

characterized by
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�
.
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⌘
.
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F Proof of technical lemmas

F.1 Proof of Lemma 5.1

Let (Wn
, p̂) be the naive grouping scheme introduced by [4]. Then p̂j ⇠ 1

n0Binom(n0
, pj), where

n
0 , n

2d . By the Chernoff bound, with probability at least 1� 1
nd ,
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The first result follows from
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and taking union bound over j 2 [d]. To prove the second result, for each j 2 [d], we consider two
cases.
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where (a) holds with probability at least 1 � 1/nd due to (6), and (b) holds since by
assumption pj � "n.

• If pj  "n, then since p̂j � 0 almost surely, it suffices to control

P
n

3
p
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3
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where (a) holds since pj  "n, and (b) holds by (6).

The proof is complete since for both cases we have
�� 3
p
p̂j � 3

p
pj

��  3
p
"n with probability at least

1� 1
nd .

F.2 Proof of Lemma 5.2

To analyze the error, we partition [d] into three disjoint subsets:

J + , {j 2 [d]|nj = n} , J↵ ,
�
j 2 [d] \ J +

��pj � ↵
 

and J c , [d] \
�
J + [ J↵

�
.

for some ↵ > 0 that will be specified later. For each subset, we use different lower bound on nj :

• for j 2 J +, we have nj =
n
2 ;

• for j 2 J↵, we use nj � n2b⇡̂j

4 ;
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• for j 2 J c, we use nj � n2b

4d .

We can then compute the estimation error by
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where (a) holds since p̌j follows binomial distribution, (b) holds by the definition of nj , (c) is due to
the definition of J↵, (d) is due to the definition of ⇡̂j , and finally (e) is from Lemma 5.1.
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where in (a) we use the fact that a2 + b
2 � 2ab.

F.3 Proof of Lemma 6.1

Recall that under the model ⇥h
p , the score function

S✓(x) , (S✓2(x), ..., S✓h(x)) ,
✓
@ log p(x|✓)

@✓2
, ...,

@ log p(x|✓)
@✓h

◆

can be computed as

S✓i(x) =

8
><

>:

1
✓i
, if x = ⇡(i), 2  i  h

� 1
✓1
, if x = ⇡(1)

0, otherwise

The next lemma shows that to bound the quantized Fisher information, it suffices to control the
variance of the score function.

Lemma F.1 (Theorem 1 in [8]) Let W be any b-bit quantization scheme and IW (✓) is the Fisher
information of Y at ✓ where Y ⇠W (·|X) and X ⇠ p✓. Then for any ✓ 2 ⇥ ✓ Rh,

Tr (IW (✓))  min

✓
IX(✓), 2b max

kuk21
Var (hu, S✓(X)i)

◆
.
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Therefore, for any unit vector u = (u2, ..., uh) with kuk2 = 1, we control the variance as follows:
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where (a) holds since the score function has zero mean. This allows us to upper bound IW (✓) in a
neighborhood around ✓(p), where ✓(p) is the location of p in the sub-model ⇥h

p , i.e.

✓(p) = (✓2(p), ..., ✓h(p)) , (p(2), ..., p(h)).
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Therefore (7) implies for any ✓
0 2 NB,h(p),
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Together with Lemma F.1, we arrive at
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F.4 Proof of Lemma 6.2

We prove by contradiction.

1. For the first inequality, assume by contradiction that kpk 1
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where (a) is by definition, (b) holds since p(h̃)  p(j) for all j  h̃, and (c) is due to (8).
This yields contradiction.
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2. Secondly, assume by contradiction that for all h, h2
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Picking C small enough yields contradiction.
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