
A Experimental Details

Environments The episode length is 150 for RoboBin and RoboKitchen and 1000 for RoboYoga.
We show all goals in Figure A.1. For both Walker and Quadruped, the success criterion is based
on the largest violation across all joints. The global rotation of the Quadruped is expressed as the
three independent Euler angles. Global position is not taken into account for the success computation.
RoboBin. The success criterion is based on placing all objects in the correct position within 10
cm. For reaching task, the success is based on placing the arm in the correct position within 10 cm.
RoboKitchen uses 6 degrees of freedom end effector control implemented with simulation-based
inverse kinematics. The success criterion is based on placing all objects in the correct position with
a threshold manually determined by visual inspection. Note that this is a strict criterion: the robot
needs to place the object in the correct position, while not perturbing any other objects.
Evaluation We reported success percentage at the final step of the episode. All experiments on our
benchmark as well as on the SkewFit benchmark were ran 3 seeds. Due to large required compute,
DISCERN and Plan2Explore results for LEXA were only run with one seed. The DISCERN and
Plan2Explore results should therefore not be used for rigorous comparisons, but are nevertheless
indicative of the simplicity of these benchmarks. Plots were produced by binning every 3e5 samples.
Heatmap shows performance at the best timestep. Each model was trained on a single high-end GPU
provided by either an internal cluster or a cloud provider. The training took 2 to 5 days. The final
experiments required approximately 100 training runs, totalling approximately 200 GPU-days of
used resources.
Implementation We base our agent on the Dreamer implementation. For sampling goals to train
the achiever, we sample a batch of replay buffer trajectories and sample both the initial and the goal
state from the same batch, therefore creating a mix of easy and hard goals. To collect data in the real
environment with the achiever, we sample the goal uniformly from the replay buffer. We include
code in the supplementary material. The code to reproduce all experiments will be made public upon
the paper release under an open license.
Hyperparameters LEXA hyperparameters follow Dreamer V2 hyperparameters for DM control
(which we use for all our environments). For the explorer, we use the default hyperparameters from
the Dreamer V2 codebase [25]. We use action repeat of 2 following Dreamer. LEXA includes only
one additional hyperparameter, the proportion of negative sampled goals for training the distance
function. It is specified in Table A.5. The hyperparameters were chosen by manual tuning due to
limited compute resources. The base hyperparameters are shared across all methods for fairness.
DIAYN baseline We found that this baseline performs best when the reverse predictor is condi-
tioned on the single image embedding e rather than latent state s. We use a skill space dimension
of 16 with uniform prior and Gaussian reverse predictor with constant variance. For training, we
produce the embedding using the embedding prediction network from Section 2.4. We observed
that DIAYN can successfully achieve simple reaching goals using the skill obtained by running the
reverse predictor on the goal image. However, it struggles with more complex tasks such as pushing,
where it only matches the robot arm.
GCSL baseline We found that this baseline performs best when the policy is conditioned on the
single image embedding e rather than latent state s. This baseline is trained on the replay buffer
images and only uses imagined rollouts to train an explorer policy. For training, we sample a random
image from a trajectory and sample the goal image from the uniform distribution over the images
later in the trajectory following [20]. We similarly observe that this baseline can perform simple
reaching goals, but struggles with more complex goals.

14



K
itc

he
n

Q
ua

dr
up

ed
W

al
ke

r
B

in
s

Reach Left Reach Right Push Front Push Back Push Both Front Push Both Back

Lie Back Lie Front Legs Up Lunge Side Angle Stand

Burner Light Slide Hinge Microwave Kettle

Lean Back Boat Bridge Stand One Feet Head Stand Arabesque

Lie Back Stretch Lie Back 2 Legs Up Lie Side Lie Side 2 Stand Stand 2 Point Attack Balance Balance 2

Light + Slide Light + Hinge Light + Kettle Slide + Hinge Slide + Kettle Hinge + Kettle

Place Front Place Both Front

Figure A.1: All goals for the four environments that we consider. Our benchmark further includes an
additional set of even harder goals, available in the repository.

Algorithm From Pixels Zero-Shot Exploration Planning

CTS [4], Curiosity [35], RND [8] 3 7 3 7

Plan2Explore [44] 3 7 3 3

HER [2] 7 3 7 7

Visual Foresight [13] 3 3 7 3

Actionable Models [10] 3 3 7 7

DIAYN [15] 7 3 3 7

Asymmetric Self-Play [34] 7 3 3 7

SkewFit [38] 3 3 3 7

Go-Explore [14] 3 3 3 7

LEXA (Ours) 3 3 3 3

Table A.1: Conceptual comparison of unsupervised reinforcement learning methods. LEXA combines
forward-looking exploration by planning with achieving downstream tasks zero-shot while learning
purely from pixels without any privileged information.

Table A.5: Hyperparameters for LEXA over the Dreamer default hyperparameters.

Hyperparameter Value Considered values

Action repeat (all environments) 2 2
Proportion of negative samples 0.1 0, 0.1, 0.5, 1
Proportion of explorer:achiever data collected in real environment 1:1 1:1
Proportion of explorer:achiever training imagination rollouts 1:1 1:1

15



0.0 1.5 3.0 4.5 6.0
Environment Samples 1e6

0.00

0.25

0.50

0.75

1.00

Av
g 

Go
al

 S
uc

ce
ss

Ours+Temporal
Ours+Cosine
DDL

DIAYN
GCSL
Skewfit

lie 
fro

nt

lie 
back

leg
s u

p
kneel sta

nd

sta
nd on

e fe
et

lea
n back

sid
e a

ngle
brid

ge

head
 sta

nd
boat

ara
besq

ue

Ours+
Temporal

Ours+
Cosine

DDL

DIAYN

GCSL

SkewFit

0.97 0.8 1 0.17 0.3 0.37 0.2 0.2 0.07 0.17 0 0.1

1 0.9 0.93 0.97 0.87 0.57 0.77 0.93 0.9 0.63 0.57 0.17

1 0.97 0.5 0.7 0.4 0.53 0.2 0.03 0.13 0.17 0 0.13

0 0 0 0 0 0.03 0 0 0.03 0 0 0

0.1 0.2 0 0 0 0 0 0 0 0 0 0

0.09 0.24 0 0 0 0 0 0 0 0 0 0

Figure A.2: RoboYoga Walker Benchmark. Left: success rates averaged across all 12 tasks. Right:
final performance on each specific task, ranging from light green (0) to dark blue (100%). We observe
that the simple latent cosine distance function works well on this task, substantially outperforming
other competing agents. In the heatmap, most agents can solve the easy tasks, but only LEXA makes
progress on solving a majority of the tasks and achieves good performance.

0 1 2 3 4
Environment Samples 1e6

0.0

0.2

0.4

0.6

Av
g 

Go
al

 S
uc

ce
ss

Ours+Temporal
Ours+Cosine
DDL

DIAYN
GCSL
Skewfit lie 

2 lie
str

etc
h
lie 

sid
e

bala
nce 

2
sta

nd 2
sta

nd
att

ack

bala
nce

lie 
sid

e 2

two le
gs u

p
poin

t

Ours+
Temporal

Ours+
Cosine

DDL

DIAYN

GCSL

Skewfit

0.63 0.4 0.33 0.23 0.4 0.33 0.33 0.4 0.27 0.27 0.07 0.03

0.9 0.7 0.9 0.8 0.73 0.77 0.67 0.4 0.33 0.27 0.37 0.07

0.57 0.2 0.63 0.57 0.37 0 0 0.03 0.13 0.1 0.03 0

0.83 0.87 0.17 0 0 0 0 0 0 0 0.03 0

0.63 0.73 0.13 0 0 0.17 0.27 0.27 0 0 0.03 0

0.17 0.12 0.05 0 0.03 0.11 0.09 0.12 0.01 0 0 0

Figure A.3: RoboYoga Quadruped Benchmark. Left: success rates averaged across all 12 tasks.
Right: final performance on each specific task, ranging from light green (0) to dark blue (100%).
We observe that the simple latent cosine distance function works well on this task, substantially
outperforming other competing agents. In the heatmap, most agents can solve the easy tasks, but only
LEXA makes progress on solving a majority of the tasks and achieves good performance.

0 2 4 6 8
Environment Samples 1e6

0.00

0.25

0.50

0.75

1.00

Av
g 

Go
al

 S
uc

ce
ss

Ours+Temporal
Ours+Cosine
DDL

DIAYN
GCSL
Skewfit

reach left

reach right

push front

place front

push back push 

 both front place 

 both front push 

 both back

Ours+
Temporal

Ours+
Cosine

DDL

DIAYN

GCSL

SkewFit

1 0.94 1 0.89 0.56 0.94 0.44 0.33

1 1 1 1 0.5 0.5 0 0

1 1 0.83 0 0 0.17 0 0

0.62 0 0.67 0 0 0 0 0

0.18 0.23 0.3 0 0 0 0 0

0.6 0.71 0 0 0.1 0 0 0

Figure A.4: RoboBin Benchmark. Left: success rates averaged across all 8 tasks. Right: final
performance on each specific task. While cosine distance works on simple goals, temporal distance
outperforms it on tasks requiring manipulating several blocks (last three columns), as this distance
focuses on the part of the environment that’s hardest to manipulate. Prior agents only solve the easiest
reaching tasks, struggling either with exploration or learning the downstream policy.

16



0.0 1.5 3.0 4.5 6.0
Environment Samples 1e6

0.00

0.15

0.30

0.45

Av
g 

Go
al

 S
uc

ce
ss

Ours+Temporal
Ours+Cosine
DDL

DIAYN
GCSL
Skewfit

slid
e

kettle hinge

slid
e+kettle

slid
e+hinge light

kettle+light

kettle+hinge

hinge+light

slid
e+light

micro
wave

burner

Ours+
Temporal

Ours+
Cosine

DDL

DIAYN

GCSL

1 0.83 0.39 0.67 0.5 0.28 0.28 0.17 0.06 0 0 0

0.5 0.08 0.5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0.05 0.24 0 0 0 0.05 0 0 0 0 0 0

Figure A.5: RoboKitchen Benchmark. Left: success rates averaged across all 12 tasks. Right: final
performance on each specific task. RoboKitchen is challenging both for exploration and downstream
control, with most prior agents failing all tasks. In contrast, LEXA is able to learn both an effective
explorer and achiever policy. Temporal distance helps LEXA focus on small parts such as the light
switch, necessary to solve these tasks. LEXA makes progress on four out of six base tasks, and is
even able to solve combined goal images requiring e.g. both moving the kettle and opening a cabinet.

burner light
slid

e
hinge

micro
waveket

tle

slid
e+

light

hinge+
light

ket
tle+

light

slid
e+

hinge

slid
e+

ket
tle

ket
tle+

hinge

rea
ch lef

t

rea
ch rig

ht

push fro
nt

plac
e fr

ont

push back

push both
 fro

nt

plac
e b

oth
 fro

nt

push both
 back

Ours+
 Temporal

Ours+
 cosine

DDL

0.17 0.5 0.61 0.17 0 0.56 0.33 0.06 0.17 0.11 0.28 0.11 1 1 1 1 0 0.94 0.06 0

0 0 0 0 0 0.33 0 0 0 0 0 0 1 1 0.95 0.49 0.06 0.85 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.06 0 0.06 0 0 0

walk
er 

lie 
back

walk
er 

lie 
fro

nt

walk
er 

leg
s u

p

walk
er 

kneel

walk
er 

sid
e a

ngle

walk
er 

sta
nd

walk
er 

lea
n back

walk
er 

boat

walk
er 

brid
ge

walk
er 

head
 sta

nd

walk
er 

sta
nd foo

t

walk
er 

ara
besq

ue

quad lie

quad str
etc

h

quad lie
 2

quad tw
o le

gs u
p

quad lie
 sid

e

quad lie
 sid

e 2

quad sta
nd

quad sta
nd 2

quad poin
t

quad at
tac

k

quad bala
nce

quad bala
nce 

2

Ours+
 Temporal

Ours+
 cosine

DDL

0.94 0.22 0.39 0.56 0.44 0.5 0.17 0.06 0.11 0.11 0 0.06 0.33 0.44 0.22 0 0.17 0 0 0 0 0.11 0.06 0.56

1 0 0.67 1 0.51 0.52 0.94 0 1 0.79 0.1 0.41 0.36 0.84 0.67 0.05 0.7 0 0.32 0.33 0 0.17 0 0.69

1 0.72 0.56 1 0.22 0.5 0.72 0.11 0.67 0.61 0 0 0.06 0.11 0.11 0 0.06 0 0 0 0 0.06 0.11 0.22

Figure A.6: Single agent trained across Kitchen, RoboBin, Walker, with final performance on each
specific task. LEXA with temporal distance is able to make progress on tasks from all environments,
while LEXA+cosine and DDL don’t make progress on the kitchen tasks.

17



Visual Pusher Visual Pickup Table A.2: Results on SkewFit tasks [38].

Method Visual Pusher Visual Pickup

LEXA + temporal 0.023 0.014
Skew-Fit [38] 0.049 0.018
RIG [33] 0.077 0.037
RIG + Hazan et al. 0.059 0.039
RIG + HER [2] 0.075 0.035
DISCERN [51] 0.094 0.039
RIG + Goal GAN [18] 0.088 0.039
RIG + DISCERN-g 0.07 0.032
RIG + # Exploration 0.088 0.04
RIG + Rank-Based 0.067 0.035

Figure A.7: Final goal reaching error in meters on tasks from SkewFit [38]. Example observations
are provided on the left. Baseline results are taken from [38]. LEXA significantly outperforms prior
work on these tasks. Pushing and picking up blocks from visual observations is largely solved, so
future work will likely focus on harder benchmarks such as the one proposed in our paper.

Pendulum ReacherPointmass

Ball in Cup FingerCartpole

Table A.3: Results on DISCERN tasks*
[51].

LEXA DISCERN* [51]

Ball in cup 84% 76.5%
Cartpole 35.9% 21.3%
Finger 40.9% 21.8%
Pendulum 79.1% 75.7%
Pointmass 83.2% 49.6%
Reacher 100% 87.1%

Figure A.8: Goal success rate on the tasks replicated from [51]. Example observations are provided
on the left. LEXA results were obtained with early stopping. *While the original tasks are not
released, we followed the procedure for generating the goals described in [51]. Despite following
the exact procedure, we were not able to obtain similar goals to the ones used in the original
paper. Nevertheless, we show the goal completion percentage results obtained with our reproduced
evaluation compared to DISCERN results from the original paper. We see that our agent solves many
of the tasks in this benchmark and performs better on this comparison. We further suspect that the
goals that we generated are harder than the ones used in the original paper, such as in the cartpole
environment where our goals require swinging the pole higher up. Future work will likely focus on
harder benchmarks such as our RoboYoga benchmark, rather than these simple robots with one or
two degrees of freedom.

18



Pendulum Swingup

Reacher HardCup Catch

Walker Stand

Cartpole Balance

Hopper Stand

Table A.4: Results on zero-shot DeepMind control tasks
from Plan2Explore [44].

Method LEXA P2E [44] DrQv2 [53]
Zero-Shot 3 3* 7

Walker Stand 957 331 968
Hopper Stand 840 841 957
Cartpole Balance 886 950 989
Cartpole Balance 996 860 983
Sparse
Pendulum 788 792 837
Swingup
Cup Catch 969 962 909
Reacher Hard 937 66 970

Figure A.9: Final return on DM control tasks [49]. Example goals achieved by LEXA are provided
to the left. Baseline results taken from [44, 53]. LEXA results were obtained with early stopping.
*Plan2Explore adapts to new tasks but it needs the reward function to be known at test time while
LEXA does not require access to rewards. To compare on the same benchmark, we create goal images
that correspond to the reward functions. This setup is arguably harder for our agent, but is much more
practical. Our agent outperforms Plan2Explore on most tasks and even performs comparably to state
of the art oracle agents (DrQ, DrQv2, Dreamer) that use true task rewards during training.

19


