
Appendix:
Memory Efficient Meta-Learning with Large Images

A Applying LITE to meta-learners

A.1 CNAPS, Simple CNAPS + LITE

We show the LITE processing flow for both meta-training and meta-testing phases of CNAPS/Simple
CNAPS in Fig. A.1. For each query set meta-training batch b, the support set images {xH,xH}
are broken into batches, passed through a 2D conv net, then coalesced so that the pooling step can
compute the mean of all the support set embeddings. This mean embedding is then passed into the
FiLM parameter generator so that the feature extractor can be configured for the task. The support set
images {xH,xH} are then passed through the adapted feature extractor in batches and the outputs
are coalesced and then fed along with the support set labels {yH, yH} into the box labeled "Compute
Classifier Params". For CNAPS, this box performs the class-conditional pooling operation and then
uses an MLP to generate the weights and biases for the linear classifier. For Simple CNAPS, the
same box computes the class-conditional means and covariances that are then used by the classifier
in the Mahalanobis distance calculations. Once the classifier has been configured, the images in the
query set batch {x∗b} can be classified and along with the true labels {y∗b}, a loss is then computed.
The meta-testing flow is similar, with the exception of the loss computation.
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Figure A.1: CNAPS [4], Simple CNAPS [5] with LITE processing flow.

A.2 ProtoNets + LITE

We show the LITE processing flow for both meta-training and meta-testing phases of ProtoNets
in Fig. A.2. For each query set meta-training batch b, the support set images {xH,xH} are broken
into batches, passed through the feature extractor and the resulting embeddings are then combined.
The combined embeddings along with the support set labels {yH, yH} are then used to compute the
class prototypes. The query batch images {x∗b} are then passed through the feature extractor and the
Euclidean distance from each query set image embedding to each of the class prototypes is computed.
The predicted class is the one with the minimum distance. These predictions along with the true
labels {y∗b} are used to compute the loss. The meta-testing flow is similar, with the exception of the
loss computation.

B Additional Simple CNAPS details

Our implementation of Simple CNAPS differs slightly from [5]. Here we describe the key architecture
differences which were made with the goal of reducing the number of model parameters. We verified
that these modification came without a reduction in classification performance:
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Figure A.2: ProtoNets [3] with LITE processing flow.

FiLM 𝒇𝑖

× +

𝛾𝑖,1 𝛽𝑖,1

× +

𝛾𝑖,𝑐ℎ 𝛽𝑖,𝑐ℎ

…
1 x 1
conv

expand

BN
FiLM 
𝒇𝑖

swish
1 x 1

project
conv

+

𝜸𝑖 , 𝜷𝑖

swish
depth
-wise
conv

BN BN

Figure B.3: (Left) A FiLM layer operating on convolutional feature maps indexed by channel ch.
(Right) How a FiLM layer is used within a inverted residual block [33] of an EfficientNet [32].

• We replace the ResNet18 [31] feature extractor with an EfficientNet-B0 [32] since it has superior
classification performance and fewer parameters (4.0M versus 11.2M for ResNet18). We pre-train
the parameters of the feature extractor on ImageNet [29] and then freeze them during meta-training
and meta-testing.

• Like Simple CNAPS, we use Feature-wise Linear Modulation (FiLM) layers [18] to adapt the
feature extractor to the current task. In the EfficientNet-B0 feature extractor, we use a FiLM layer
with scale parameters γi and offset parameters βi after every separate convolutional layer and after
every depth-wise separable convolution within a inverted residual block (refer to Fig. B.3). This is
a total of 18 FiLM layers (<0.2% parameters in the model).

• We use a lower capacity 2-layer MLP network for generating parameters for each FiLM layer in
the feature extractor (refer to Fig. B.4). This new FiLM layer generator network has less than
18% of the parameters (1.51M versus 8.45M) compared to the network used in the original Simple
CNAPS.

• We do not use the Simple CNAPS Auto-regressive (AR) mode as the additional number of
parameters did not yield sufficient gain.

Since the feature extractor parameters are frozen and the Mahalanobis distance based classifier has
no parameters, the only learnable parameters in the model are in the set encoder and the network that
generates the FiLM layer parameters.

C Experimental Details

In this section, we provide details for the LITE experiments using the ORBIT and VTAB+MD
datasets.
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Figure B.4: Generator for ith FiLM layer. The generator takes the output of the set encoder step for
each task τ and passes it through the network to generate the parameters γi and βi. The dimension of
the vectors γi and βi is equal to the number of feature channels at the location where the ith FiLM
layer is placed within feature extractor. The depicted generator network structure is repeated for each
FiLM layer added to the feature extractor.
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C.1 ORBIT Teachable Object Recognition Benchmark

Meta-training and meta-testing for the ORBIT experiments were performed on a single NVIDIA
Titan RTX with 24GB of memory.

Feature extractors We use either a ResNet-18 (following [14]) or an EfficientNet-B0 [32], both
pre-trained on ImageNet [34]. Note, for CNAPS and Simple CNAPS, the feature extractor is frozen
and only the set encoder and hyper-networks are trained, for ProtoNets and MAML all parameters
are learned, and for the FineTuner the feature extractor is frozen and only the linear classifier is
fine-tuned.

Meta-training protocol We train the learnable parameters in the meta-learners episodically on 50
randomly sampled tasks per train user per epoch (44 total train users). Note, each epoch samples 50
new tasks per train user. Each task is composed of clips sampled from a single user’s objects (random
way) and associated videos (random shot). In the case of a large task, following [14], we randomly
sample 4 clips from each support and query video, where each clip is 8 frames. For a small task, we
limit this to 1 clip per support video and 1 clip per query video where each clip is 8 frames, and we
also cap 1) the number of objects per task to 5, and 2) the number of support/query videos per object
to 2. For both large and small tasks, a clip feature is taken as the average of its frame features, where
each frame in 224× 224 pixels. Note, the FineTuner undergoes no training – all feature extractor
parameters are frozen to its pre-trained weights.

Meta-testing protocol Following [14], we evaluate the trained models on 5 tasks per test user,
where each task is sampled from just that user’s objects and videos. Different to training, here
each task contains all the test user’s objects and associated videos without caps. For each test task,
we randomly sample 8 clips from each support video, and all overlapping clips from each query
video. We then adapt the trained model to a task by using the task’s support clips to: i) perform a
forward pass for CNAPs, Simple CNAPs and ProtoNets, ii) take 15 gradient steps on all the model’s
parameters for MAML, or iii) take 50 gradient steps on just the linear classifier head for FineTuner.
We evaluate the adapted model predictions for every clip in each query video in the test task (in the
clean video evaluation mode, the query videos show just one object on a clear surface, while in the
clutter video evaluation mode, the query videos show the object in a multi-object/cluttered scene).
We report all metrics averaged over a flattened list of all the query videos from all tasks from all test
users (17 test users, 85 tasks in total), along with its corresponding 95% confidence interval.

Optimization hyper-parameters For CNAPs, Simple CNAPs, and ProtoNets, we use the Adam
optimizer [35] and a learning rate of 10-4. For MAML, we use Adam and a learning rate of 10-5 for
the outer loop, and Stochastic Gradient Descent (SGD) and a learning rate of 10-3 for the inner loop
(rates reduced by 0.1 for the feature extractor in both loops). For the FineTuner, we use SGD and
a learning rate of 0.1. We train Simple CNAPS with ResNet-18/EfficientNet-B0 for 10/15 epochs
respectively, CNAPS for 15/15 epochs, ProtoNets for 20/20 epochs, and MAML for 20/20 epochs.
These were chosen based on the number of learnable parameters in each model. Table 1 reports the
test performance of the model with the best frame accuracy on a held-out validation set.

LITE hyper-parameters We train CNAPs, Simple CNAPs and ProtoNets with H = 8 clips
(see Algorithm 1). We set the query batch size to Mb = 8 clips across all meta-learners. Note,
MAML does not use LITE since we implement only the first-order variant. We, therefore, process
support (and query) sets using standard batch processing with a batch size of 32 clips.

C.2 VTAB+MD Benchmark

Meta-training and meta-testing for the VTAB+MD experiments were performed on a single NVIDIA
V100 16GB GPU. Meta-training takes about 20 hours.

Meta-training protocol Simple CNAPS + LITE uses an EfficientNet-B0 pretrained on ImageNet
for the feature extractor f and all of its parameters are frozen and not updated during meta-training.
As permitted in the VTAB+MD protocol, we meta-train Simple CNAPS + LITE in an episodic
manner on the training splits of following datasets: ImageNet, Omniglot, Aircraft, CU Birds, DTD,
QuickDraw, and Fungi. In addition, we meta-train on the test split of MNIST as it does not overlap
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with any of the test datasets. We meta-train for 10,000 iterations with the Adam [35] optimizer using
a fixed learning rate of 0.001, and a batch size of 40. We back-propagate after every task, but do an
optimization step after every 16 tasks.

Meta-testing protocol For meta-testing on MD-v2, we generate test episodes using the Meta-
Dataset episode reader with the standard evaluation settings. We test all models with 600 episodes
each on all test datasets. The classification accuracy is averaged over the episodes and a 95%
confidence interval is computed. For each test dataset in VTAB-v2, we use the TensorFlow Datasets
API [36] and randomly sample 1000 examples from the train split for the support set and use the
entire test split for the query set and report a single accuracy.

D Additional Experimental Results

D.1 Full results on ORBIT benchmark

In the main paper, we report frame and video accuracy for test tasks, as well as the number of MACs
and steps to adapt at test time and the number of model parameters. In Table D.1, we include a further
metric – frames to recognition or FTR – which was proposed in the original baselines [14]. We also
include additional results for large images (224) on small tasks without using LITE. Descriptions for
the metrics are thus:

• Frame accuracy, the proportion of correct frame predictions in a query video;
• Frames-to-recognition or FTR, the number of frames before the first correct prediction, divided

by the number of frames in the query video;
• Video accuracy, 1 if the most frequent frame prediction in a query video equals the true video

label, otherwise 0;
• MACs to adapt, number of Multiply-Accumulate operations to learn a new task at test time (i.e.

the operations required to process the whole support set);
• Steps to adapt, number of steps to learn a new task at test time (note, for gradient-based methods

this involves multiple forward-backward passes through the model, while for amortization- and
metric-based approaches this involves just a single forward pass);

• Number of parameters, number of learnable and frozen parameters in the model (note, this
exclude the parameters that are generated by amortization-based methods)

D.2 Tabular results on VTAB+MD benchmark

In Table D.2, we show the tabular results for the VTAB+MD benchmark.

D.3 Meta-training without LITE on small tasks with large images

Table D.3 we show classification results on VTAB+MD using various ablations of Simple CNAPS
including LITE on versus off, image size 84×84 versus 256×256 pixels, and small versus large sized
tasks. For the no LITE, image size 84×84, and large task case, we meta-train on 35,000 tasks using
the Adam optimizer at learning rate of 0.001 on the same training datasets as Simple CNAPS + LITE.
For the no LITE, image size 224×224 pixels, and small task case, we we meta-train on 15,000 tasks
using the Adam optimizer at learning rate of 0.001 on the same training datasets as Simple CNAPS +
LITE. To make the number of tasks small during meta-training, we limit the maximum support set
size to be 40 and the maximum classification way to be 30.

It is clear that using larger images results in a significant boost in classification accuracy, except on
datasets where the images are natively small (e.g. Omniglot, Quickdraw, dSprites). Using LITE
versus a smaller task size results in a significant boost in classification accuracy on VTAB-v2 where
the support set size is large (1000 examples), however the results on MD-v2, where the support set
sizes are smaller, are very similar in the two cases.

The trend is similar in the case of the ORBIT dataset (refer to Table D.1) where the difference between
using LITE and tasks with a smaller number of examples is not great (often within the margin of
error). This is likely due to the fact that in the case of ORBIT (i) the classification way is typically
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Table D.1: Training meta-learners on large images with LITE achieves state-of-the-art accuracy
with low test time adaption cost on the ORBIT Teachable Object Recognition Benchmark. Results
are reported as the average (95% confidence interval) over 85 test tasks (5 tasks per test user, 17
test users). I is image size. f is model trained with/without LITE. RN-18 is ResNet-18. EN-B0 is
EfficientNet-B0. T is ×1012 MACs. F is forward pass. FB is forward-backward pass. Time is average
wall clock time per task in seconds.

Clean Videos Clutter Videos Test-time adaption

MODEL I f
FRAME ACC

↑
FTR
↓

VIDEO ACC
↑

FRAME ACC
↑

FTR
↓

VIDEO ACC
↑

MACS
↓

STEPS
↓

TIME
↓

PARAMS
↓

FineTuner [28]
84 RN-18 69.5 (2.2) 7.8 (1.5) 79.7 (2.6) 53.7 (1.8) 14.4 (1.5) 63.1 (2.4) 317.70T 50FB 53.94s 11.17M

224 RN-18 72.2 (2.2) 8.7 (17) 81.9 (2.6) 56.7 (2.0) 18.8 (1.8) 61.3 (2.5) 546.57T 50FB 96.23s 11.18M
224 EN-B0 78.1 (2.0) 5.8 (1.4) 85.9 (2.3) 63.1 (1.8) 11.5 (1.4) 66.9 (2.4) 121.02T 50FB 139.99s 4.01M

MAML [1]
84 RN-18 70.6 (2.1) 8.6 (1.6) 80.9 (2.6) 51.7 (1.9) 21.0 (1.8) 57.9 (2.5) 95.31T 15FB 36.98s 11.17M

224 RN-18 75.7 (1.9) 4.9 (1.2) 86.1 (2.3) 59.3 (1.9) 16.3 (1.7) 64.3 (2.4) 163.97T 15FB 65.22s 11.18M
224 EN-B0 79.3 (1.9) 6.2 (1.4) 87.5 (2.2) 64.6 (1.9) 12.8 (1.5) 69.4 (2.3) 36.31T 15FB 117.89s 4.01M

ProtoNets [3]

84 RN-18 65.2 (2.0) 7.6 (1.4) 81.9 (2.5) 50.3 (1.7) 14.9 (1.5) 59.9 (2.5) 3.18T 1F 0.73s 11.17M
224 RN-18 77.4 (1.8) 4.5 (1.1) 87.1 (2.2) 56.8 (1.8) 14.4 (1.5) 62.5 (2.5) 5.47T 1F 1.07s 11.18M
224 RN-18 + LITE 76.7 (1.9) 5.1 (1.2) 86.4 (2.2) 61.4 (1.8) 13.2 (1.5) 68.5 (2.4) 5.47T 1F 1.07s 11.18M
224 EN-B0 78.4 (1.8) 4.7 (1.1) 87.9 (2.1) 57.3 (1.8) 12.7 (1.4) 63.9 (2.4) 1.21T 1F 1.72s 4.01M
224 EN-B0 + LITE 82.1 (1.7) 3.9 (1.0) 91.2 (1.9) 66.3 (1.8) 12.7 (1.5) 72.9 (2.3) 1.21T 1F 1.72s 4.01M

CNAPs [4]

84 RN-18 66.2 (2.1) 8.4 (1.4) 79.6 (2.6) 51.5 (1.8) 17.9 (1.7) 59.5 (2.5) 3.48T 1F 0.98s 12.75M
224 RN-18 73.6 (2.0) 5.4 (1.2) 83.4 (2.4) 57.6 (1.8) 14.9 (1.6) 66.5 (2.4) 7.64T 1F 2.11s 12.76M
224 RN-18 + LITE 76.0 (1.9) 5.9 (1.3) 84.9 (2.3) 58.2 (1.9) 15.1 (1.6) 62.5 (2.5) 7.64T 1F 2.11s 12.76M
224 EN-B0 79.6 (1.9) 6.2 (1.4) 87.0 (2.2) 62.6 (1.9) 13.2 (1.5) 67.4 (2.4) 3.38T 1F 2.83s 10.59M
224 EN-B0 + LITE 79.6 (1.9) 5.9 (1.3) 87.6 (2.2) 63.3 (1.9) 12.8 (1.5) 69.2 (2.3) 3.38T 1F 2.85s 10.59M

Simple CNAPs [5]

84 RN-18 70.3 (2.1) 7.3 (1.5) 83.0 (2.5) 53.9 (1.8) 16.0 (1.6) 62.0 (2.5) 3.48T 1F 1.01s 11.97M
224 RN-18 75.2 (2.0) 6.0 (1.4) 84.6 (2.4) 58.1 (1.9) 14.7 (1.6) 60.9 (2.5) 7.64T 1F 2.13s 11.97M
224 RN-18 + LITE 76.5 (2.0) 6.1 (1.4) 86.4 (2.2) 57.5 (1.9) 17.3 (1.7) 64.6 (2.4) 7.64T 1F 2.14s 11.97M
224 EN-B0 81.4 (1.8) 4.9 (1.3) 88.3 (2.1) 65.6 (1.9) 11.2 (1.4) 69.9 (2.3) 3.39T 1F 2.91s 5.67M
224 EN-B0 + LITE 82.7 (1.7) 4.1 (1.1) 91.8 (1.8) 65.6 (1.9) 13.5 (1.5) 71.9 (2.3) 3.39T 1F 2.92s 5.67M

small (less than or equal to 10); and (ii) since the support frames are derived from videos, there is
significant redundancy in the support sets, making the difference between having a small and large
number of support examples less important. The benefits of LITE are more apparent in tasks with
large way and large support set sizes, as is the case with VTAB-v2.

D.4 Tabular results and additional details on the varying |H| experiments

Tables D.4 to D.6 provide full tabular results for classification accuracy versus varying |H| on
VTAB+MD. Note that in Table D.6, using Simple CNAPS + LITE on images of size of 84× 84
pixels with |H| = 40, GPU memory usage drops to roughly 8 GB, which is approximately half of
that used when run without LITE (i.e. |H| = |DS |).
Table D.7 shows the mean squared error between the mean of the approximate gradients and the true
gradients for both LITE and sub-sampled small tasks as |H| is varied. The low mean squared error
values for both training methods empirically demonstrates that both are unbiased.

Table D.8 shows the average root mean squared error (RSME) of the approximate gradients and the
true gradients for both LITE and sub-sampled small tasks as |H| is varied. Table D.8 and Fig. 4 show
that the RMSE deviation of the LITE estimate is significantly smaller than that of sub-sampled small
tasks at all but the highest values of |H|. Note, that these results are limited to image classification in
the specific networks and network parameters that we tested. Other data types and networks are left
for future work.

These experiments were carried out as follows:

• The Simple CNAPS + LITE network is initialized identically for all runs.
• Image size is 84× 84 pixels, so that the true gradients can be calculated.
• The same 10-way, 10-shot task (|DS | = 100) drawn from the DTD dataset is identical for

all runs.
• Gradients are measured on the weights in the first (i.e. earliest) Conv2D layer in the set

encoder after a single training iteration.
• Reference (exact) gradients are calculated without using LITE.
• Small task gradients are calculated by randomly sub-sampling the task (though we ensure

there is at least one example per class).
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Table D.2: Classification accuracy results on VTAB+MD [11] using Simple CNAPS + LITE and
various competing transfer learning and meta-learning approaches. All competitive results are from
[11]. All figures are percentages and the ± sign indicates the 95% confidence interval over tasks.
Bold type indicates the highest scores (within the confidence interval). The VTAB-V2 results have
no confidence interval as the testing protocol requires only a single run over the entire test set.
RN indicates ResNet [31] and EN indicates EfficientNet [32]. The SUR results are with a linear
classifier head. Simple CNAPS + LITE outperforms all approaches on MD-v2 and outperforms all
meta-learning approaches on VTAB (all).

Transfer learning Meta-Learning
MD-Transfer SUR BiT ProtoNets ProtoMAML CTX SC(84) SC+LITE

Backbone RN-18 RN-50 x 7 RN-18 RN-18 RN-18 RN-34 EN-B0 EN-B0
Params (M) 11.2M 164.6M 11.2M 11.2M 11.2M 21.3M 4.0M 4.0M
Image Size 126 224 224 126 126 224 84 224

Omniglot 82.0 ± 1.3 89.6 72.7 ± 4.6 85.3 ± 0.9 90.2 ± 0.7 84.6 ± 0.9 90.9 ± 0.6 86.5 ± 0.8
Aircraft 76.8 ± 1.2 59.7 73.6 ± 3.8 74.3 ± 0.8 82.1 ± 0.6 85.3 ± 0.8 77.5 ± 0.7 83.6 ± 0.7
Birds 61.2 ± 1.3 81.4 87.2 ± 1.9 68.0 ± 1.0 73.4 ± 0.9 72.9 ± 1.1 76.4 ± 0.8 88.6 ± 0.7
DTD 66.0 ± 1.1 83.9 82.6 ± 2.7 65.3 ± 0.7 66.3 ± 0.8 77.3 ± 0.7 74.3 ± 0.7 84.1 ± 0.7
QuickDraw 61.3 ± 1.1 81.2 66.3 ± 3.6 60.6 ± 1.0 66.4 ± 1.0 73.3 ± 0.8 76.5 ± 0.7 75.7 ± 0.8
Fungi 35.5 ± 1.1 69.2 53.9 ± 4.4 39.8 ± 1.1 46.3 ± 1.1 48.0 ± 1.2 51.3 ± 1.1 56.9 ± 1.2
Traffic Sign 84.7 ± 0.9 46.5 75.4 ± 4.3 49.8 ± 1.1 50.3 ± 1.1 80.1 ± 1.0 54.8 ± 1.1 65.8 ± 1.1
MSCOCO 39.6 ± 1.0 58.6 60.0 ± 2.9 39.7 ± 1.0 39.0 ± 1.0 51.4 ± 1.1 45.1 ± 1.0 50.0 ± 1.0

Caltech101 70.6 86.5 84.6 72.0 73.1 84.2 79.6 87.7
CIFAR100 31.3 34.2 47.1 27.7 29.7 37.5 37.1 48.8
Flowers102 66.1 71.2 82.7 57.1 60.2 81.8 65.5 83.5
Pets 49.1 88.7 83.9 51.0 56.6 70.9 69.8 89.3
Sun397 13.9 0.5 29.1 14.2 8.1 24.8 18.0 30.9
SVHN 83.2 24.2 83.4 41.9 46.8 67.2 26.7 51.0

EuroSAT 88.7 82.6 93.8 77.7 80.1 86.4 82.8 89.3
Resics45 63.7 67.8 74.1 50.8 53.5 67.7 64.5 76.4
Patch Camelyon 81.5 77.1 80.7 73.8 75.9 79.8 78.4 81.4
Retinopathy 57.6 37.4 74.5 28.0 73.2 35.5 29.4 40.3

CLEVR-count 40.3 34.1 55.2 32.0 32.7 27.9 30.7 31.4
CLEVR-dist 52.9 29.8 58.7 39.4 35.4 29.6 32.5 32.8
dSprites-loc 85.9 16.9 98.6 38.1 42.0 23.2 43.9 12.3
dSprites-ori 46.4 18.7 46.5 16.3 23.0 46.9 21.1 31.1
SmallNORB-azi 36.5 8.3 20.1 12.3 13.4 37.0 13.5 14.5
SmallNORB-elev 31.2 18.4 21.8 17.4 18.8 21.6 19.6 21.0
DMLab 43.0 33.5 43.7 31.8 32.5 31.9 33.9 39.4
KITTI-dist 58.7 57.5 78.8 42.1 54.4 54.3 58.1 63.9

MD-v2 63.4 71.3 71.5 60.3 64.2 71.6 68.4 73.9
VTAB (all) 55.6 43.7 64.3 40.2 45.0 50.5 44.7 51.4
VTAB (natural) 52.4 50.9 68.5 44.0 45.7 61.1 49.5 65.2
VTAB (specialized) 72.9 66.2 80.8 57.6 70.7 67.3 63.8 71.9
VTAB (structured) 49.4 27.2 53.0 28.7 31.5 34.1 31.7 30.8

• For each value of |H|, the number of samples used in the calculations are chosen such that
1000 examples of the support set are used. For example, for |H| = 50, 20 different one
iteration training runs are done (20 runs × 50 random examples per run = 1000).

• To calculate the values in Table D.7, for each value of |H|, the mean of the approximate
gradient runs is computed and then the mean squared error is computed between this value
and the exact gradient.

• To calculate the values in Table D.8, for each value of |H|, the RMSE between the approxi-
mate gradients and the exact gradients is computed and then this value is averaged over the
number of runs.

D.5 Additional Results

Table D.9 contains the results for Simple CNAPS + LITE on VTAB+MD at image size 320× 320
pixel with |H| = 10, demonstrating that by employing LITE, even larger images can be be used
in meta-learning algorithms. Overall, these results are similar to the 224× 224 case as the feature
extractor was pre-trained at 224×224 pixels. However, on the Birds, Fungi, and Retinopathy datasets,
where the original images are very large (> 320 pixels), the results on this run were better than the
224 case.
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Table D.3: Classification accuracy results on VTAB+MD [11] using various ablations of Simple
CNAPS including LITE on versus off, image size 84×84 versus 256×256 pixels, and small versus
large tasks. All figures are percentages and the ± sign indicates the 95% confidence interval over
tasks. Bold type indicates the highest scores (within the confidence interval). The VTAB-V2 results
have no confidence interval as the testing protocol requires only a single run over the entire test set.
A pretrained EfficientNet-B0 [32] backbone was utilized in all runs. In general, using larger images
leads to better results, and using LITE on large tasks greatly improves results on VTAB-V2.

LITE No No Yes
Task Size Large Small Large
Image Size 84 224 224

Omniglot 90.9 ± 0.6 91.6 ± 0.6 86.5 ± 0.8
Aircraft 77.5 ± 0.7 81.5 ± 0.7 83.6 ± 0.7
Birds 76.4 ± 0.8 88.8 ± 0.6 88.6 ± 0.7
DTD 74.3 ± 0.7 83.7 ± 0.6 84.1 ± 0.7
QuickDraw 76.5 ± 0.7 76.4 ± 0.7 75.7 ± 0.8
Fungi 51.3 ± 1.1 59.3 ± 1.1 56.9 ± 1.2
Traffic Sign 54.8 ± 1.1 60.7 ± 1.0 65.8 ± 1.1
MSCOCO 45.1 ± 1.0 52.5 ± 1.1 50.0 ± 1.0

Caltech101 79.6 84.9 87.7
CIFAR100 37.1 50.2 48.8
Flowers102 65.5 78.9 83.5
Pets 69.8 87.7 89.3
Sun397 18.0 32.0 30.9
SVHN 26.7 37.6 51.0
EuroSAT 82.8 86.0 89.3
Resics45 64.5 69.8 76.4
Patch Camelyon 78.4 79.1 81.4
Retinopathy 29.4 40.2 40.3
CLEVR-count 30.7 28.7 31.4
CLEVR-dist 32.5 31.4 32.8
dSprites-loc 43.9 14.7 12.3
dSprites-ori 21.1 35.8 31.1
SmallNORB-azi 13.5 12.2 14.5
SmallNORB-elev 19.6 19.0 21.0
DMLab 33.9 36.7 39.4
KITTI-dist 58.1 57.0 63.9
MD-v2 68.4 74.3 73.9
VTAB (all) 44.7 49.0 51.4
VTAB (natural) 49.5 61.9 65.2
VTAB (specialized) 63.8 68.8 71.9
VTAB (structured) 31.7 29.4 30.8
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Table D.4: Classification accuracy results on VTAB+MD [11] using Simple CNAPS + LITE
with varying values of |H|. Image size is 224 x 224 pixels. To achieve |H| > 40, we used
gradient/activation checkpointing methods [12] in addition to LITE. All figures are percentages
and the ± sign indicates the 95% confidence interval over tasks. The VTAB-V2 results have no
confidence interval as the testing protocol requires only a single run over the entire test set.

Dataset |H| = 1 |H| = 10 |H| = 20 |H| = 30 |H| = 40 |H| = 100

Omniglot 83.5 ± 1.0 85.2 ± 0.9 85.5 ± 0.9 85.9 ± 0.9 86.5 ± 0.8 86.2 ± 0.8
Aircraft 82.1 ± 0.8 82.9 ± 0.8 82.5 ± 0.8 83.5 ± 0.7 83.6 ± 0.7 83.4 ± 0.8
Birds 88.0 ± 0.7 89.4 ± 0.5 88.9 ± 0.6 88.5 ± 0.7 88.6 ± 0.7 88.8 ± 0.7
DTD 84.4 ± 0.7 84.3 ± 0.7 84.2 ± 0.7 85.1 ± 0.6 84.1 ± 0.7 85.1 ± 0.7
QuickDraw 75.3 ± 0.8 75.8 ± 0.8 75.7 ± 0.8 75.9 ± 0.8 75.7 ± 0.8 76.1 ± 0.8
Fungi 53.8 ± 1.2 55.3 ± 1.2 56.8 ± 1.2 56.5 ± 1.2 56.9 ± 1.2 57.2 ± 1.2
Traffic Sign 65.9 ± 1.1 66.6 ± 1.1 64.7 ± 1.1 64.7 ± 1.1 65.8 ± 1.1 65.9 ± 1.1
MSCOCO 49.5 ± 1.1 50.0 ± 1.1 48.2 ± 1.2 50.2 ± 1.1 50.0 ± 1.0 51.9 ± 1.1

Caltech101 87.9 87.8 87.1 87.5 87.7 88.2
CIFAR100 46.8 46.6 45.2 48.1 48.8 50.1
Flowers102 82.8 83.8 82.9 83.7 83.5 83.0
Pets 89.2 89.2 89.3 89.5 89.3 89.7
Sun397 28.8 31.5 30.3 32.4 30.9 32.3
SVHN 51.4 53.0 49.6 53.5 51.0 52.7

EuroSAT 88.5 88.4 88.4 88.3 89.3 88.6
Resics45 75.3 75.1 74.4 75.9 76.4 76.1
Patch Camelyon 80.4 80.2 78.7 80.2 81.4 81.9
Retinopathy 42.8 42.0 40.4 40.7 40.3 39.8

CLEVR-count 31.0 29.0 30.4 29.7 31.4 30.9
CLEVR-dist 33.4 33.4 32.6 32.8 32.8 33.0
dSprites-loc 10.7 10.5 11.6 11.3 12.3 10.6
dSprites-ori 30.5 29.9 29.4 29.2 31.1 27.9
SmallNORB-azi 14.6 14 14.2 14.3 14.5 14.6
SmallNORB-elev 21.3 21.3 20.8 20.7 21 20.9
DMLab 40.4 40.6 40.3 38.5 39.4 38.8
KITTI-dist 65.7 61.5 63.3 63.0 63.9 62.4

MD-v2 72.8 73.7 73.3 73.8 73.9 74.3
VTAB (all) 51.2 51.0 50.5 51.1 51.4 51.2
VTAB (natural) 64.5 65.3 64.1 65.8 65.2 66.0
VTAB (specialized) 71.8 71.4 70.5 71.3 71.9 71.6
VTAB (structured) 31.0 30.0 30.3 29.9 30.8 29.9
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Table D.5: Classification accuracy results on VTAB+MD [11] using ProtoNets with varying values
of |H|. Image size is 224 x 224 pixels. All figures are percentages and the ± sign indicates the 95%
confidence interval over tasks. The VTAB-V2 results have no confidence interval as the testing
protocol requires only a single run over the entire test set.

Dataset |H| = 0 |H| = 10 |H| = 20 |H| = 30 |H| = 40

Omniglot 86.7 ± 0.8 87.7 ± 0.8 88.3 ± 0.8 88.3 ± 0.7 88.3 ± 0.8
Aircraft 83.8 ± 0.7 84.6 ± 0.7 84.1 ± 0.7 85.1 ± 0.7 85.0 ± 0.7
Birds 88.8 ± 0.6 89.4 ± 0.6 89.8 ± 0.6 89.1 ± 0.7 90.2 ± 0.5
DTD 78.6 ± 0.6 79.7 ± 0.6 80.2 ± 0.7 80.6 ± 0.7 81.4 ± 0.6
QuickDraw 73.5 ± 0.8 75.0 ± 0.7 75.2 ± 0.8 75.6 ± 0.7 76.0 ± 0.7
Fungi 59.4 ± 1.2 58.9 ± 1.1 58.2 ± 1.2 58.0 ± 1.1 57.4 ± 1.1
Traffic Sign 50.0 ± 1.1 52.2 ± 1.1 52.1 ± 1.0 53.1 ± 1.1 53.5 ± 1.1
MSCOCO 47.3 ± 1.0 48.1 ± 1.0 48.1 ± 1.1 50.2 ± 1.0 49.8 ± 1.1

Caltech101 86.6 86.9 87.2 87.2 87.4
CIFAR100 35.5 39.6 42.0 43.4 43.1
Flowers102 76.6 77.9 78.3 78.5 78.2
Pets 88.5 88.4 88.7 88.7 88.6
Sun397 31.5 31.8 31.1 31.8 32.9
SVHN 32.0 35.6 36.4 35.3 35.2

EuroSAT 79.4 81.6 81.8 82.9 83.3
Resics45 65.7 67.4 68.0 69.0 68.8
Patch Camelyon 75.9 72.8 73.7 74.2 73.3
Retinopathy 32.9 33.7 33.2 31.9 31.3
CLEVR-count 28.3 27.3 27.1 27.2 27.2
CLEVR-dist 29.5 29.2 29.0 28.9 28.5
dSprites-loc 13.3 14.1 14.0 13.2 13.4
dSprites-ori 20.4 19.6 20.4 19.8 19.6
SmallNORB-azi 9.4 9.4 9.6 9.5 9.4
SmallNORB-elev 16.3 17.1 17.0 17.1 17.0
DMLab 35.2 35.5 35.9 35.9 35.8
KITTI-dist 55.6 57.2 58.2 57.1 56.5

MD-v2 71.0 72.0 72.0 72.5 72.7
VTAB (all) 45.1 45.8 46.2 46.2 46.1
VTAB (natural) 58.5 60.0 60.6 60.8 60.9
VTAB (specialized) 63.5 63.9 64.2 64.5 64.2
VTAB (structured) 26.0 26.2 26.4 26.1 25.9
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Table D.6: Classification accuracy results on VTAB+MD [11] using Simple CNAPS + LITE with
two values of |H|. Image size is 84 x 84 pixels. All figures are percentages and the ± sign indicates
the 95% confidence interval over tasks. The VTAB-V2 results have no confidence interval as the
testing protocol requires only a single run over the entire test set.

Dataset |H| = 40 |H| = |DS |
Omniglot 83.7±1.0 90.9±0.6
Aircraft 65.4±0.9 77.5±0.7
Birds 69.5±1.0 76.4±0.8
DTD 72.1±0.8 74.3±0.7
QuickDraw 70.6±0.9 76.5±0.7
Fungi 45.5±1.2 51.3±1.1
Traffic Sign 58.2±1.0 54.8±1.1
MSCOCO 43.8±1.1 45.1±1.0

Caltech101 74.9 79.6
CIFAR100 35.4 37.1
Flowers102 69.6 65.5
Pets 55.5 69.8
Sun397 13.9 18.0
SVHN 36.7 26.7

EuroSAT 84.2 82.8
Resics45 61.5 64.5
Patch Camelyon 74.0 78.4
Retinopathy 24.3 29.4
CLEVR-count 32.2 30.7
CLEVR-dist 36.3 32.5
dSprites-loc 26.5 43.9
dSprites-ori 19.7 21.1
SmallNORB-azi 14.0 13.5
SmallNORB-elev 19.0 19.6
DMLab 33.4 33.9
KITTI-dist 58.1 58.1

MD-v2 63.6 68.4
VTAB (all) 42.7 44.7
VTAB (natural) 47.7 49.5
VTAB (specialized) 61.0 63.8
VTAB (structured) 29.9 31.7

Table D.7: Mean Squared Error (lower is better) between the mean of the gradient estimates and
the true gradients for both LITE and subsampled small tasks as |H| is varied. The task used was a
10-way, 10-shot task of 84× 84 pixels from the DTD dataset. For each value of |H|, 1000 support
set examples were used.

|H|
Training Mode 10 20 30 40 50 60 70 80 90

LITE 9.53E-11 9.24E-11 7.89E-11 8.48E-11 5.11E-11 5.31E-11 6.03E-11 1.02E-10 2.51E-11
Subsampled Small Task 9.23E-11 8.46E-11 7.67E-11 7.15E-11 6.45E-11 6.27E-11 5.67E-11 4.78E-11 4.30E-11

Table D.8: Average root mean squared error (lower is better) with respect to the exact gradients for
both LITE and subsampled small tasks as |H| is varied. The task used was a 10-way, 10-shot task of
84× 84 pixels from the DTD dataset. For each value of |H|, 1000 support set examples were used.

|H|
Training Mode 10 20 30 40 50 60 70 80 90

LITE 4.35E-03 3.20E-03 2.55E-03 2.32E-03 1.84E-03 1.63E-03 1.65E-03 1.73E-03 1.06E-03
Subsampled Small Task 5.56E-03 4.32E-03 3.43E-03 2.66E-03 2.37E-03 2.04E-03 1.77E-03 1.40E-03 1.13E-03
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Table D.9: Classification accuracy results on VTAB+MD [11] using Simple CNAPS + LITE with
|H| = 10 and image size is 320× 320 pixels. All figures are percentages and the ± sign indicates
the 95% confidence interval over tasks. The VTAB-V2 results have no confidence interval as the
testing protocol requires only a single run over the entire test set.

Dataset |H| = 10, 320 x 320 pixels

Omniglot 83.2±1.0
Aircraft 82.5±0.8
Birds 91.2±0.6
DTD 85.3±0.7
QuickDraw 74.1±0.8
Fungi 58.0±1.2
Traffic Sign 62.4±1.1
MSCOCO 46.8±1.1

Caltech101 88.0
CIFAR100 45.2
Flowers102 82.6
Pets 89.5
Sun397 28.6
SVHN 51.9

EuroSAT 86.3
Resics45 72.7
Patch Camelyon 80.7
Retinopathy 46.4

CLEVR-count 30.8
CLEVR-dist 33.5
dSprites-loc 14.2
dSprites-ori 28.2
SmallNORB-azi 14.0
SmallNORB-elev 20.7
DMLab 40.3
KITTI-dist 62.3

MD-v2 72.9
VTAB (all) 50.9
VTAB (natural) 64.3
VTAB (specialized) 71.5
VTAB (structured) 30.5
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