
One Loss for All:
Deep Hashing with a Single

Cosine Similarity based Learning Objective

Jiun Tian Hoe1∗ Kam Woh Ng2,3∗ Tianyu Zhang4

Chee Seng Chan1† Yi-Zhe Song2,3 Tao Xiang2,3

1CISiP, Universiti Malaya, Malaysia
2CVSSP, University of Surrey, U.K.

3iFlyTek-Surrey Joint Research Centre on Artificial Intelligence
4Geek+, China

Abstract

A deep hashing model typically has two main learning objectives: to make the
learned binary hash codes discriminative and to minimize a quantization error.
With further constraints such as bit balance and code orthogonality, it is not uncom-
mon for existing models to employ a large number (>4) of losses. This leads to
difficulties in model training and subsequently impedes their effectiveness. In this
work, we propose a novel deep hashing model with only a single learning objective.
Specifically, we show that maximizing the cosine similarity between the continuous
codes and their corresponding binary orthogonal codes can ensure both hash code
discriminativeness and quantization error minimization. Further, with this learning
objective, code balancing can be achieved by simply using a Batch Normalization
(BN) layer and multi-label classification is also straightforward with label smooth-
ing. The result is an one-loss deep hashing model that removes all the hassles of
tuning the weights of various losses. Importantly, extensive experiments show that
our model is highly effective, outperforming the state-of-the-art multi-loss hashing
models on three large-scale instance retrieval benchmarks, often by significant
margins. Code is available at https://github.com/kamwoh/orthohash

1 Introduction

A key building block of a real-world large-scale image retrieval system is hashing. The objective
of image hashing is to represent the content of an image using a binary code for efficient storage
and accurate retrieval. Recently, deep hashing methods [48, 23] have shown great improvements
over conventional hashing methods [46, 15, 16, 22, 36, 37, 19]. Furthermore, deep hashing methods
can be grouped by how the similarity of the learned hashing codes are measured, namely pointwise
[49, 54, 40, 12, 50], pairwise [25, 23, 5, 4], triplet-wise [45, 32], or listwise [52]. Among them,
pointwise methods have a O(N) computational complexity, whilst the complexity of the others are
of at least O(N2) for N data points. This means that for large-scale problems, only the pointwise
methods are tractable [49]. They are thus the focus of most recent studies.

A deep hashing neural network naturally has multiple learning objectives. Specifically, given an image
input, the network outputs a continuous code (feature vector) which is then converted into a binary

∗equal contribution.
†corresponding author (cs.chan@um.edu.my).

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/kamwoh/orthohash

60 40 20 0 20 40
150

125

100

75

50

25

0

25

50

(a) CE

5.0 2.5 0.0 2.5 5.0
6

4

2

0

2

4

6

(b) CE+BN

4 2 0 2 4
4

3

2

1

0

1

2

3

4

(c) Proposed

Figure 1: We train a simple CNN model on CIFAR10 with only first 4 classes and 2-bits. The
continuous codes v are visualized before sgn. (Left) The model is trained with cross entropy (CE)
only. Although it can separate the 4 classes in Euclidean space, the output is not bounded and thus
indicating high quantization error and sub-optimal in the Hamming space. (Middle) By appending a
batch normalization (BN) layer after v, the hash codes are now balanced. (Right) Now the model
(proposed) is trained to maximize the cosine similarity between v and its corresponding binary target
o. The black arrows are the binary orthogonal target, denoted as o for each class. It can be seen
that the continuous codes exhibit lower intra-class variance and quantization error as compared with
the CE+BN models (middle).

hash code using a quantization layer (usually a sign function). There are thus two main objectives.
First, the final model output, i.e., the binary codes must be discriminative, meaning the intra-class
hamming distances are small, while the inter-class ones are big. Second, a quantization error
minimization objective is needed to regularize the continuous codes. But the learning is constrained
by the vanishing gradient problem caused by the quantization layer. Although the problem can be
avoided by deploying some relaxation schemes [5, 23, 25], these schemes often produce sub-optimal
hash codes due to the introduction of quantization error (see Figure 1). Hence, most recently deep
hashing methods [41, 25, 4, 53, 50] has an explicit quantization error minimization learning objective.

Having these two main objectives/losses are still not enough. In particular, to ensure the quality of
hash codes, many other losses are employed by existing methods. These include bit balance loss
[53, 49, 40], weights constraints to maximize Hamming distance [54], code orthogonality [31, 32].
Further, losses are designed to address the vanishing gradient problem caused by the sign function
used to obtain binary codes from the continuous ones [41, 40, 27]. As a result, the state-of-the-art
hashing models typically have a large number (>4) losses. This means difficulties in optimization
which in turn hamper their effectiveness.

In this work, for the first time, a deep hashing model with a single loss is developed which removes
any needs for loss weight tuning and is thus much easier to optimize. As mentioned earlier, a deep
hashing model needs to be trained with at least two objectives, namely binary code discriminativenss
and quantization error minimization. So how could one use one loss only? The answer lies in the fact
that the two objectives are closely related and can be unified into one. More concretely, we show that
both objectives can be satisfied by maximizing the cosine similarity between the continuous codes and
their corresponding binary orthogonal target, which can be formulated as a cross-entropy (CE) loss.
Our model, dubbed OrthoHash has one loss only which maximizes the cosine similarity between
the L2-normalized continuous codes and binary orthogonal target to maximize inter-class Hamming
distance and minimize quantization error simultaneously. We show that this single unifying loss
has a number of additional benefits. First, we can leverage the benefit of margin [42, 10] to further
improve the intra-class variance. Second, since conventional CE loss only works for single-label
classification, we can easily leverage Label Smoothing [38] to modify the CE loss to tackle multi-
labels classification. Finally, we show that code balancing can now be enforced by introducing a batch
normalization [17] (BN) layer rather than requiring a different loss. Extensive experiment results
suggest that on conventional category-level retrieval tasks using ImageNet100, NUS-WIDE and
MS-COCO, our model is on par with the SOTA. More importantly, on the large-scale instance-level
retrieval tasks, our method achieves the new SOTA, beating the best results obtained so far on GLDv2,
ROxf andRParis by 0.6%, 9.1% and 17.1% respectively.

2

2 Related Work

Hashing methods. Conventional hashing methods can be categorized into many streams. Data-
independent methods such as Locality-sensitive Hashing (LsH) [16, 13], and its kernelized version
(KLsH) [22] have contributed many of the fundamental concepts for hashing such as the requirement
of code balance, uncorrelated bit, and similarity preserving. In contrast, data-dependent methods
[46, 21, 15, 19, 36, 37] aim to learn hash codes that are more compact yet more dataset-specific [7].
Recently, deep learning based hashing methods [25, 48, 23] dominated the hashing research due to
the superior learning ability of DNN. Various learning objectives are developed to learn hash codes
using a training dataset. The objective functions include i) task learning objective which can be
further categorized into pointwise [49, 54, 40, 41, 12, 50], pairwise [5, 25, 23], triplet-wise [45, 32],
listwise [52] and unsupervised [27, 14]; ii) quantization error minimization such as the loss designed
to minimize the p-norm (usually p = 2) between continuous codes and hash codes; iii) code balancing
[27, 40]. We refer readers to learning to hashing surveys [44, 43, 11] for more detailed review.

Binary optimization. Hashing is a NP-hard binary optimization problem [46], and is prone to the
vanishing gradient problem due to the discrete and non-differentiable binary hash functions. Early
methods solved the problem by discarding the discrete constraints (e.g., designing a penalty loss term
to generate feature as binary as possible [25, 23]; solve with continuous relaxation, i.e., to optimize
in a continuous space using sigmoid or tanh for approximation [5]). Some methods also utilized
coordinate descent method in the training [28, 24]. Nevertheless, these methods have increased
the complexity of learning due to need for tuning of hyper-parameters balancing different learning
objectives.

Bypassing vanishing gradient. Greedy Hash [41] designed a new coding layer which uses the
sign function in the forward pass to generate binary codes, and gradients are backpropagated using
straight-through estimator [1] during optimization. [27] designed a parameter-free coding layer –
Bi-half, to maximize the bit capacity by shifting the network output by median (each bit can have a
50% chance of being +1 or−1) . These methods typically requires the modification of computational
graphs, in the sense that the original graph is no longer end-to-end trained, hence further complicates
the original optimization objective. Ours on the other hand incorporates a neat one-loss design that
removes all such complications.

Learning hash codes with pre-defined target. Deep Polarized Network (DPN) [12] used a random
assignment scheme to generate target vectors with maximal inter-class distance, then optimized with
hinge-like polarized loss. Central Similarity Quantization (CSQ) [50] uses Hadamard matrix as "hash
centers", then optimized with binary cross entropy. Both methods have similar overall objective, i.e.,
the continuous codes are learned to be as similar as the target vectors (or "hash centers"). Our model
also employs a hash target, but uniquely it is used in a single cosine similarity based single objective.

Cosine similarity. According to [6], which is a theoretical analysis for Locality-sensitive Hashing
(LsH) [16, 13], if two samples have high angular similarity, then we have high probability of
obtaining the same hash codes as well. Hence, while most works focus on hashing images with
various constraints, we reformulate the problem of deep hashing in the lens of cosine similarity. By
following the same principle, a similar work is done by [2] which described the hashing problem
under pairwise constraint while our work describes the problem under pointwise constraint. As
inspired by [51, 14] which utilize cosine similarity to find closest approximate binary or ternary
representation, we also interpret the quantization error in terms of cosine similarity. Moreover, deep
hypersphere embedding learning methods (e.g., SphereFace [35], CosFace [42] and ArcFace [10])
imposed discriminative constraints on a hypersphere manifold and proposed to improve decision
boundary by cosine or angular margin. Inspired by them, we also leverage the benefit of margin to
improve intra-class variance.

3 OrthoHash: One Loss for All

In Section 3.1, we reformulate the problem of deep hashing in the lens of cosine similarity, i.e.,
interpreting both Hamming distance retrieval and quantization error in cosine similarity. In Section
3.2, we propose to maximize cosine similarity between the continuous codes and binary orthogonal
target under a single classification objective (for both single-label and multi-labels classification).

3

Continuous
Codes

(𝑁 × 𝐾)

Backbone
Network

Inputs

Cross Entropy

Classification
Label

BN

Classification
Output
(𝑁 × 𝐶)

Scaled Cosine Similarity

𝐾 ∗
𝒗𝒏, 𝒐𝒊
𝒗𝒏 𝒐𝒊

Continuous Codes

…

+0.6

−0.7

+0.8

…

𝑣1

−0.7

−0.5

+0.9

…

𝑣2

−0.1

−0.9

+0.9

…

𝑣𝑁

Orthogonal Targets

…

−1

−1

+1

…

𝑜1

−1

−1

+1

…

𝑜2

+1

−1

+1

…

𝑜𝐶

Softmax Loss

Figure 2: We first obtain continuous codes V = {vn}Nn=1 ∈ RN×K from our backbone network. It
is then passed through a batch normalization (BN) layer to obtain zero-mean continuous codes. Next,
we compute scaled cosine similarity between the continuous codes and their binary orthogonal targets
O = {oi}Ci=1 ∈ {−1,+1}C×K where C = number of classes. Finally, the scaled cosine similarity
will act as a classification output and we minimize a cross entropy loss. See Section 3.2 for details.

Finally, we describe why adding a batch normalization layer after the continuous codes will achieve
code balance in Section 3.2.3. Our method is illustrated in Figure 2.

Let us first formally define the deep hashing problem. Let d-dimensional data, X = {xn}Nn=1 ∈
RN×d where N is the number of training samples, and Y = {yn}Nn=1 ∈ {0, 1}N×C as one-
hot training labels of C classes (for multi-labels, yn , yni = [yn1, · · · , ynC], whose yni = 1
if any i-th class are assigned to the n-th sample and 0 otherwise). Our objective is to learn a
set of K-bit binary codes B = {bn}Nn=1 ∈ {−1, 1}N×K for each training point xn, which is
converted from the continuous codes vn through a sgn function. v can be computed by a latent layer
H(x) = Wφ(x) ∈ RK , φ(·) is a deep neural network (backbone network) to compute q-dimensional
nonlinear feature representation f = φ(x) ∈ Rq, W ∈ RK×q is the weights of the latent layer
and sgn(vnk) = 1 if k-th bit of vn ≥ 0 and −1 otherwise. In our work, binary orthogonal targets
oyn ∈ [o1, · · · ,oC]ᵀ = O ∈ {−1,+1}C×K , where oi denotes a column vector belongs to i-th class.
Ideally, for any two rows, 1 ≤ i, j ≤ C, oi and oj are orthogonal to each other. We use a or A to
represent scalar, a to represent column vector, and A to represent matrix. Both i and j are often used
as index.

3.1 Reformulating Deep Hashing in the Lens of Cosine Similarity

Interpreting Hamming Distance as Cosine Similarity. Typically, Hamming distance can be com-
puted using logical xor operation between binary codes bi and bj , followed by popcount. If b is
represented by {−1,+1}K , then Hamming distance can also be computed mathematically as:

D(bi,bj) =
K − bᵀ

i bj
2

. (1)

Geometrically, the dot product bᵀ
i bj can be interpreted as:

bᵀ
i bj = ‖bi‖ ‖bj‖ cos θij , (2)

in which ‖·‖ is the Euclidean norm and θij is the angle between bi and bj . As both ‖bi‖ and ‖bj‖
are constant (i.e., ‖b‖ =

√
K), equation (1) can then be viewed as:

D(bi,bj) =
K −K cos θij

2
=
K

2
(1− cos θij). (3)

Since K
2 is a constant, we can see that the retrieval is now will be only based on the angle between

two hash codes i.e., similar hash codes will have a similar direction, yield a lower angle between
them, and hence a lower hamming distance.

Interpreting Quantization Error as Cosine Similarity. Typically, converting continuous codes v
to binary codes b will lead to information loss, which is also known as quantization error. Therefore,

4

most of the existing hashing methods have included quantization error minimization in their learning
objective such as L1-norm, L2-norm and p-norm (e.g., p = 3 in Greedy Hash [41]), usually in the
form of:

minL+ λQ, (4)

where L is the supervised learning objective such as Cross Entropy and Q is the quantization error
between v and b. However, it is difficult to control the scale λ, i.e. a low λ might not be effective,
while a high λ might lead to underfitting. As a result of this, careful tuning is needed and yet the
tuned λ may varies in different tasks. To overcome this cumbersome practise, let us first interpret
quantization error geometrically:

min ‖v − b‖2 s.t. b ∈ {−1, 1}K , (5)

in which v is in continuous space, b = sgn(v) is in binary space. We expand equation (5) to get:

‖v − b‖2 = ‖v‖2 + ‖b‖2 − 2 ‖v‖ ‖b‖ cos θvb. (6)

According to equation (3), retrieval is only based on the similarity in the direction of two hash codes.
Hence, we can ignore the magnitude of v by normalizing it to have the same norm with b, i.e.,
‖v‖ =

√
K and interpret the quantization error as to only the angle θvb between v and b3:

‖v − b‖2 = 2K − 2K cos θvb = 2K(1− cos θvb). (7)

Since 2K is a constant, we can then conclude that maximize the cosine similarity between v and b
will lead to a low quantization error, leading to a better approximation in the hash codes.

3.2 Discriminative Hash Codes with Orthogonal Target

According to [6], the probability of two samples xi and xj to have the same hash code under a
family F of hash functions using random hyperplane technique can be described as Prh∈F [h(xi) =
h(xj)] = 1− θij

π , where h(·) is a hash function and θij is the angle between xi and xj . Therefore,
based on the same principle, it can be derived that if the two continuous codes vi and vj from latent
layerH have high cosine similarity, then the hash codes bi and bj should also have high chance of
obtaining the same hash codes. Beside that, as described in Section 3.1, cosine similarity can also be
used to justify the retrieval performance using both the hash codes and quantization error between
the continuous codes and hash codes. Given these two circumstances, we therefore propose to
maximize the cosine similarity of the continuous codes vn and its corresponding binary orthogonal
target, oyn ∈ [o1, · · · ,oC]ᵀ = O ∈ {−1,+1}C×K , where this can be achieved by maximizing the
posterior probability of the ground-truth class using softmax (cross-entropy) loss:

L = − 1

N

N∑
n=1

log
exp (oᵀ

ynvn)∑C
i=1 exp (o

ᵀ
i vn)

, (8)

where vn denotes the deep continuous codes of the n-th samples from DNN φ and both oyn , oi ∈ O
denote the ground-truth class yn and the i-th class of the binary orthogonal targets. For simplicity,
we omit the bias term from equation (8). It follows that under the framework of deep hypersphere
embedding [35, 42, 10], we can transform the logit oᵀ

i vn = ‖oi‖ ‖vn‖ cos θni where θni is the
angle between the continuous codes vn and the binary orthogonal target oi. Next, we perform L2

normalization on vn so that ‖vn‖ = 1, and ‖oi‖ =
√
K since it is in binary form. Now our loss

function can be rewritten as:

L = − 1

N

N∑
n=1

log
exp (

√
K cos θyn)

exp (
√
K cos θyn) +

∑C
i=1,i6=yn exp (

√
K cos θni)

. (9)

As such, instead of introducing the quantization error minimization in the learning objective (equation
(4)), our proposed method unifies both the learning objective and quantization error minimization
together under a single classification objective as shown in the loss function (equation (9)). Further-
more, since the binary orthogonal targets attain maximal inter-class Hamming distance and that our
loss function also aims to minimize the intra-class variance, we can leverage on cosine or angular

3See Appendix B in supplementary material for proof.

5

margin4 that have been proven to be beneficial in CosFace [42] and ArcFace [10], to further improve
the minimization of intra-class variance (we set m = 0.2 in all of our experiments unless mentioned
explicitly). With this, our method is able to perform end-to-end training to learn highly discriminative
hash codes without both the sophisticated training objectives and computational graph modifications.

3.2.1 Binary Orthogonal Target

The maximization of the expectation of inter-class Hamming distance will help to increase the
recall rate during retrieval as there will be lesser chance to retrieve incorrect items, because the
aim is to retrieve more similar items (intra-class), and avoid to retrieve incorrect items (inter-
class). That is, given a K-bit Hamming space HK ∈ {−1,+1}K , for any two binary vectors
bi,bj sampled with probability p for +1 on each bit, the expectation of Hamming distance is
E[D(bi,bj)] = 2 ·K · p(1− p) and it achieves the upper bound of K2 with p = 0.5 [12, 50] (See
Appendix B in supplementary material for details.). Hence, hash codes bi and bj must be orthogonal
so that we can get D(bi,bj) =

K
2 in equation (3).

Orthogonal Targets Generation. Hadamard matrix naturally contains orthogonal rows and columns,
which guarantees the maximum Hamming distance of K2 between any two rows [50, 29]. However, it
is restricted when K is not 1, 2, or a multiple of 4. Hence, a simple solution is to sample the targets
from Bern(0.5) which every sampled bit has the probability p = 0.5 to be +1. The result is the
expectation of Hamming distance between any two rows equals to K

2 which indicates orthogonality.
One limitation is that if 2K < C, the nearest rows in the sampled targets will be identical, which
causes performance degrade. Hence, a simple solution is to increase K. In supplementary material
(Appendix D.3), we show that the two nearest rows has Hamming distance closed to K

2 as K is
higher. We also generate the targets with the objective of maximum inter-class Hamming distance
heuristically, it indeed improved the performance at lower K, but the improvement in higher K are
negligible.

3.2.2 Multi-labels Hash Codes Learning

As conventional cross-entropy loss only works for single-label classification, we leverage the concept
of Label Smoothing [38] to generate labels for multi-labels classification. A standard cross entropy
(CE) loss is mathematically formulated as:

L = − 1

N

N∑
n=1

C∑
i=1

yni log(p(yni|xn)), (10)

in which yni = 1 if i-th class is assigned to the n-th sample in a single label multiclass classification
task. In [38], the target label becomes soft-target such that non-target class has a small "smoothing"
value to regularize overconfident samples and we leverage this concept for multi-labels. To adopt CE
for multi labels classification, we set yni = z > 0 if any i-th class are assigned to n-th sample. The
constant z is determined such that

∑C
i=1 yni = 1, e.g., z = 0.5 and yn = [0, 0.5, 0, 0.5] when the

2nd and the 4th classes are the assigned classes. Our motivation is that the model should maximize the
probabilities of the target classes, which can optimize the hash codes to be as similar as the binary
targets from assigned classes5. In our experiments, we found out empirically that replacing softmax
with sigmoid for multi-labels are not effective6. A likely explanation is that softmax will intrinsically
suppress the lower activated class unit (i.e., scaled cosine similarity) with lower probability and
increase the highly activated class unit with higher probability, while sigmoid will treat each class
unit as an individual unit. As a result, maximizing probability of a class might not lead to minimizing
the probability of other classes. Therefore, we propose to leverage the concept of Label Smoothing to
generate labels so that we can use cross entropy loss for learning.

4Cosine margin will transform exp (
√
K cos θyn) to exp (

√
K(cos(θyn)−m)) and angular margin will

transform the same to exp (
√
K cos(θyn +m)).

5Note, we cannot guarantee that the final hash codes are the center of hash codes of the target classes. Instead
we let the optimization algorithm to find the best hash codes.

6See Appendix D.4 in supplementary material for details.

6

3.2.3 Code Balance

Although binary orthogonal target helps in code balancing, since every bit has 50% of chance being
+1 or −1, there is no guarantee that the model will learn to output a balanced code. Therefore, we
propose to add a batch normalization (BN) layer after the continuous codes v to ensure the code
balance. If

∑
n vnk = 0, then we can see that

∑
n bnk = 0 for the k-th bit. Because the distribution

of v has been normalized to have zero-mean and variance of 1, with b = sgn(v), the hash codes b
will follow a uniform binary distribution with 50% chances on both +1 and −1. Empirically, we
found that it improves the retrieval performance on ImageNet100 by about 17-20% as compared
with a model with normal cross entropy loss (see Table 1). Note that the Bi-half method [27] shifts
the continuous codes by their median, followed by converting the continuous codes to binary codes
for optimization. However, it will have to modify the computational graph in order to have a proxy
derivative to the solve vanishing gradient problem. In contrast, appending BN layer will not modify
the computational graph, therefore enabling straightforward end-to-end training.

4 Experiment

Training Setup. We select 7 different deep hashing methods for comparison (5 point-wise, 1 pair-
wise and 1 triplet-wise). For a fair comparison, we use the same learning rate of 0.0001, Adam
optimizer [18] and 100 epochs for all methods. For SDH-C [31], we have modified it from pair-wise
objective to point-wise objective, while all penalty terms are kept (i.e., quantization loss, bit variance
loss and orthogonality on projection weights).

Datasets. We follow prior works [5, 12, 41, 33, 40, 48, 23, 34] and choose ImageNet100 [9], NUS-
WIDE [8] and MS-COCO [30] for category-level retrieval experiments. For a more practical yet
challenging large-scale instance-level retrieval task (i.e., tremendous number of classes), we evaluate
on the popular GLDv2 [47],ROxf andRPar [39].

Architecture. For category-level retrieval, following the settings in [5, 41, 40, 12], we use pre-trained
AlexNet [20] as the network backbone initialization. The output from last fully-connected with ReLU
(4096-dimension vector) acts as input to the latent layer; various supervised deep hashing methods
are then applied to generate binary codes. The image size is 224 × 224. For instance-level retrieval,
due to the expensive cost of training from scratch, we use pre-trained model7 (R50-DELG-GLDv2-
clean) from DELG [3] to compute the 2048-dimension global descriptors. We then train a latent layer
H to compute hash codes where inputs are the global descriptors. For GLDv2, the images input are
512 × 512. ForROxf andRPar, we use 3 scales { 1√

2
, 1,
√
2} to produce multi-scale representations.

These are subject to L2 normalization, and then average-pooled to obtain a single descriptor as done
by [3]. A GLDv2-trained latent layer is used to compute hash codes for the evaluations.

Details of training setups, datasets and architecture can be found in the supplementary material
(Appendix C).

4.1 Results on Category-level Retrieval

For performance evaluation8, we use mean average precision (mAP@R) which is the mean of average
precision scores of the top R retrieved items. Table 1 offers performance comparison amongst all
selected hashing methods and our methods (+variants). CE denotes model trained with cross entropy
only, the hash codes are computed from sign of continuous codes. CE+BN denotes CE model with
BN layer [17] appended after the latent layer. CE+Bihalf denotes CE model with Bihalf9 [27] layer
appended after the latent layer. OrthoCos denotes model trained with cosine margin and binary
orthogonal target. OrthoCos+Bihalf denotes a variant of OrthoCos, and with Bihalf layer appended.
OrthoCos+BN denotes a variant of OrthoCos, and with BN layer appended. OrthoArc+BN denotes
a variant of OrthoCos+BN, trained with angular margin.

Overall. It can be observed that both our OrthoCos+BN and OrthoArc+BN perform better than
recent state-of-the-art, DPN [12] and CSQ [50]. On multi-labeled datasets (i.e., NUS-WIDE and MS

7https://github.com/tensorflow/models/tree/master/research/delf
8See Appendix C.3 in supplementary material for evaluation detail.
9Note that Bihalf was originally proposed for unsupervised hashing, however, we think it is worth to compare

as Bihalf is a layer for code balancing instead of a training objective.

7

https://github.com/tensorflow/models/tree/master/research/delf

Methods ImageNet100 (mAP@1K) NUS-WIDE (mAP@5K) MS COCO (mAP@5K)
16 32 64 128 16 32 64 128 16 32 64 128

HashNet2 [5] 0.343 0.480 0.573 0.612 0.814 0.831 0.842 0.847 0.663 0.693 0.713 0.727
DTSH3 [45] 0.442 0.528 0.581 0.612 0.816 0.836 0.851 0.862 0.699 0.732 0.753 0.770
SDH-C1 [31] 0.584 0.649 0.664 0.662 0.763 0.792 0.816 0.832 0.671 0.710 0.733 0.742
GreedyHash1 [41] 0.570 0.639 0.659 0.659 0.771 0.797 0.815 0.832 0.677 0.722 0.740 0.746
JMLH1 [40] 0.517 0.621 0.662 0.678 0.791 0.825 0.836 0.843 0.689 0.733 0.758 0.768
DPN1 [12] 0.592 0.670 0.703 0.714 0.783 0.818 0.838 0.842 0.668 0.721 0.752 0.773
CSQ1 [50] 0.586 0.666 0.693 0.700 0.797 0.824 0.835 0.839 0.693 0.762 0.781 0.789

CE1 0.350 0.379 0.406 0.445 0.744 0.770 0.796 0.813 0.602 0.639 0.658 0.676
CE+BN1 0.533 0.586 0.612 0.617 0.801 0.814 0.823 0.825 0.697 0.721 0.729 0.726
CE+Bihalf1 [27] 0.541 0.630 0.661 0.662 0.802 0.825 0.836 0.839 0.674 0.728 0.755 0.757

OrthoCos1 0.583 0.660 0.702 0.714 0.795 0.826 0.842 0.851 0.690 0.745 0.772 0.784
OrthoCos+Bihalf1 0.562 0.656 0.698 0.711 0.804 0.834 0.846 0.852 0.690 0.746 0.775 0.782
OrthoCos+BN1 0.606 0.679 0.711 0.717 0.804 0.836 0.850 0.856 0.709 0.762 0.787 0.797
OrthoArc+BN1 0.614 0.681 0.709 0.714 0.806 0.833 0.850 0.856 0.708 0.762 0.785 0.794

Table 1: Performance of different methods for 4 different bits on different benchmark datasets. All
results are run by us. The superscript 1, 2 and 3 indicate point-wise, pair-wise and triplet-wise method
respectively. Bold values indicate best performance in the column.

Methods GLDv2 (mAP@100) ROxf-Hard (mAP@all) RParis-Hard (mAP@all)
128 512 2048 128 512 2048 128 512 2048

HashNet2 [5] 0.018 0.069 0.111 0.034 0.058 0.307 0.133 0.190 0.490
DPN1 [12] 0.021 0.089 0.133 0.053 0.184 0.303 0.224 0.399 0.562
GreedyHash1 [41] 0.029 0.108 0.144 0.032 0.251 0.373 0.128 0.531 0.652
CSQ1 [50] 0.023 0.086 0.114 0.093 0.284 0.398 0.245 0.541 0.649

OrthoCos+BN1 0.035 0.111 0.147 0.184 0.359 0.447 0.416 0.608 0.669

R50-DELG-H - - 0.125* - - 0.471 - - 0.682
R50-DELG-C - - 0.138* - - 0.510 - - 0.715

Table 2: Performance of different methods for 3 different numbers of bits on different instance-level
benchmark datasets. All results are run by us. The superscript 1 and 2 indicate point-wise and
pair-wise method respectively. Bold values indicate best performance in the column. * indicates
using 512 × 512 image inputs, hence different performance as reported by DELG [3]. R50-DELG-H
denotes Hamming distance retrieval using the sign of extracted descriptors. R50-DELG-C denotes
Cosine distance retrieval using the extracted descriptors.

COCO), DTSH [45] (triplet based method) performed the best with 0.851 and 0.862 with 64 and
128-bits hash codes in NUS-WIDE followed by our method (e.g., OrthoCos+BN achieves 0.850
and 0.856 in the same settings), while OrthoCos+BN and OrthoArc+BN performed the best on
MS-COCO with at most 1% improvement over previous deep hashing methods.

Code Balance. Although retrieval performance of CE models performed the worst, but by appending
BN layer after the latent layer (CE+BN), we were able to observe 5-20% improvement over all
settings (dataset and number of bits). Bihalf [27] layer (zero-median features) has a proxy derivative
to learn hash features, hence getting 0.1-4.9% improvement than CE+BN. This indicates that without
sophisticated training objectives, code balance itself is a very important factor in improving Hamming
distance based retrieval. However, OrthoCos+Bihalf does not show significant improvement over
OrthoCos+BN, but is comparable with OrthoCos. We thus conclude that our method can achieve
code balance without explicitly engineering the computational graph.

Cosine and Angular Margin. In our experiments, we observed that cosine margin (OrthoCos+BN)
slightly outperform angular margin (OrthoArc+BN) by about 0.2% on average.

4.2 Results on Instance-Level Retrieval

For evaluation metrics, we adapt the evaluation protocol of [3, 39]. The baseline performance of
GLDv2, ROxf-Hard and RPar-Hard from the pre-trained R50-DELG-GLDv2-clean are 0.138,

8

0 8 16 24 32 40 48 56 64
Hamming distance

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 F
re

qu
en

cy

13.90
intra-class
inter-class

(a) HashNet [5]

0 8 16 24 32 40 48 56 64
Hamming distance

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 F
re

qu
en

cy

17.34
intra-class
inter-class

(b) GreedyHash [41]

0 8 16 24 32 40 48 56 64
Hamming distance

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 F
re

qu
en

cy

18.31
intra-class
inter-class

(c) OrthoCos+BN

Figure 3: Histogram of intra-class and inter-class Hamming distances with 64-bits ImageNet100. The
arrow annotation is the separability in Hamming distances, E[Dinter]− E[Dintra]. We normalized
the frequency so that sum of all bins equal to 1.

CE

Has
hN

et
DTS

H

CE
+BN

Gre
ed

yH
as

h

CE
+Biha

lf
JM

LH
SD

H-C
CSQ

Orth
oC

os
+Biha

lf
DPN

Orth
oA

rc+
BN

Orth
oC

os
+BN

0.4

0.5

0.6

0.7

m
AP

@
10

00

20

25

30

35

40

vb

(a) Quantization error

CE

Has
hN

et
DTS

H

CE
+BN

Gre
ed

yH
as

h

CE
+Biha

lf
JM

LH
SD

H-C
CSQ

Orth
oC

os
+Biha

lf
DPN

Orth
oA

rc+
BN

Orth
oC

os
+BN

0.4

0.5

0.6

0.7

m
AP

@
10

00

12

14

16

18

20

E[
D

In
te

r]
E[

D
In

tr
a]

(b) Separability

CE

Has
hN

et
DTS

H

CE
+BN

Gre
ed

yH
as

h

CE
+Biha

lf
JM

LH
SD

H-C
CSQ

Orth
oC

os
+Biha

lf
DPN

Orth
oA

rc+
BN

Orth
oC

os
+BN

0.4

0.5

0.6

0.7

m
AP

@
10

00

8

10

12

14

16

O
rt

ho
go

na
lit

y

(c) Orthogonality

Figure 4: Analysis of retrieval performance of 64-bits ImageNet100. (a) Quantization error: θvb.
(b) Separability: E[Dinter]− E[Dintra]. (c) Orthogonality:

∥∥ 1
KHHᵀ − I

∥∥. Blue solid line denotes
mean average precision (mAP@1000) and orange dotted line denotes the respective analysis score.

0.510 and 0.715 respectively. Table 2 summarizes the performance of different deep hashing methods
and our method. For all the 3 datasets, our method outperforms all previous deep hashing methods on
all bits. This suggests that our method has a better generalization ability on unseen instances than
previous deep hashing methods. In particular, our model significantly outperforms previous deep
hashing models by 0.6%, 9.1% and 17.1% respectively on the 3 datasets with 128-bits hash codes.

Orthogonal Transformation. For GLDv2 2048-bits hash codes, surprisingly it can achieve a much
better performance than the pre-trained 2048-dimensions descriptors (by 1.1% improvement over
R50-DELG-C). We then analyze the separability in cosine distances, i.e., the difference in the
mean of intra-class cosine distance and the mean of inter-class cosine distance before and after the
transformation (similar to Figure 3). We observe that the separability in cosine distances increases
after the orthogonal transformation, i.e., before it is 0.142 and after it increases to 0.167. The results
thus show that learning orthogonal hash codes can transform the inputs to be more discriminative.

Domain shifting with BN. As the model is trained with GLDv2, the running mean and variance
in the BN layer might experience domain shifting problem [26] when testing directly on different
datasets (e.g.,ROxf andRPar). We empirically found that using running mean and variance from
GLDv2 will lead to a large performance drop in Hamming distance retrieval10. One simple solution
is to recompute the mean and variance from all continuous codes in the database, then update the
running mean and variance with the computed mean and variance. The performances ofROxf and
RPar in Table 2 are obtained with running mean and variance of the respective database.

4.3 Further Analysis

Histogram of Hamming Distances. Figure 3 summarizes the histogram of intra-class and inter-
class distances. We compare our method OrthoCos+BN with pair-wise method HashNet [5] and
point-wise classification based GreedyHash [41]. Although the distribution of inter-class distances
are about the same for all the 3 methods (close to Hamming distance of K/2 = 32), we can see that
the larger the separability i.e., the difference in the mean of intra-class distance (the blue dotted line)
with the mean of inter-class distance (the orange dotted line), the better the performance.

10See Appendix D.5 in supplementary material for details.

9

Performance Improvement Analysis. We further analyze the reasons behind performance improve-
ments of different deep hashing methods, and summarizes the results in Figure 4. We conclude 3
main reasons that contribute to the improvement in deep hashing methods: i) quantization error;
ii) the separability in Hamming distances; and iii) orthogonality in hash centers. For quantiza-
tion error, we measure the angle θvb between the continuous codes v and the hash codes b, i.e.,
θvb = deg(arccos (vᵀb

‖v‖‖b‖)). For separability, we measure the difference in the mean of inter-class
distances and the mean of intra-class distances, i.e., E[Dinter]− E[Dintra]. For orthogonality, we
first compute the hash centers H ∈ {−1,+1}C×K for every class (by taking the sign of average hash
codes in every class), then we measure the orthogonality with

∥∥ 1
KHHᵀ − I

∥∥ (lower is better). When
the quantization error reduces, the separability increases and the hash centers has better orthogonality,
resulting in better performance.

5 Conclusion & Future Work

We propose to unify training objectives of deep hashing under a single classification objective. We
show this can be achieved by maximizing the cosine similarity between the continuous codes and
binary orthogonal target under a cross entropy loss. For that, we first reformulated the problem of deep
hashing in the lens of cosine similarity. We then demonstrated that if we perform L2-normalization
on the continuous codes, then end-to-end training of deep hashing is possible without any extra
sophisticated constraints. Moreover, we leverage the concept of Label Smoothing to train multi-
labels classification with cross-entropy loss and batch normalization for code balancing. Extensive
experiments validated the efficiency of our method in both category-level and instance-level retrieval
benchmarks.

Nonetheless, the proposed method might fail when the number of bits is too small (<8 bits), especially
when number of classes is much greater than the number of bits. In this case, there will be overlapping
in the generated target code (i.e., the number of maximum unique codes is equal to 2K where K
is number of bits). In such condition, the target code will also not guarantee to be orthogonal.
Overcoming this limitation is part of the future work. Also, we are exploring how to learn better
feature representations to improve the retrieval performance by using hash codes through unsupervised
learning.

Broader Impact

Hashing remains a key bottleneck in practical deployments of large-scale retrieval systems. Recent
deep hashing frameworks have shown great promise in learning code that are both compact and
discriminative. Yet state-of-the-art frameworks are known to be difficult to train and to reproduce
– largely owing to their complex loss designs that dictates hyperparameter tuning and multi-stage
training. In this work, we set out to change that – we attempt to unify deep hashing under a
single objective, therefore simplifying training and help reproducibility. Our key intuition lies with
reformulating hashing in the lens of cosine similarity. We report competitive hashing performance on
all common datasets, and significant improvements over state-of-the-arts on the more challenging
task of instance-level retrieval.

Acknowledgments and Disclosure of Funding

This research is partly supported by the Fundamental Research Grant Scheme (FRGS) MoHE Grant
FP021-2018A, from the Ministry of Education Malaysia. We also thank Kilho Shin for helpful
discussions and recommendations.

References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through

stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[2] Levi Boyles, Aniket Anand Deshmukh, Urun Dogan, Rajesh Koduru, Charles Denis, and Eren Manavoglu.
Semantic hashing with locality sensitive embeddings, 2021.

10

[3] Bingyi Cao, André Araujo, and Jack Sim. Unifying deep local and global features for image search. In
Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV
2020, pages 726–743, Cham, 2020. Springer International Publishing.

[4] Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. Deep cauchy hashing for hamming space retrieval.
In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1229–1237, 2018.

[5] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S. Yu. Hashnet: Deep learning to hash by
continuation. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 5609–5618,
2017.

[6] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.

[7] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return of the devil in the details:
Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.

[8] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-Tao Zheng. Nus-wide:
A real-world web image database from national university of singapore. In Proceedings of the ACM
international conference on image and video retrieval, pages 1–9, Santorini, Greece., July 8-10, 2009.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255,
2009.

[10] Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

[11] Shiv Ram Dubey. A decade survey of content based image retrieval using deep learning, 2020.

[12] Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. Deep polarized network for
supervised learning of accurate binary hashing codes. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages 825–831.
International Joint Conferences on Artificial Intelligence Organization, 7 2020. Main track.

[13] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via hashing. In
Vldb, volume 99, pages 518–529, 1999.

[14] Yunchao Gong, Sanjiv Kumar, Vishal Verma, and Svetlana Lazebnik. Angular quantization-based binary
codes for fast similarity search. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[15] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative quantization: A
procrustean approach to learning binary codes for large-scale image retrieval. IEEE transactions on pattern
analysis and machine intelligence, 35(12):2916–2929, 2012.

[16] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC
’98, page 604–613, New York, NY, USA, 1998. Association for Computing Machinery.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
448–456, Lille, France, 07–09 Jul 2015. PMLR.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Weihao Kong and Wu-jun Li. Isotropic hashing. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. In Proceedings of the 25th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, page 1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc.

[21] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive embeddings. In Y. Ben-
gio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc., 2009.

11

[22] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image search. In 2009
IEEE 12th international conference on computer vision, pages 2130–2137. IEEE, 2009.

[23] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous feature learning and hash coding with
deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3270–3278, 2015.

[24] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised discrete hashing. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[25] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature learning based deep supervised hashing with
pairwise labels. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI’16, page 1711–1717. AAAI Press, 2016.

[26] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. Adaptive batch normalization for
practical domain adaptation. Pattern Recognition, 80:109–117, 2018.

[27] Yunqiang Li and Jan van Gemert. Deep unsupervised image hashing by maximizing bit entropy. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2021.

[28] Guosheng Lin, Chunhua Shen, David Suter, and Anton van den Hengel. A general two-step approach to
learning-based hashing. In 2013 IEEE International Conference on Computer Vision, pages 2552–2559,
2013.

[29] Mingbao Lin, Rongrong Ji, Hong Liu, and Yongjian Wu. Supervised online hashing via hadamard
codebook learning. In Proceedings of the 26th ACM International Conference on Multimedia, MM ’18,
page 1635–1643, New York, NY, USA, 2018. Association for Computing Machinery.

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet, Tomas Pajdla,
Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 740–755, Cham, 2014.
Springer International Publishing.

[31] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. Deep hashing for compact binary
codes learning. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2475–2483, 2015.

[32] Bin Liu, Yue Cao, Mingsheng Long, Jianmin Wang, and Jingdong Wang. Deep triplet quantization. In
Proceedings of the 26th ACM international conference on Multimedia, pages 755–763, 2018.

[33] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep supervised hashing for fast image
retrieval. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2064–2072, 2016.

[34] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Supervised hashing with kernels. In
2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 2074–2081. IEEE, 2012.

[35] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6738–6746, 2017.

[36] Mohammad Norouzi and David J. Fleet. Minimal loss hashing for compact binary codes. In Proceedings
of the 28th International Conference on International Conference on Machine Learning, ICML’11, page
353–360, Madison, WI, USA, 2011. Omnipress.

[37] Mohammad Norouzi, David J Fleet, and Russ R Salakhutdinov. Hamming distance metric learning. In
Advances in neural information processing systems, pages 1061–1069, 2012.

[38] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing neural
networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548, 2017.

[39] Filip Radenovic, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Revisiting oxford and
paris: Large-scale image retrieval benchmarking. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5706–5715, 2018.

[40] Yuming Shen, Jie Qin, Jiaxin Chen, Li Liu, Fan Zhu, and Ziyi Shen. Embarrassingly simple binary
representation learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) Workshops, Oct 2019.

12

[41] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. Greedy hash: Towards fast optimization for
accurate hash coding in cnn. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

[42] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu.
Cosface: Large margin cosine loss for deep face recognition. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5265–5274, 2018.

[43] Jingdong Wang, Ting Zhang, jingkuan song, Nicu Sebe, and Heng Tao Shen. A survey on learning to hash.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):769–790, 2018.

[44] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big data - a survey,
2015.

[45] Xiaofang Wang, Yi Shi, and Kris M Kitani. Deep supervised hashing with triplet labels. Asian Conference
on Computer Vision, 2016.

[46] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21. Curran Associates,
Inc., 2009.

[47] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2-a large-scale
benchmark for instance-level recognition and retrieval. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2575–2584, 2020.

[48] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. Supervised hashing for image
retrieval via image representation learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 28, 2014.

[49] Huei-Fang Yang, Kevin Lin, and Chu-Song Chen. Supervised learning of semantics-preserving hash via
deep convolutional neural networks. IEEE transactions on pattern analysis and machine intelligence,
40(2):437–451, 2017.

[50] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Jiashi Feng. Central
similarity quantization for efficient image and video retrieval. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3083–3092, 2020.

[51] Tianyu Zhang, Lei Zhu, Qian Zhao, and Kilho Shin. Neural networks weights quantization: Target
none-retraining ternary (tnt), 2019.

[52] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. Deep semantic ranking based hashing for
multi-label image retrieval. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1556–1564, 2015.

[53] Xiangtao Zheng, Yichao Zhang, and Xiaoqiang Lu. Deep balanced discrete hashing for image retrieval.
Neurocomputing, 403:224–236, 2020.

[54] Chang Zhou, Lai-Man Po, Wilson Y. F. Yuen, Kwok Wai Cheung, Xuyuan Xu, Kin Wai Lau, Yuzhi Zhao,
Mengyang Liu, and Peter H. W. Wong. Angular deep supervised hashing for image retrieval. IEEE Access,
7:127521–127532, 2019.

13

	Introduction
	Related Work
	OrthoHash: One Loss for All
	Reformulating Deep Hashing in the Lens of Cosine Similarity
	Discriminative Hash Codes with Orthogonal Target
	Binary Orthogonal Target
	Multi-labels Hash Codes Learning
	Code Balance

	Experiment
	Results on Category-level Retrieval
	Results on Instance-Level Retrieval
	Further Analysis

	Conclusion & Future Work

