
Learning to Schedule Heuristics in Branch and Bound

Antonia Chmiela
Zuse Institute Berlin, Germany

chmiela@zib.de

Elias B. Khalil
University of Toronto, Canada
khalil@mie.utoronto.ca

Ambros Gleixner
Zuse Institute Berlin, Germany

HTW Berlin, Germany
gleixner@zib.de

Andrea Lodi
CERC, Polytechnique Montréal, Canada

andrea.lodi@polymtl.ca

Sebastian Pokutta
Zuse Institute Berlin, Germany

Technische Universität Berlin, Germany
pokutta@zib.de

Abstract

Primal heuristics play a crucial role in exact solvers for Mixed Integer Programming
(MIP). While solvers are guaranteed to find optimal solutions given sufficient time,
real-world applications typically require finding good solutions early on in the
search to enable fast decision-making. While much of MIP research focuses
on designing effective heuristics, the question of how to manage multiple MIP
heuristics in a solver has not received equal attention. Generally, solvers follow
hard-coded rules derived from empirical testing on broad sets of instances. Since
the performance of heuristics is problem-dependent, using these general rules for a
particular problem might not yield the best performance. In this work, we propose
the first data-driven framework for scheduling heuristics in an exact MIP solver.
By learning from data describing the performance of primal heuristics, we obtain
a problem-specific schedule of heuristics that collectively find many solutions at
minimal cost. We formalize the learning task and propose an efficient algorithm for
computing such a schedule. Compared to the default settings of a state-of-the-art
academic MIP solver, we are able to reduce the average primal integral by up to
49% on two classes of challenging instances.

1 Introduction

Many decision-making problems arising from real-world applications can be formulated using Mixed
Integer Programming (MIP). The Branch and Bound (B&B) framework is a general approach to
solving MIPs to global optimality. Over the recent years, the idea of using machine learning (ML)
to improve optimization techniques has gained renewed interest. There exist various approaches to
tackle different aspects of the solving process using classical ML techniques. For instance, ML has
been used to find good parameter configurations for a solver (Hutter et al., 2009, 2011), improve
node (He et al., 2014), variable (Khalil et al., 2016; Gasse et al., 2019; Nair et al., 2020) or cut
(Baltean-Lugojan et al., 2019) selection strategies, and detect decomposable structures (Kruber et al.,
2017).

Even though exact MIP solvers aim for global optimality, finding good feasible solutions fast is at
least as important, especially in the presence of a time limit. The use of primal heuristics is crucial to

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

heuristics0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

so
lu

tio
n

su
cc

es
s r

ate

GISP
FCMNF

Figure 1: Average solution success rates of ten
heuristics for two problem classes. Heuristic
success is problem-dependent: each pair of blue-
yellow bars belongs to one heuristic, and the
heuristics are sorted in descending order w.r.t. the
solution success rates for GISP (blue).

100 101 102 103 104

time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

pr
im

al
ga

p

schedule
default SCIP

Figure 2: Primal gap for an exemplary
GISP instance. Our method’s heuristic
schedule (orange) obtains better solutions ear-
lier than SCIP’s default (blue).

ensuring good primal performance in modern solvers. For instance, Berthold (2013a) showed that the
primal bound–the objective value of the best solution–improved on average by around 80% when
primal heuristics were used. Generally, a solver includes a variety of primal heuristics, where each
class of heuristics (e.g., rounding, diving, large-neighborhood search) exploits a different idea to find
good solutions. During B&B, some of these heuristics are executed successively at each node of the
search tree, and improved solutions, if any, are reported back to the solver. An extensive overview of
different primal heuristics, their computational costs, and their impact in MIP solving can be found in
Lodi (2013); Berthold (2013b, 2018).

Since most heuristics can be very costly, it is necessary to be strategic about the order in which
the heuristics are executed and the number of iterations allocated to each. Such decisions are often
made by following hard-coded rules derived from testing on broad benchmark test sets. While these
static rules yield good performance on average, their performance can be far from satisfactory when
considering specific families of instances. To illustrate this fact, Figure 1 compares the solution
success rates, i.e., the fraction of calls to a heuristic where a solution was found, of different primal
heuristics for two problem classes: the Generalized Independent Set Problem (GISP) (Hochbaum and
Pathria, 1997; Colombi et al., 2017) and the Fixed-Charge Multicommodity Network Flow Problem
(FCMNF) (Hewitt et al., 2010).

In this paper, we propose a data-driven approach to systematically improve the use of primal heuristics
in B&B. By learning from data about the duration and success of every heuristic call for a set of
training instances, we construct a schedule of heuristics that specifies the ordering and duration for
which each heuristic should be executed to obtain good primal solutions early on. As a result, we are
able to significantly improve the use of primal heuristics as shown in Figure 2 for one MIP instance.

Contributions. Our main contributions can be summarized as follows:

1. We formalize the learning task of finding an effective, cost-efficient heuristic schedule on a
training dataset as a Mixed Integer Quadratic Program (Section 3);

2. We propose an efficient heuristic for solving the training (scheduling) problem and a scalable
data collection strategy (Sections 4 and 5);

3. We perform extensive computational experiments on a class of challenging instances and
demonstrate the benefits of our approach (Section 6).

Related Work. Optimizing the use of primal heuristics is a topic of ongoing research. For instance,
by characterizing nodes with different features, Khalil et al. (2017) propose an ML method to decide
when to execute heuristics to improve primal performance. After that decision, all heuristics are
executed according to the predefined rules set by the solver. Hendel (2018) and Hendel et al. (2018)
use bandit algorithms for the online learning of a heuristic ordering. The method proposed in this
paper jointly adapts the ordering and duration for which each heuristic runs. Primal performance
can also be improved using algorithm configuration (Hutter et al., 2009, 2011), a technique which
is generally computational expensive since it relies on many black-box evaluations of the solver as
its parameter configurations are evaluated and does not exploit detailed information about the effect

2

of parameter values on performance, e.g., how parameters of primal heuristics affect their success
rates. There has also been work done on how to schedule algorithms optimally. Kadioglu et al. (2011)
solved the problem for a portfolio of different MIP solvers whereas Hoos et al. (2014) focused on
Answer Set Programming. Furthermore, Seipp et al. (2015) propose an algorithm that greedily finds
a schedule of different parameter configurations for automated planning.

2 Preliminaries

Let us consider a MIP of the form

min
x∈Rn

cTx s.t. Ax ≤ b, xi ∈ Z,∀i ∈ I, (PMIP)

with matrix A ∈ Rm×n, vectors c ∈ Rn, b ∈ Rm, and a non-empty index set I ⊆ [n] for integer
variables. A MIP can be solved using B&B, a tree search algorithm that finds an optimal solution
to (PMIP) by recursively partitioning the original problem into linear subproblems. The nodes in the
resulting search tree correspond to these subproblems. Throughout this work, we assume that each
node has a unique index that identifies the node even across B&B trees obtained for different MIP
instances. For a set of instances X , we denote the union of the corresponding node indices by NX .

Primal Performance Metrics. Since we are interested in finding good solutions fast, we consider a
collection of different metrics for primal performance. Beside statistics like the time to the first/best
solution and the solution/incumbent success rate, we mainly focus on the primal integral (Berthold,
2013a) as a comprehensive measure of primal performance. Intuitively, this metric can be interpreted
as a normalized average of the incumbent value over time. A formal definition can be found in
Appendix A. Figure 2 gives an example for the primal gap function. The primal integrals are the
areas under each of the curves. It is easy to see that finding near-optimal incumbents earlier shrinks
the area under the graph of the primal gap, resulting in a smaller primal integral.

3 Data-Driven Heuristic Scheduling

Since the performance of heuristics is highly problem-dependent, it is natural to consider data-driven
approaches for optimizing the use of primal heuristics for the instances of interest. Concretely,
we consider the following practically relevant setting. We are given a set of heuristics H and a
homogeneous set of training instances X from the same problem class. In a data collection phase, we
are allowed to execute the B&B algorithm on the training instances, observing how each heuristic
performs at each node of each search tree. At a high level, our goal is to then leverage this data to
obtain a schedule of heuristics that minimizes a primal performance metric.

The specifics of how such data collection is carried out will be discussed later on in the paper. First, let
us examine the decisions that could potentially benefit from a data-driven approach. Our discussion
is inspired by an in-depth analysis of how the open-source MIP solver SCIP (Gamrath et al., 2020)
manages primal heuristics. However, our approach is generic and is likely to apply to other solvers.

Controlling the Order. One important degree of freedom in scheduling heuristics is the order in
which a set of heuristics H is executed by the solver at a given node. This can be controlled by
assigning a priority for each heuristic. In a heuristic loop, the solver then iterates over the heuristics
in decreasing priority. The loop is terminated if a heuristic finds a new incumbent solution that cuts
off the current node. As such, an ordering 〈h1, . . . , hk〉 that prioritizes effective heuristics can lead to
time savings without sacrificing primal performance.

Controlling the Duration. Furthermore, solvers use working limits to control the computational
effort spent on heuristics. Consider diving heuristics as an example. Increasing the maximal
diving depth increases the likelihood of finding an integer feasible solution. At the same time,
this increases the overall running time. Figure 3 visualizes this cost-benefit trade-off empirically
for three different diving heuristics, highlighting the need for a careful “balancing act”. For a
heuristic h ∈ H, let τ ∈ R>0 denote its time budget. Then, we are interested in finding a schedule
S := 〈(h1, τ1), . . . , (hk, τk)〉, hi ∈ H. Since controlling the time budget directly can be unreliable
and lead to nondeterministic behavior in practice (see Appendix E for details), a deterministic proxy
measure is preferable. For diving heuristics, the maximal diving depth provides a suitable measure
as demonstrated by Figure 3. Similar measures can be used for other types of heuristics, as we will

3

0 50 100 150 200 250 300 350
maximal diving depth

0.0

0.2

0.4

0.6

0.8

1.0

nu
m

be
r o

f s
ol

ut
io

ns
 fo

un
d

0 50 100 150 200 250 300 350
maximal diving depth

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

tim
e p

er
 ca

ll
(in

 se
co

nd
s)

Figure 3: Number of solutions found and cost of different diving heuristics depending on the
the maximal diving depth: This figure shows the average fraction of solutions found by a heuristic
(left) and average duration in seconds (right) of three diving heuristics when limiting the maximal
depth of a dive. Hereby, the baseline for the values on the vertical axis of the left figure is the number
of solutions found by the heuristics with no limitations on the diving depth. The likelihood of finding
a solution increases with the maximal diving depth. At the same time, an average call to all three
heuristics becomes more expensive as the diving depth increases.

demonstrate with Large Neighborhood Search heuristics in Section 6. In general, we will refer to τi
as the maximal number of iterations that is allocated to a heuristic hi in schedule S.

Deriving the Scheduling Problem. Having argued for order and duration as suitable control deci-
sions, we will now formalize our heuristic scheduling problem. Ideally, we would like to construct a
schedule S that minimizes the primal integral, averaged over the training set X . Unfortunately, it is
very difficult to optimize the primal integral directly, as it depends on the sequence of incumbents
found over time during B&B. It also depends on the way the search tree is explored, which is affected
by pruning, further complicating any attempt at directly optimizing this primal metric.

We address this difficulty by considering a more tractable surrogate objective. Recall thatNX denotes
the collection of search tree nodes of the set of training instances X . We will construct a schedule
S that finds feasible solutions for a large fraction of the nodes in NX , while also minimizing the
number of iterations expended by schedule S. Note that we consider feasible solutions instead of
incumbents here: this way, we are able to obtain more data faster since a heuristic finds a feasible
solution more often than a new incumbent. The framework we propose in the following can handle
incumbents instead, but we have found no benefit in doing so in preliminary experiments.

For a heuristic h and node N , denote by t(h,N) the iterations necessary for h to find a solution
at node N , and set t(h,N) = ∞ if h does not succeed at N . Now suppose a schedule S is
successful at node N , i.e., some heuristic finds a solution within the budget allocated to it in S. Let
jS = min{j ∈ [|H|] : t(hj , N) ≤ τj} be the index of the first successful heuristic. Following the
execution of hjS , the heuristic loop is terminated, and the time spent by S at node N is given by

T (S,N) :=
∑

i∈[jS−1]

τi + t(hjS , N).

Otherwise, set T (S,N) :=
∑k
i=1 τi + 1, where the additional 1 penalizes unsolved nodes.

Furthermore, let NS denote the set of nodes at which schedule S is successful in finding a solution.
Then, we consider the heuristic scheduling problem given by

min
S∈S

∑
N∈NX

T (S,N) s.t. |NS | ≥ α|NX |. (PS)

Here α ∈ [0, 1] denotes the minimum fraction of nodes for which the schedule must find a feasible
solution. Problem (PS) can be formulated as a Mixed-Integer Quadratic Program (MIQP); the
complete formulation can be found in Appendix B.

To find such a schedule, we need to know t(h,N) for every heuristic h and node N . Hence, when
collecting data for the instances in the training set X , we track for every B&B node N at which
a heuristic h was called, the number of iterations τhN it took h to find a feasible solution; we set
τhN = ∞ if h does not succeed at N . Formally, we require a training dataset D :=

{
(h,N, τhN) |

4

h ∈ H, N ∈ NX , τhN ∈ R>0 ∪ {∞}
}

. Section 5 describes a computationally efficient approach for
building D using a single B&B run per training instance.

4 Solving the Scheduling Problem

Problem (PS) is a generalization of the Pipelined Set Cover Problem which is known to be NP-hard
(Munagala et al., 2005). As for the MIQP in Appendix B, tackling it using a non-linear integer
programming solver is challenging: the MIQP has O(|H||NX |) variables and constraints. Since a
single instance may involve thousands of search tree nodes, this leads to an MIQP with hundreds of
thousands of variables and constraints even with a handful of heuristics and tens of training instances.

As mentioned in Related Work, algorithm configuration tools such as SMAC (Hutter et al., 2011)
could be used to solve (PS) heuristically. Since SMAC is a sequential algorithm that searches for a
good parameter configuration by successively adapting and re-evaluating its best configurations, its
running time can be quite substantial. In the following, we present a more efficient approach.

We now direct our attention towards designing an efficient heuristic algorithm for (PS). A similar
problem was studied by Streeter (2007) in the context of decision problems. Among other things,
the author discusses how to find a schedule of (randomized) heuristics that minimizes the expected
time necessary to solve a set of training instances X of a decision problem. Although this setting is
somewhat similar to ours, there exist multiple aspects in which they differ significantly:

1. Decision problems are considered instead of MIPs: Solving a MIP is generally much different
from solving a decision problem. When using B&B, we normally have to solve many linear
subproblems. Since in theory, every such LP is an opportunity for a heuristic to find a new
incumbent, we consider the set of nodes NX instead of X as the “instances” we want to solve.

2. A heuristic call can be suspended and resumed: In the work of Streeter, a heuristic can be
executed in a “suspend-and-resume model”: If h was executed before, the action (h, τ) represents
continuing a heuristic run for an additional τ iterations. When h reaches the iteration limit, the
run is suspended and its state kept in memory such that it can be resumed later in the schedule.
This model is not used in MIP solving due to challenges in maintaining the states of heuristics in
memory. As such, we allow every heuristic to be included in the schedule at most once.

3. Time is used to control the duration of a heuristic run: Controlling time directly is unreliable in
practice and can lead to nondeterministic behavior of the solver. Instead, we rely on different
proxy measures for different classes of heuristics. Thus, when building a schedule that contains
heuristics of distinct types, we need to ensure that these measures are comparable.

Despite these differences, it is useful to examine the greedy scheduling approach proposed in Streeter
(2007). A schedule G is built by successively adding the action (h, τ) that maximizes the ratio of the
marginal increase in the number of instances solved to the cost (i.e., τ) of including (h, τ). As shown
in Corollary 2 of Streeter (2007), the greedy schedule G yields a 4-approximation to that version of
the scheduling problem. In an attempt to leverage this elegant heuristic in our problem (PS), we will
describe it formally.

Let us denote the greedy schedule by G := 〈g1, . . . , gk〉. Then, G is defined inductively by setting
G0 = 〈〉 and Gj = 〈g1, . . . , gj〉 with

gj = argmax
(h,τ)∈Hj−1×T

|{N ∈ N j−1
X | τhN ≤ τ}|
τ

.

Here,Hj denotes the set of heuristics that are not in Gj , N j
X denotes the subset of nodes not solved

by Gj , and T is the interval generated by all possible iteration limits in D, i.e., T := [min{τhN |
(N,h, τhN) ∈ D},max{τhN | (N,h, τhN) ∈ D}]. We stop adding actions gj when Gj finds a solution
at all nodes in NX or all heuristics are contained in the schedule, i.e.,Hj = ∅.
Unfortunately, the resulting schedule can perform arbitrarily bad in our setting: Assume we have
|NX | = 100 and only one heuristic h. This heuristic solves one node in just one iteration and
requires 100 iterations for each of the other 99 nodes. Following the greedy approach, the resulting
schedule would be G = 〈(h, 1)〉 since 1

1 >
99
100 . Whenever α > 0.01, G would be infeasible for our

5

N1 N2 N3

1

4
3
2

∞∞

5

h1
h2
h3

nodes

it
er

at
io

n
s

N1

31
optimal schedule

N2, N3

∞ ∞

Figure 4: Illustration of a toy dataset and the greedy schedule: The data is shown on the left and
the (optimal) schedule obtained by following the greedy algorithm is illustrated on the right.

constrained problem (PS). Since we are not allowed to add a heuristic more than once, this cannot be
fixed with the current algorithm.

To avoid this situation, we propose the following modification. Instead of only considering the
heuristics that are not in Gj−1 when choosing the next action gj , we also consider the option to run
the last heuristic hj−1 of Gj−1 for longer. That is, we allow to choose (hj−1, τ) with τ > τj−1.
Note that the cost of adding (hj−1, τ) to the schedule is not τ , but τ − τj−1, since we decide to run
hj−1 for τ − τj−1 iterations longer and not to rerun hj−1 for τ iterations.

Furthermore, when including different classes of heuristics in the schedule, the respective time
measures are not necessarily comparable. We observed that not taking the difference of iteration
cost into account led to an increase of the primal integral of up to 23% compared to default SCIP.
To circumvent this problem, we use the average time per iteration to normalize different notions
of iterations. We denote the average cost of an iteration by thavg for heuristic h. Note that thavg can
be easily computed by tracking the running time of a heuristic during data collection. Hence, we
redefine gj and obtain

gj = argmax
(h,τ)∈Aj−1

|{N ∈ N j−1
X | τhN ≤ τ}|

cj−1(h, τ)
,

with Aj := (Hj × T) ∪ {(hj , τ) | τ > τj , τ ∈ T } and

cj(h, τ) :=

{
thavgτ, if h 6= hj
thavg(τ − τj), otherwise.

We set A0 := H × T and c0(h, τ) = thavgτ . With this modification, we obtain the schedule
G = 〈(h, 100)〉 (which solves all 100 nodes) in the above example.

Additionally, it is also possible to consider the quality of the found solutions when choosing the next
action gj . Since we observed that the resulting schedules increased the primal integral by up to 11%,
we omit this here.

Finally, note that this greedy procedure still does not explicitly enforce that the schedule is successful
at a fraction of at least α nodes. In our experiments, however, we observe that the resulting schedules
reach a success rate of α = 98% or above. The final algorithm can be found in Appendix C.

Example. Figure 4 shows an example of how we obtain a schedule with three heuristics and nodes.
As indicated by the left figure, the dataset is given by

D = {(h1, N1, 1), (h1, N2,∞), (h1, N3,∞), (h2, N1, 4), (h2, N2, 3), (h2, N3, 3), (h3, N1,∞), (h3, N2, 4), (h3, N3, 2)}.

Let us now assume that all three heuristic have the same costs, i.e., th1
avg = th2

avg = th3
avg . We build the

schedule G as follows. First, we add action (h1, 1), since h1 solves one node with only one iteration,
yielding the best ratio. Since N1 is “solved” by the current schedule and h1 cannot solve any other
nodes, both N1 and h1 do not need to be considered anymore. Among the remaining possibilities,
the action (h2, 3) is the best, since h2 solves both nodes in three iterations yielding a ratio of 2

3 . In
contrast, executing h3 for two and four iterations, respectively, yields a ratio of 1

2 . Hence, we add
(h2, 3) to G and obtain G = 〈(h1, 1), (h2, 3)〉. The schedule then solves all three nodes as shown on
the right of Figure 4. Note that this schedule is an optimal solution of (PS) for α > 1

3 .

6

5 Data Collection

The scheduling approach described thus far rests on the availability of a dataset D. Among others,
each entry in D stores the number of iterations τhN required by heuristic h to find a feasible solution
at node N . This piece of information must be collected by executing the heuristic and observing its
performance. Two main challenges arise in collecting such a dataset for multiple heuristics:

1. Efficient data collection: Solving MIPs by B&B remains computationally expensive, even given
the sophisticated techniques implemented in today’s solvers. This poses difficulties to ML
approaches that create a single reward signal per MIP evaluation, which may take several minutes
up to hours. In other words, even with a handful of heuristics, i.e., a small setH, it is prohibitive
to run B&B once for each heuristic-training instance pair in order to construct the dataset D.

2. Obtaining unbiased data: Executing multiple heuristics at each node of the search tree during data
collection can have dangerous side effects: if a heuristic finds an incumbent, subsequent heuristics
are no longer executed at the same node, as described in Section 3.

We address the first point by using a specially-crafted version of the MIP solver for collecting multiple
reward signals for the execution of multiple heuristics per single MIP evaluation during the training
phase. As a result, we obtain a large amount of data points that scales with the running time of the MIP
solves. This has the clear advantage that the efficiency of our data collection does not automatically
decrease when the time to evaluate a single MIP increases for more challenging problems.

To prevent bias from mutual interaction of different heuristics during training, we engineered the MIP
solver to be executed in a special shadow mode, where heuristics are called in a sandbox environment
and interaction with the main solving path is maximally reduced. In particular, this means that new
incumbents and primal bounds are not communicated back, but only recorded for training data. This
setting is an improved version of the shadow mode introduced in Khalil et al. (2017).

As a result of these measures, we have instrumented the SCIP solver in a way that allows for the
collection of a proper dataset D with a single run of the B&B algorithm per training instance.

6 Computational Results

The code we use for data collection and scheduling is publicly available.1

6.1 Heuristics and Instances

We can build a schedule containing arbitrary heuristics as long as there is a time measure available.
We focus on two broad groups of complex heuristics: Diving and Large Neighborhood Search (LNS).
Both classes are much more computationally expensive than simpler heuristics such as rounding (for
which scheduling is not necessary and executions are extremely fast), but are generally also more
likely to find (good) solutions (Berthold, 2006). That is why it is particularly important to schedule
these heuristics most economically.

Diving Heuristics. Diving heuristics examine a single probing path by successively fixing variables
according to a specific rule. There are multiple ways of controlling the duration of a dive. After
careful consideration, we decided on using the maximum diving depth to limit the cost of a call to a
diving heuristic: It is both related to the effort spent by the heuristic and its likelihood of success.

LNS Heuristics. These heuristics first build a neighborhood of some reference point which is then
searched for improving solutions by solving a sub-MIP. To control the duration, we choose to limit
the number of nodes in the sub-MIP. The idea behind this measure is similar to limiting the diving
depth of diving heuristics: In both cases, we control the number of subproblems a heuristic considers
within its execution. Nevertheless, the two measures are not directly comparable: The most expensive
LNS heuristic was on average around 892 times more expensive than the cheapest diving heuristic.

To summarize, we schedule 16 primal heuristics: ten diving and six LNS heuristics. By controlling
this set, we cover about 2

3 of the more complex heuristics implemented in SCIP. The remaining
heuristics are executed after the schedule according to their default settings.

1https://github.com/antoniach/heuristic-scheduling

7

https://github.com/antoniach/heuristic-scheduling

We focus on two problem classes which are challenging on the primal side: The Generalized
Independent Set Problem (GISP) (Hochbaum and Pathria, 1997; Colombi et al., 2017) and the Fixed
Charge Multicommodity Network Flow Problem (FCMNF) (Hewitt et al., 2010). For GISP, we
generate two types of instances: The first one takes graphs from the 1993 DIMACS Challange which
is also used by Khalil et al. (2017) and Colombi et al. (2017) (120 for training and testing) and the
second type uses randomly generated graphs as a base (25 for training and 10 for testing). The latter
is also used to obtain FCMNF instances (20 for training and 120 for testing). A detailed description
of the problems and how we generate and partition the instances can be found in Appendix D.

6.2 Results

To study the performance of our approach, we used the state-of-the-art solver SCIP 7.0 (Gamrath et al.,
2020) with CPLEX 12.10.0.0 as the underlying LP solver. Thereby, we needed to modify SCIP’s
source code to collect data as described in Section 5, as well as control heuristic parameters that are
not already implemented by default. For our experiments, we used a Linux cluster of Intel Xeon CPU
E5-2660 v3 2.60GHz with 25MB cache and 128GB main memory. The time limit in all experiments
was set to two hours; for data collection to four hours. Because the primal integral depends on
time, we ran one process at a time on every machine, allowing for accurate time measurements.
Furthermore, since MIP solver performance can be highly sensitive to even small and seemingly
performance-neutral perturbations during the solving process (Lodi and Tramontani, 2013), we
implemented an exhaustive testing framework that uses four random seeds and evaluates schedules
trained with one data distribution on other data distributions, a form of transfer learning.

The main baseline we compare against is default SCIP. Note that since the adaptive diving and
LNS methods presented in Hendel (2018) and Hendel et al. (2018) are included in default SCIP as
heuristics, we implicitly compare to these methods when comparing to default SCIP; improvements
due to our method reflect improvements over Hendel’s approach. Furthermore, we also consider
SCIP_TUNED, a hand-tuned version of SCIP’s default settings for GISP.2 Since in practice, a MIP
expert would try to manually optimize some parameters when dealing with a homogeneous set of
instances, we emulated that process to create an even stronger baseline to compare against.

GISP – Random graph instances. Table 1 (rows DIVING) shows partial results of the transfer
learning experiments for schedules with diving heuristics (see Table 3 in Appendix F for the complete
table). Our scheduling framework yields a significant improvement w.r.t. primal integral on all test
sets. Since this improvement is consistent over all schedules and test sets, we are able to confirm that
the behavior actually comes from our procedure. Especially remarkable is the fact that the schedules
trained on smaller instances also perform well on much larger instances. Furthermore, we can see
that the schedules perform especially well on instances of increasing difficulty (size). This behavior
is intuitive: Since our method aims to improve the primal performance of a solver, there is more room
for improvement when an instance is more challenging on the primal side. Over all test sets, the
schedules terminated with a strictly better primal integral on 69–76% and with a strictly better primal
bound on 59–70% of the instances compared to SCIP_TUNED (see Table 4 in Appendix F for details).
In addition, the number of incumbents found by the heuristics considered in the schedule increased
significantly: 49–61% of the incumbents were found by heuristics in the schedule, compared to only
33% when running with default SCIP (see Table 4 in Appendix F for details).

Table 1 (rows DIVING+LNS) shows the transfer learning experiments for schedules containing diving
and LNS heuristics. By including both types of heuristics, we are able to improve over the diving-only
schedule in around half of the cases, since on the instances we consider, diving seems to perform
significantly better than LNS. Furthermore, we also observe less consistent performance among the
schedules which leads us to the conclusion that LNS’s behavior is harder to predict. How to further
improve our scheduling procedure to better fit LNS is part of future work.

GISP – Finding a schedule with SMAC. As mentioned earlier, we can also find a schedule by using
the algorithm configuration tool SMAC. To test SMAC’s performance on the random graph instances,
we trained ten SMAC schedules, each with a different random seed, on each of the five training
sets. We used the primal integral as a performance metric. To make it easier for SMAC, we only
considered diving heuristics. We gave SMAC the same total computational time for training as we
did in data collection: With 25 training instances per set using a four hour time limit each, this comes

2We set the frequency offset to 0 for all diving heuristics.

8

train

test
schedule [150,160] [250,260] [350,360] [450,460] [550,560]

[150,160]
DIVING 0.89 ± 0.23 0.87 ± 0.37 0.87 ± 0.28 0.78 ± 0.24 0.65 ± 0.24

DIVING+LNS 0.87 ± 0.26 0.76 ± 0.29 0.85 ± 0.22 0.95 ± 0.20 0.82 ± 0.26

SMAC 0.81 ± 0.23 0.77 ± 0.34 0.90 ± 0.27 0.85 ± 0.24 0.65 ± 0.19

[250,260]
DIVING 0.89 ± 0.28 0.81 ± 0.34 0.92 ± 0.23 0.81 ± 0.24 0.66 ± 0.20

DIVING+LNS 0.86 ± 0.20 0.77 ± 0.27 0.85 ± 0.20 0.85 ± 0.18 0.64 ± 0.18

SMAC 0.87 ± 0.26 0.88 ± 0.42 0.87 ± 0.25 0.83 ± 0.24 0.59 ± 0.22

[350,360]
DIVING 0.84 ± 0.24 0.82 ± 0.36 0.81 ± 0.26 0.80 ± 0.21 0.59 ± 0.20

DIVING+LNS 0.86 ± 0.27 0.85 ± 0.29 0.94 ± 0.31 0.99 ± 0.28 0.65 ± 0.23

SMAC 0.86 ± 0.24 0.80 ± 0.37 0.86 ± 0.25 0.80 ± 0.24 0.68 ± 0.18

[450,460]
DIVING 0.89 ± 0.25 0.83 ± 0.36 0.77 ± 0.23 0.81 ± 0.21 0.58 ± 0.20

DIVING+LNS 0.84 ± 0.27 0.76 ± 0.31 0.92 ± 0.23 0.86 ± 0.24 0.62 ± 0.22

SMAC 0.93 ± 0.26 0.87 ± 0.32 0.90 ± 0.19 0.85 ± 0.25 0.69 ± 0.23

[550,560]
DIVING 0.88 ± 0.26 0.89 ± 0.42 0.86 ± 0.27 0.81 ± 0.20 0.63 ± 0.21

DIVING+LNS 0.84 ± 0.25 0.78 ± 0.35 0.96 ± 0.20 0.88 ± 0.27 0.60 ± 0.20

SMAC 0.87 ± 0.22 0.83 ± 0.31 0.92 ± 0.29 0.84 ± 0.26 0.58 ± 0.21

SCIP_TUNED - 0.89 ± 0.28 0.99 ± 0.31 1.05 ± 0.28 0.94 ± 0.23 0.76 ± 0.25

Table 1: Average relative primal integral (mean ± std.) of schedule w.r.t. default SCIP over GISP
instances derived from random graphs. The first fifteen rows correspond to schedules trained on
instances of size [L,U] with different methods: DIVING (greedy schedule with diving), DIVING+LNS
(greedy schedules with diving and LNS) and SMAC (SMAC-trained schedules with diving).

to 100 hours per training set and schedule. Note that since SMAC runs sequentially, training the
SMAC schedules took over four days per schedule, whereas training a schedule following the greedy
algorithm only took four hours with enough machines. To pick the best performing SMAC schedule
for each training set, we ran all ten schedules on the test set of same size as the corresponding training
set and chose the best performing one.

The results can be found in Table 1 (rows SMAC). As we can see, on all test sets, all schedules are
significantly better than default SCIP. However, when comparing these results to the performance
of the greedy schedules, we can see that SMAC performs worse on average. Over all five test sets,
the SMAC schedules terminated with a strictly better primal integral on 36–54% and with a strictly
better primal bound on 37–55% of the instances compared to its greedy counterparts.

GISP – DIMACS graph instances. The first three columns of Table 2 summarize the results on
the instances derived from DIMACS graphs. As we can see, the schedule setting dominates default
SCIP in all metrics, but an especially drastic improvement can be obtained w.r.t. the primal integral:
the schedule reduces the primal integral by 49%. Furthermore, 92% of instances terminated with a
strictly better primal integral and 57% with a strictly better primal bound. Even though SCIP_TUNED
finds the best incumbent faster than the schedule, the latter terminates with a better primal bound
(GISP is a maximization problem) explaining the small increase in time. When looking at the total
time spent in heuristics, we see that heuristics run significantly shorter but with more success: On
average, the incumbent success rate is higher compared to default SCIP. That the learned schedule
not only improves the primal side of the problem, but also translates to an overall better performance
is shown by the last two rows: SCHEDULE significantly dominates DEFAULT in the gap at termination
as well as the primal-dual integral.

Compared to the results of the method in Khalil et al. (2017), where node features were used to
decide if a heuristic should be executed, our scheduling procedure yields competitive performance:
On average, their method reduced both the primal integral and the time to best incumbent by 60%
(our method: 49% and 47%). Hereby it is important to note that our baseline (SCIP 7.0) is much
faster than theirs (SCIP 3.2): for DIMACS instances, default SCIP terminated with a gap of 201.95%
in Khalil et al. (2017) compared to 144.59% in our experiments. Furthermore, SCIP’s technical
reports show that version 7.0 is 58% faster than version 3.2 on a standard benchmark test set.

FCMNF. The last three columns of Table 2 summarize the results on the FCMNF instances. Also
for this problem, we can see that the schedule setting dominates both DEFAULT and SCIP_TUNED
in almost all metrics. In particular, we are able to almost double the number of solutions found
and triple the incumbent success rate. Even though the improvement in the primal integral is not as
drastic as we observed with GISP, it is still consistent over the whole test set: 62% of the instances

9

GISP FCMNF

DEFAULT SCIP_TUNED SCHEDULE DEFAULT SCIP_TUNED SCHEDULE

Primal Integral 934.48 555.75 470.73 618.52 608.19 564.07

Time to first Incumbent 1.33 1.33 1.26 34.89 34.08 27.36

Time to best Incumbent 4266.68 2642.46 2803.38 2973.66 3943.66 3782.45

Best Incumbent 2382.03 2385.73 2404.63 1242839 1227125 1221969

Total heuristic calls* 138.57 137.38 140.03 15.08 18.83 23.58

Total heuristic time* 258.88 304.96 190.10 1681.39 1620.02 1482.33

Number of Incumbents found* 2.72 3.08 3.33 0.14 0.25 0.23

Incumbent Success Rate* 0.01 0.02 0.02 0.01 0.03 0.02

Gap 144.59 144.03 141.70 9.64 8.19 7.85

Primal-dual Integral 450148.72 435321.67 430882.04 107894.01 107381.64 102855.88

Table 2: Summary of results on GISP instances derived from DIMACS graphs and for FCMNF
instances (with schedules of diving heuristics). Values shown are aggregates over instances; geometric
means are used. Statistics with * refer only to the heuristics used in the schedule.

terminated with a strictly better primal integral and 92% with a strictly better primal bound. Similar
to the GISP results, SCHEDULE needs more time than DEFAULT to find the best incumbent, since it
again terminates with a better primal bound (FCMNF is a minimization problem).

Finally, it is important to note that the trained schedules differ significantly from SCIP’s default
settings for all training sets. The improvements we observed when using these schedules supports
our starting hypothesis, namely that the way default MIP solver parameters are set does not yield the
best performance when considering specific use cases.

7 Conclusion and Discussion

In this work, we propose a data-driven framework for scheduling primal heuristics in a MIP solver
such that the primal performance is optimized. Central to our approach is a novel formulation of the
learning task as a scheduling problem, an efficient data collection procedure, and a fast, effective
heuristic for solving the learning problem on a training dataset. A comprehensive experimental
evaluation shows that our approach consistently learns heuristic schedules with better primal per-
formance than SCIP’s default settings. Furthermore, by replacing our heuristic algorithm with the
algorithm configuration tool SMAC in our scheduling framework, we are able to obtain a worse
but still significant performance improvement w.r.t. SCIP’s default. Together with the prohibitive
computational costs of SMAC, we conclude that for our heuristic scheduling problem, the proposed
heuristic algorithm constitutes an efficient alternative to existing methods.

A possible limitation of our approach is that it produces a single, “one-size-fits-all" schedule for
a class of training instances. It is thus natural to wonder whether alternative formulations of the
learning problem leveraging additional contextual data about an input MIP instance and/or a heuristic
can be useful. We note that learning a mapping from the space of MIP instances to the space of
possible schedules is not trivial. The latter is a highly structured output space that involves both the
permutation over heuristics and their respective iteration limits. The approach proposed here is much
simpler in nature, which makes it easy to implement and incorporate into a sophisticated MIP solver.

Although we have framed the heuristic scheduling problem in ML terms, we are yet to analyze the
learning-theoretic aspects of the problem. More specifically, our approach is justified on empirical
grounds in Section 6, but we are yet to attempt to analyze potential generalization guarantees. We
view the recent foundational results by Balcan et al. (2019) as a promising framework that may apply
to our setting, as it has been used for the branching problem in MIP (Balcan et al., 2018).

Disclosure of Funding

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s
Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID:
390685689), and by the German Federal Ministry of Education and Research (BMBF) within the
Research Campus MODAL (grant numbers 05M14ZAM, 05M20ZBM). Elias B. Khalil acknowledges
support from the Scale AI Research Chair Program and an IVADO Postdoctoral Scholarship.

10

References
Balcan, M.-F., DeBlasio, D., Dick, T., Kingsford, C., Sandholm, T., and Vitercik, E. (2019). How

much data is sufficient to learn high-performing algorithms? arXiv preprint: 1908.02894.

Balcan, M.-F., Dick, T., Sandholm, T., and Vitercik, E. (2018). Learning to branch. In International
conference on machine learning, pages 344–353. PMLR.

Baltean-Lugojan, R., Bonami, P., Misener, R., and Tramontani, A. (2019). Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks. preprint:
http: // www. optimization-online. org/ DB_ HTML/ 2018/ 11/ 6943. html .

Berthold, T. (2006). Primal heuristics for mixed integer programs. Master’s thesis, Technische
Universität Berlin.

Berthold, T. (2013a). Measuring the impact of primal heuristics. Operations Research Letters,
41(6):611–614.

Berthold, T. (2013b). Primal MINLP heuristics in a nutshell. In International Conference on
Operations Research.

Berthold, T. (2018). A computational study of primal heuristics inside an MI(NL)P solver. Journal
of Global Optimization, 70:189–206.

Colombi, M., Mansini, R., and Savelsbergh, M. (2017). The generalized independent set problem:
Polyhedral analysis and solution approaches. European Journal of Operational Research, 260:41–
55.

Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P.,
Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Bodic, P. L., Maher,
S. J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M., Schlösser, F., Serrano, F.,
Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., and Witzig, J. (2020). The
SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi, A. (2019). Exact combinatorial opti-
mization with graph convolutional neural networks. In 33rd Conference on Neural Information
Processing Systems (NeurIPS).

He, H., III, H. D., and Eisner, J. M. (2014). Learning to search in branch and bound algorithms. In
Advances in Neural Information Processing Systems, volume 27, pages 3293–3301.

Hendel, G. (2018). Adaptive large neighborhood search for mixed integer programming. preprint:
https: // opus4. kobv. de/ opus4-zib/ frontdoor/ index/ index/ docId/ 7116 .

Hendel, G., Miltenberger, M., and Witzig, J. (2018). Adaptive algorithmic behavior for solving mixed
integer programs using bandit algorithms. In International Conference on Operations Research.

Hewitt, M., Nemhauser, G., and Savelsbergh, M. (2010). Combining exact and heuristic approaches
for the capacitated fixed-charge network flow problem. INFORMS Journal on Computing, 22:314–
325.

Hochbaum, D. S. and Pathria, A. (1997). Forest harvesting and minimum cuts: A new approach to
handling spatial constraints. Forest Science, 43:544–554.

Hoos, H., Kaminski, R., Lindauer, M., and Schaub, T. (2014). aspeed: Solver scheduling via answer
set programming. Theory and Practice of Logic Programming, 15:117–142.

Hutter, F., Hoos, H., Leyton-Brown, K., and Stützle, T. (2009). Paramils: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research (JAIR), 36:267–306.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization, pages 507–523.

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2011). Algorithm
selection and scheduling. In International Conference on Principles and Practice of Constraint
Programming, pages 454–469.

11

http://www.optimization-online.org/DB_HTML/2018/11/6943.html
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7116

Khalil, E. B., Bodic, P. L., Song, L., Nemhauser, G., and Dilkina, B. (2016). Learning to branch in
mixed integer programming. In Proceedings of the 30th AAAI Conference on Artificial Intelligence.

Khalil, E. B., Dilkina, B., Nemhauser, G., Ahmed, S., and Shao, Y. (2017). Learning to run heuristics
in tree search. In 26th International Joint Conference on Artificial Intelligence (IJCAI), pages
659–666.

Kruber, M., Lübbecke, M., and Parmentier, A. (2017). Learning when to use a decomposition. In
International Conference on AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 202–210.

Lodi, A. (2013). The heuristic (dark) side of MIP solvers. Hybrid Metaheuristics, 434:273–284.

Lodi, A. and Tramontani, A. (2013). Performance variability in mixed-integer programming. Tutorials
in Operations Research, 10:1–12.

Munagala, K., Babu, S., Motwani, R., and Widom, J. (2005). The pipelined set cover problem. In
International Conference on Database Theory, volume 3363, pages 83–98.

Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I., O’Donoghue, B., Sonnerat,
N., Tjandraatmadja, C., Wang, P., Addanki, R., Hapuarachchi, T., Keck, T., Keeling, J., Kohli, P.,
Ktena, I., Li, Y., Vinyals, O., and Zwols, Y. (2020). Solving mixed integer programs using neural
networks. arXiv preprint: 2012.13349.

Seipp, J., Sievers, S., Helmert, M., and Hutter, F. (2015). Automatic configuration of sequential
planning portfolios. In 29th AAAI Conference on Artificial Intelligence, pages 3364–3370.

Streeter, M. (2007). Using Online Algorithms to Solve NP-Hard Problems More Efficiently in Practice.
PhD thesis, Carnegie Mellon University.

12

