
Training Neural Networks with Fixed Sparse Masks

Yi-Lin Sung∗
UNC Chapel Hill

ylsung@cs.unc.edu

Varun Nair∗
Duke University
vn40@duke.edu

Colin Raffel
UNC Chapel Hill

craffel@gmail.com

Abstract

During typical gradient-based training of deep neural networks, all of the model’s
parameters are updated at each iteration. Recent work has shown that it is possible
to update only a small subset of the model’s parameters during training, which can
alleviate storage and communication requirements. In this paper, we show that it
is possible to induce a fixed sparse mask on the model’s parameters that selects
a subset to update over many iterations. Our method constructs the mask out of
the k parameters with the largest Fisher information as a simple approximation
as to which parameters are most important for the task at hand. In experiments
on parameter-efficient transfer learning and distributed training, we show that
our approach matches or exceeds the performance of other methods for training
with sparse updates while being more efficient in terms of memory usage and
communication costs. We release our code publicly to promote further applications
of our approach.2

1 Introduction

Stochastic gradient descent (SGD) is a vital component of the modern pipeline for training deep
neural networks. Along with the back-propagation algorithm, gradient descent allows for the efficient
minimization of a loss function by gradually updating a model’s parameters. SGD minimizes the loss
over a small random subset of the dataset at each training iteration, which allows training over large
datasets. In practice, minimizing a large neural network’s training loss using SGD often results in
models that generalize well to new data [3, 17, 27], making SGD an invaluable tool.

While effective, standard SGD requires that all model parameters are updated at every iteration of
training. As a result, communicating changes to the model requires communicating the updated value
of every parameter. Since modern neural networks often have millions or billions of parameters
[9, 7, 40], this communication can become excessively expensive. A concrete example of the negative
impacts of these costs arises in the setting of transfer learning. In transfer learning, a model’s
parameters are initialized from an existing pre-trained model before being fine-tuned (i.e. trained)
on a task of interest. Pre-trained models can be fine-tuned a huge number of times – for example,
the Hugging Face model repository3 has thousands of fine-tuned variants of the BERT model [12].
Each of these fine-tuned variants requires a unique copy of the model’s parameters, each of which
takes up around 500MB of disk space. Relatedly, in distributed training [11] and federated learning
[35], workers compute updates for a centralized model in parallel on different subsets of data. After a
certain number of updates, the workers each communicate the newly-computed parameter values
back to the centralized model. The communication step can cause a significant amount of overhead
(particularly when the model is large) since the workers must communicate the updated values of all
parameters when using standard SGD.

∗Equal contribution.
2Code for our work can be found at https://github.com/varunnair18/FISH.
3https://huggingface.co/models

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/varunnair18/FISH
https://huggingface.co/models

ExEy(∇θpθ(y|x))2 Top-k

Figure 1: Diagram comparing our proposed method to standard SGD. In traditional gradient-based
training (left), all of a model’s parameters are updated at every iteration. We propose FISH Mask,
a method for precomputing a sparse subset of parameters to update over many subsequent training
iterations. To construct the FISH Mask, we find the k parameters with the largest Fisher information
(right, top). Then, we train the model with traditional gradient descent, but only update those
parameters chosen by the mask (right, bottom).

These issues could be mitigated if it was possible to only update a few parameters during training
while still maintaining performance close to that of training all parameters. This has led to various
work on parameter-efficient training of neural networks. For example, Adapters [19, 41, 5] introduce
additional parameters into a pre-trained model in the form of small task-specific modules that are
fine-tuned while the rest of the model’s parameters are kept fixed. Diff Pruning [16] and BitFit
[6] demonstrate that it is possible to fine-tune a model while only updating a small subset of the
existing parameters. In distributed and federated learning settings, Aji and Heafield [2] and Konečnỳ
et al. [23] have shown that it is possible for each worker to only update a sparse subset of a model’s
parameters, thereby reducing communication costs.

Existing methods for training with sparse updates typically work in one of three ways: they either
add parameters to the model (Adapters), choose a hand-defined and heuristically-motivated subset
of parameters (BitFit), or allow the subset of parameters to change over the course of training (Diff
Pruning and methods in distributed and federated training). In this paper, we argue for pre-computing
a sparse subset of existing parameters to update and keeping the subset fixed over many iterations of
training. This approach yields various benefits: First, by updating a subset of existing parameters
instead of adding parameters (as is done in Adapters), we avoid any increase in the total size of the
model. Second, by avoiding hand-defining the mask, we can ensure that our procedure is model-
agnostic. Third, by pre-computing a mask, we avoid the computational and memory overhead that are
apparent when updating the mask over the course of training. It also allows workers in the distributed
training setup to operate on strictly complementary subsets of parameters. Finally, keeping the mask
fixed over many iterations, we can ensure that only a specific fixed number of parameters are updated.
We are not aware of any existing techniques that satisfy these desiderata.

Motivated by these benefits, we introduce a new method for pre-computing fixed sparse masks.
Our approach first estimates the importance of each parameter using an empirical approximation
of its Fisher information. Then, we construct the mask by choosing the k parameters with the
largest Fisher information. The resulting mask, which we deem a “FISH (Fisher-Induced Sparse
uncHanging) mask”, can be re-used for many subsequent training iterations. We demonstrate the
effectiveness of using a FISH Mask in a wide variety of settings, including parameter-efficient transfer
learning, distributed training with long delays across workers, and reducing checkpoint size. Broadly
speaking, FISH Mask training can dramatically reduce storage and communication requirements,
while sacrificing minimal performance compared to standard gradient descent and outperforming
relevant prior methods for training with sparse updates.

2 The Fisher-Induced Sparse uncHanging (FISH) Mask

The main contribution of this paper is a method for pre-computing a sparse subset of a model’s
parameters to update over many subsequent training iterations. To construct such a subset, we use an
approximation of each parameter’s Fisher information as a signal of how important the parameter is
for a given task. We refer to the resulting mask (i.e. binary array indicating which parameters are

2

included in the subset) as a FISH (Fisher-Induced Sparse uncHanging) mask. In this section, we
provide the necessary background and detail the steps necessary for computing a FISH Mask. This
process is diagrammed in fig. 1.

2.1 Fisher Information

Our goal is to select the subset of parameters that are (in some sense) the most important to update.
One way to measure a parameter’s importance is to consider how much changing the parameter will
change the model’s output. We denote pθ(y|x) as the output distribution over y produced by a model
with parameter vector θ ∈ R|θ| given input x. One way to measure how much a change in parameters
would change a model’s prediction would be to compute DKL(pθ(y|x) || pθ+δ(y|x)), where δ ∈ R|θ|
is a small perturbation. It can be shown [34, 37] that as δ → 0, to second order,

ExDKL(pθ(y|x) || pθ+δ(y|x)) = δTFθδ +O(δ3) (1)

where Fθ ∈ R|θ|×|θ| is the Fisher information matrix [14, 4], defined as

Fθ = Ex∼p(x)
[
Ey∼pθ(y|x)∇θ log pθ(y|x)∇θ log pθ(y|x)T

]
(2)

Given this relation, it can be seen that the Fisher information matrix is closely connected to how much
each parameter affects the model’s predictions. Indeed, this has led the Fisher information matrix
to be widely used in modern machine learning, e.g. as a measure of parameter importance [21], as
a preconditioner in gradient descent [4, 37, 34], as a way to measure the amount of “information”
in each parameter of a neural network [1], or as a way to decide which parameters to prune when
performing model compression [43, 10, 47].

When applied to large neural networks, the |θ| × |θ| size of the Fisher information matrix makes it
intractable to compute. Prior work therefore frequently approximates Fθ as a diagonal matrix, or
equivalently, as a vector in R|θ|. Separately, when training machine learning models we seldom have
the ability to draw samples x ∼ p(x); instead, we are given a finite training set of such samples.
Furthermore, it is rarely necessary to compute the expectation over x in eq. (2) over the full training
set; instead, it can often be well-approximated over N samples x1, . . . , xN . These constraints result
in the following common approximation:

F̂θ =
1

N

N∑
i=1

Ey∼pθ(y|xi)(∇θ log pθ(y|xi))2 (3)

where F̂θ ∈ R|θ|. This approximation also has an intuitive interpretation: A given entry in F̂θ relates
to the average of the square gradient of the model’s output with respect to a given parameter. If a
given parameter heavily affects the model’s output, then its corresponding entry in F̂θ will be large,
so we can reasonably treat F̂θ as an approximation of the importance of each parameter.

Note that both eq. (2) and eq. (3) include an expectation over y ∼ pθ(y|x). When the number of
classes is small, this expectation can be computed exactly. For tasks with many possible classes, it is
common to approximate the expectation with a few samples from pθ(y|x). In supervised learning
settings, we have access to the ground-truth label yi for each sample xi in our training set. This leads
to the possibility of replacing Ey∼pθ(y|xi)(∇θ log pθ(y|xi))2 in eq. (3) with (∇θ log pθ(yi|xi))2.
Performing this approximation is referred to as the “empirical Fisher”. It has been shown that using
the empirical Fisher can lead to degenerate behavior when used as a preconditioner in an optimizer
[34, 26]. Since our use of the Fisher information is largely based on a heuristically-motivated notion
of parameter importance, we experimented with both the empirical and standard (eq. (3)) Fisher
approximations and found that they produced similar performance. Furthermore, the Empirical Fisher
is faster to compute than the standard Fisher as long as more than one sample is used to approximate
the expectation Ey∼pθ(y|xi). We discuss this further in section 4.4.1.

2.2 Computing Fixed Sparse Masks

Recall that our goal is to select a subset of parameters (or, equivalently, a sparse mask over parameters)
to update over many iterations of training while keeping the remainder of the parameters fixed. Having
established the Fisher information as a useful tool for estimating the importance of a given parameter,
we therefore first compute the approximate Fisher information (as described in the previous section)

3

for all of a model’s parameters. Then, to construct the FISH Mask, we simply choose the k parameters
with the largest Fisher information, where k is set according to the desired mask sparsity level.4

Specifically, a FISH Mask comprises the parameters {θi | F̂θi ≥ sort(F̂θ)k}. Computing the FISH
Mask is cheap because F̂θ can be computed efficiently using backpropagation, and (as we will show
in section 4.4.2) we can obtain a reliable mask for relatively small values of N . Further, the fact that
we re-use the mask for many iterations prevents us from having to compute F̂θ frequently. As we
will show in section 4, we find that this simple procedure is sufficient to produce a mask that can
be reused for many iterations (over 100,000 iterations in some cases) in a wide variety of settings
without sacrificing substantial performance compared to standard gradient-based training.

Note that in some applications of transfer learning, a new linear classifier layer must be added to
the model to make it applicable to the downstream task. Since the FISH Mask depends on pθ(y|x)
and is computed before training begins, this means that we must compute the FISH Mask using the
randomly-initialized classifier before any training has begun. We find that computing the Fisher
information through the randomly-initialized classifier layer still provides a good signal of parameter
importance. When applying FISH Mask in transfer learning settings where a new classifier layer is
added, we always include the parameters of the classifier in the mask.

3 Related Work

Our approach bears similarity and takes inspiration from existing approaches for parameter-efficient
transfer learning and distributed training of machine learning models. In this section, we outline
related methods, some of which we will compare to directly in section 4. We also briefly describe
how our work is related to and differs from work in network pruning.

3.1 Parameter-Efficient Transfer Learning

Transfer learning [36], where a model is initialized from a pre-trained checkpoint before being fine-
tuned on a related downstream task, can dramatically improve performance and speed up convergence
on the downstream task [12, 8, 40]. Standard practice is to update all of the model’s parameters
during fine-tuning, though in some cases reasonable performance can be attained by only fine-tuning
the output layer of the model [20, 8, 38]. Training only the output layer has the benefit that adapting a
given pre-trained model to a downstream task only requires adding a relatively small number of new
parameters, but typically results in worse performance compared to training the full model [38, 24].

Various methods have been proposed that endeavor to match the performance of fine-tuning the full
model while only updating or adding a small amount of parameters. Adapters [19, 41, 5] are small
subnetworks that are added between a pre-trained neural networks layers. Various works [19, 33, 32]
have shown that, when appropriately designed, updating only the parameters in the adapters and the
output layer can approach the performance of fine-tuning all parameters. For example, Houlsby et al.
[19] add on average 3.6% more parameters to adapt a pre-trained BERT model [12] to tasks in the
GLUE benchmark [48]. Concurrent work by Mahabadi et al. [33] improves the efficiency of Adapters
by generating the weights of task-specific adapters via a hypernetwork. A second concurrent approach
by Mahabadi et al. [32] introduces COMPACTER, which utilizes matrix decomposition and low-rank
parameterization for the adapters’ weights. COMPACTER is shown to achieve the same performance
as standard fine-tuning of the T5 models [40] while only adding 0.047% as many parameters as the
original model. Finally, very recent work has shown that it is possible to train language models to
perform a task by only optimizing the parameters of a "prompt" that is injected into the input of
the model’s layers [29, 28]. This can yield extremely parameter-efficient results (as low as 0.01%
task-specific parameters [28]) but this class of methods is only applicable to next-step-prediction
language models. The main drawback of all Adapter-style methods is that they increase the parameter
count and computational cost of the model. This makes them inapplicable to the distributed training
and efficient checkpointing settings consider in this paper. We therefore only compare directly to
other methods that do not add any parameters.

More closely related to our approach are methods for choosing a small subset of the model’s existing
parameters to update. In an extreme case, Zhao et al. [50] find a sparse mask to multiply against

4To avoid confusion, we use “mask sparsity” rather than “sparsity”, as in some works of literature (e.g.
network pruning) the latter term has an opposite meaning that denotes the percentage of weights being zero.

4

pre-trained parameters (which are not otherwise updated). That is, instead of fine-tuning the models, a
binary mask is learned that marks which parameters should be zeroed out. The resulting performance
degrades heavily when the mask is made very sparse, suggesting that it is likely beneficial to update
parameters. More recently, Guo et al. [16] propose “Diff Pruning”, where a sparse binary mask is
found over the course of training that denotes which parameters should be updated or fixed at the
value from the pre-trained model. Mask sparsity in the binary mask is enforced through a smooth
approximation of the L0 norm introduced by Louizos et al. [31]. Guo et al. [16] also show improved
performance by imposing a structure on the mask according to which parameters correspond to a
particular weight matrix or bias vector. Ultimately, Diff Pruning is shown to both be more parameter-
efficient and outperform Adapters when applied to fine-tuning BERT on the GLUE benchmark.
However, using Diff Pruning requires significantly more memory during training in order to store and
update the mask. Another recent result by Ben-Zaken et al. [6] demonstrated that simply updating the
bias parameters in BERT can attain competitive performance with Diff Pruning. While this provides
a simple and strong baseline, it is not universally applicable – for example, the pre-trained T5 model
[40] does not have any bias vectors. In section 4, we show that using a FISH Mask outperforms all of
these approaches in parameter-efficient fine-tuning of BERT on GLUE.

3.2 Distributed Training

As models and datasets grow, it becomes inefficient or impossible to train a model on a single machine.
This has motivated the need for distributed training strategies where computation for training a model
is shared across many machines (called workers) [11]. A major consideration in distributed training
are communication costs, since workers need to regularly communicate parameter updates with one
another. To minimize communication costs, workers can compute multiple updates on their copy of
the model before communicating their changes, but this gives rise to the “stale gradient” problem
where workers are operating on an out-of-date copy of the model. The standard and straightforward
approach to dealing with stale gradients it to simply apply updates in the “wrong” order, which can
be effective in practice [11, 42]. An orthogonal approach to reducing communication costs is to have
workers only update a small subset of the model’s parameters [2, 13, 44, 45]. For example, Aji and
Heafield [2] simply have workers communicate only those updates corresponding to the gradients
with top-k largest magnitude at each step. This bears a similar motivation to FISH Mask, but results
in a “mask” that changes at every iteration and therefore requires workers communicate after each
update. In contrast, pre-computing a FISH Mask allows workers to perform multiple iterations before
communicating their updates, thereby further reducing communication costs.

An extreme variant of distributed training is federated learning [22, 35]. In federated learning,
asynchronous workers perform many updates on private data before communicating the changes back
to a centralized model. The training involves one server and multiple clients, and the server model’s
gradient is the combination of the workers’ gradients. As with any form of asynchronous training,
communication costs and stale gradients are significant issues. McMahan et al. [35] demonstrated that
averaging the updates computed by individual workers is an effective approach to dealing with stale
gradients and Konečnỳ et al. [23] investigated techniques for significantly reducing communication
costs. Our method is complementary to the techniques for reducing communication proposed by
Konečnỳ et al. [23].

3.3 Network Pruning

Past work in network pruning has also explored techniques for sparsifying neural networks (i.e.
zeroing out many parameters for compression purposes) while sacrificing minimal performance.
Most relevant to our work, Theis et al. [46] propose utilizing the Fisher to prune and decrease the
overall number of parameters for gaze prediction, and Liu et al. [30] also use the Fisher to discover
groups of parameters to prune from common backbone architectures. Critically, these works differ
from our work in that we do not train neural networks with sparse weights. Instead, we focus on
using the Fisher to inform the selection of a fixed sparse subset of weights in a non-sparse network to
update over the course of training.

5

4 Experiments

We evaluate the efficacy of the FISH Mask in three settings: parameter-efficient transfer learning,
distributed training, and training with efficient checkpointing. For parameter-efficient transfer
learning, we demonstrate that our approach matches the performance of standard gradient-based
training on the GLUE benchmark [48] while updating only 0.5% of the model’s parameters per
task. For distributed training, we evaluate FISH Mask training for both transfer learning on GLUE
and training from scratch on CIFAR-10 [25]. In both settings, we find that we can dramatically
reduce communication without sacrificing significant performance, though from-scratch training on
CIFAR-10 requires a higher mask sparsity level than fine-tuning on GLUE. Finally, we demonstrate a
novel application of training with sparse updates: Minimizing the size of checkpoints over training.
We show that using a FISH Mask while training on CIFAR-10 with a mask sparsity level of 10% can
shrink checkpoint size on disk by a factor of 5 while sacrificing only a small amount of accuracy.
Throughout our experiments, we report results with varying mask sparsity to get a sense of the savings
induced by the FISH Mask. For ease of comparison, we report mask sparsity in terms of the total
percentage of parameters that are updated. This percentage can be converted to a value of k used for
the top-k operation when constructing the mask simply by multiplying it against the total number of
parameters in the model.

We also include ablation studies to measure the impact of the number of samples used to estimate
the Fisher information as well as the choice of true or empirical Fisher. All experiments for GLUE
are run with the BERTLARGE variant of BERT, which contains 16 attention heads, 24 layers, and 330
million parameters in total [12], and most experiments are run on a RTX 3090 GPU. For experiments
on CIFAR-10, we use a ResNet-34 [18] with various optimizations for fast convergence.5 We report
the average performance across 5 seeds for all experiments.

4.1 Parameter-Efficient Transfer Learning

In parameter-efficient transfer learning, the goal is to fine-tune a pre-trained model while updating
as few parameters as possible. We focus on fine-tuning BERTLARGE on the GLUE benchmark [48],
which is the primary setting used for evaluation in prior work. For all experiments, we fine-tune for 7
epochs and perform a hyper-parameter search across learning rate ∈ {1× 10−4, 5× 10−5, 1× 10−5}
and batch size ∈ {8, 16} for each GLUE task. We find the learning rate of 5× 10−5 and batch size
of 16 to be effective for most tasks, with the exception of batch size = 8 used for RTE. Additional
hyper-parameters, such as choice of optimizer, sequence length, and others, follow from the default
configuration for BERTLARGE presented in the Hugging Face library [49]. Test set results are reported
by submitting to the GLUE benchmark using the final model checkpoint following a hyper-parameter
search on validation results, unless otherwise noted.

Baselines We compare GLUE task performance of the FISH Mask to several other baselines and
methods focused on parameter-efficient transfer learning. In Dense Fine-tuning, we fine-tune all
parameters of a pre-trained model, as is typical in standard transfer learning. In the Random Mask
baseline, we randomly select and fix k parameters to update at the start of training. To compare
to prior work, we reproduce Bit-Fit [6], in which only the bias parameters of the BERT model are
updated across training. Our reproduction follows the original paper and performs a hyper-parameter
search with learning rates in the [1× 10−3, 1× 10−4] range. We also reproduce results from Diff
Pruning [16], which updates the sparse mask over the course of training. Our reproduction of Diff
Pruning at 0.5% mask sparsity follows the paper’s code-base6 and training settings, and reports the
GLUE test set results using the best validation checkpoint. Due to restrictions on the number of
permissible submissions to the GLUE test server, we are only able to report results with a mask
sparsity of 0.5% for those methods where we can control the mask sparsity level. We therefore
include additional validation set results for varying mask sparsity levels when using a FISH Mask.

Results Our results on parameter-efficient transfer learning with the FISH Mask can be seen in
table 1. FISH Mask training results in effectively the same performance (82.6%) as standard “dense”
fine-tuning (82.5%), despite updating just 0.5% of BERTLARGE parameters. The Random Mask
baseline achieves a significantly lower average GLUE score, which demonstrates the value of using

5Our implementation is based on https://github.com/davidcpage/cifar10-fast
6https://github.com/dguo98/DiffPruning

6

https://github.com/davidcpage/cifar10-fast
https://github.com/dguo98/DiffPruning

Method Updated Params/Task QNLI SST-2 MNLIm MNLImm CoLA MRPC STS-B RTE QQP AVG

Dense Fine-tuning 100% 93.4 94.9 87.0 86.1 61.0 86.6 86.5 70.9 80.5 82.5

Random Mask 0.50% 89.8 93.4 83.7 84.0 43.2 77.8 87.7 61.3 77.2 76.8
Bit-Fit [6] 0.08% 90.4 94.5 85.0 84.8 60.3 86.3 85.0 69.6 78.5 81.2
Diff Pruning [16] 0.50% 91.9 93.8 86.0 85.5 61.0 86.2 85.6 67.5 80.1 81.5
FISH Mask 0.08% 93.3 94.0 85.3 84.9 56.4 86.2 85.7 70.2 79.3 81.3
FISH Mask 0.50% 93.1 94.7 86.5 85.9 61.6 87.1 86.5 71.2 80.2 82.6

Table 1: GLUE test server evaluation results with BERTLARGE. MRPC and QQP are reported as an
average of F1-score and accuracy, and STS-B is reported as an average of Pearson and Spearman
correlation. Accuracy is reported for all other tasks. All results are reproduced experimentally.
Training with the FISH surpasses (82.6) other methods and equals dense fine-tuning performance
(82.5) whilst updating only 0.5% of model parameters.

0.02 0.1 0.5 2.5
Mask Sparsity (%)

60

65

70

75

80

85

90

95

G
LU

E
 v

al
id

at
io

n
sc

or
e Dense fine­tuning

Random Mask
FISH Mask

0 32 256 1024 16384
FISH Mask samples

60

65

70

75

80

85

90

95

G
LU

E
 v

al
id

at
io

n
sc

or
e Dense fine­tuning

Figure 2: (Left) GLUE validation performance of a randomly selected mask and the FISH Mask at
varying levels of mask sparsity. Compared to the densely fine-tuned baseline score of 85%, training
with the FISH Mask is competitive at 0.5% mask sparsity. (Right) GLUE validation performance
at varying levels of dataset samples used to compute the FISH Mask. Few samples are needed to
effectively compute the FISH Mask and obtain good performance. Results in both (Left) and (Right)
are averaged over 5 seeds.

the Fisher information in selecting parameters to update. Finally, FISH Mask training is competitive
with all other parameter-efficient transfer learning approaches; the next-best score of 81.5% is
achieved by Diff Pruning [16]. As mentioned in section 3, we do not include a direct comparison to
Adapter-based methods since they add parameters to the model, though we note that our method is
able to match BERTLARGE’s performance using a significantly lower mask sparsity level (0.5% vs.
3.6%) than the method proposed by Houlsby et al. [19].

Figure 2 shows the change in performance on the GLUE validation set as we change the mask sparsity
level for both a random mask and a FISH Mask. We find that the FISH Mask consistently outperforms
the random mask baseline and is still strong even at a lower mask sparsity level of 0.1%. These
results demonstrate that the FISH Mask can be a useful tool in mitigating the storage costs of saving
many fine-tuned models since it only requires that the updated parameters and their respective indices
are saved.

4.2 Distributed Training

Now, we turn to using FISH Mask to reduce communication costs in distributed training settings. We
consider the setting where distributed workers compute many subsequent updates to a local copy of
the model before transmitting their changes back to a central server. In our experiments, we assume
all workers sample data i.i.d. from the same dataset and that all workers compute the same number
of updates between each communication step, though our results could carry over to settings where
workers use different datasets and varying amounts of updates (e.g. in Federated Learning [35]).

Let θ denote the parameter vector stored on the central server and δi represent the update computed
by worker i. After each update/communication step, the server must transmit the updated θ back to all
workers. When standard gradient-based training is used, all parameters are updated, so |δi| = |θ|. If
there areM workers, the communication costs for normal training are thenM |δi| =M |θ| for worker-

7

to-server communication and M |θ| for server-to-worker communication, for a total communication
cost of 2M |θ|.
Using a sparse mask will effectively reduce the size of each δi to k. Without loss of generality, we
assume that |δi| is the same across all workers. Furthermore, assuming updates are aggregated on
the central server by summing them together, the server can either communicate the full updated
parameter vector back to all workers, or the server can communicate all other workers’ updates
to a given worker. These two options amount to server-to-worker communication costs of either
M |θ| or M(M − 1)‖δi| ≈M2|δi|. In general, we expect M to be small and |θ| to be large, so we
typically have M2|δi| < M |θ|. Therefore, we can achieve significant communication savings by
using sparse updates. For simplicity, we set M = 2 in all of our experiments; this makes the savings
in communication equal to the mask sparsity level. To apply FISH in distributed training, the central
server computes F̂θ and a single FISH Mask which is shared across all workers.

Baselines For distributed training experiments, we compare FISH Mask training to three baselines:
First, in standard training, we tune all the parameters in a single machine (i.e. standard, non-
distributed training). This provides an upper bound on performance for distributed training techniques.
Second, in densely-updated distributed training, workers use standard gradient descent to compute
updates over all parameters, and all of the worker’s updates are added together on the centralized
server. Third, in random mask distributed training, we randomly select a subset of parameters
to update for workers. For a fair comparison, we keep the overall training batches the same for all
methods, so the training iterations of a worker are half of that of the single-machine baseline.

Experimental setting In preliminary experiments on the GLUE benchmark (described in ap-
pendix A), we found that densely-updated distributed training saw no real degradation in performance
even for long communication delays. This suggests that stale gradients could be less of an issue
in transfer learning settings. We therefore instead focused on from-scratch training of a ResNet-34
on CIFAR-10. We train the model for 100 total epochs, with 50 epochs performed by each of the
two workers. Notably, we found that the performance of sparse update methods was poor for from-
scratch training unless we performed 5 epochs of standard training as “warmup” before beginning
distributed training. Beyond this change, all the models and hyper-parameters follow those mentioned
in section 4.1. We searched for the best initial learning rate in {0.4, 0.2, 0.08, 0.04, 0.02}. We
measure performance using a varying number of parameter updates between each worker-server
communication step. We report performance in terms of the accuracy achieved under a certain
communication budget, where the communication cost is measured in terms of the equivalent number
of full model parameter updates. For example, a method that updates 10% of the model’s parameters
and performs 5 communication steps over the course of training has the same cost as a method that
communicates all of a model’s parameters once (since we must transmit both the updated parameters
and their locations; more details are in section 4.3).

Results Results from training a ResNet-34 on CIFAR-10 are shown in fig. 3. As in section 4.1,
using a FISH Mask works better than using a random mask for all communication costs. Furthermore,
we generally find that using FISH Mask with a sparsity level of 10% attains a better commnica-
tion/performance trade-off than densely-updated distributed training. For example, FISH Mask
training attains comparable performance to standard training when only communicating two copies
of the model, whereas densely-updated training performs significantly worse at this communication
amount. Notably, performance was relatively poor when only updating 2% of the model’s parameters
with FISH Mask, suggesting there is a lower bound under which it is difficult to attain reasonable
results. As a whole, our results show significant promise for dramatically reducing computational
costs in distributed training settings.

4.3 Efficient Checkpointing

Over the course of training a machine learning model, it is common to save intermediate checkpoint
files that store the model’s parameter values. These checkpoints can be useful for restarting training
from a given iteration rather than starting from scratch in the event that the training job crashes or is
otherwise stopped. They are also commonly used for post-hoc analysis, for example for evaluating
a model’s performance on new datasets or metrics over the course of training. Since checkpoints
store a full copy of the model’s parameters, they can take up a significant amount of space on disk.

8

10 1 100 101 102 103

Communication cost per worker

86

88

90

92

94

A
cc

ur
ac

y
(%

)

Standard training

FISH mask, 2% sparsity
FISH mask, 10% sparsity
Random mask, 10% sparsity
Dense updates

Figure 3: CIFAR-10 validation set accuracy achieved by a ResNet-34 through distributed training at
different communication costs. X-axis refers to the total number of model communications required
for a single worker. Standard (non-distributed) training achieves an accuracy of 93.9%.

Furthermore, depending on the checkpointing frequency, hundreds of checkpoints are often written
to disk over the course of a training run. The development cycle of a machine learning model can
result in hundreds of different model variants being trained. Combining these factors with the on-disk
space needed to store the parameters of modern models (around 1 GB for BERTLARGE) results in
potentially massive storage costs.

Training with sparse updates can significantly reduce these storage costs. Specifically, if only a small
subset of the parameters are updated between checkpoint saves, then the checkpoint only needs to
store the updated parameter values and indices denoting the position of the updated parameters’
values. Assuming that the storage costs for a parameter value and index is the same (e.g. using a
32-bit float for parameter values and a 32-bit integer for indices), using a sparse mask will reduce
storage cost when the mask sparsity level is less than 50%. Note that this setting allows the “mask”
to change over the course of training, and is therefore a relaxation of the setting in section 4.1, where
the requirement is that the same subset of parameters is updated over the entire fine-tuning run. It
follows from our results in section 4.1 that FISH Mask training could be readily applied to reducing
checkpoint size in parameter-efficient transfer learning. However, we found that the strict requirement
of fixing the mask over an entire from-scratch training run on CIFAR-10 resulted in a significant
degradation in performance. This is in line with past work demonstrating the difficulty of identifying
fixed sparse subnetworks to train before training begins [15]. We therefore focus on from-scratch
training on CIFAR-10 and allow the mask to change every time a checkpoint is written, which does
not increase storage requirements over using the same fixed mask from the start of training.

Table 2: CIFAR-10 validation set accuracy when using the
FISH Mask and the Random Mask to reduce checkpoint
sizes. “Epoch” refers to allowing the mask to change each
epoch, and the number is how many epochs we update masks.
Standard training achieves an accuracy of 93.9 (±0.1)%.

Mask sparsity level

0.5% 2% 10%

Random Mask (1 Epoch) 74.80.6 84.40.2 90.00.2
FISH Mask (1 Epoch) 90.50.3 93.00.3 93.90.1
FISH Mask (2 Epochs) 90.30.5 92.50.1 93.70.2
FISH Mask (4 Epochs) 89.40.6 92.10.3 93.40.2
FISH Mask (Fixed) 78.50.7 90.60.2 93.00.2

Overall, we use the same experimen-
tal setup as in section 4.2. We measure
performance when updating the mask
every epoch (which is a common
choice in practice), every 2 epochs,
every 4 epochs, and leaving the mask
fixed over the course of training. We
performed a new search over learning
rates in {0.4, 0.2, 0.08, 0.04, 0.02}.
We compare to baselines of standard
training (which to serve as an upper
bound on the performance of using
a FISH Mask) and using a random
mask.

Results In table 2, we show the results of FISH Mask training when keeping the mask fixed over
the course of training or updating it at each epoch. We find that updating the FISH Mask every epoch
can match the performance of normal training (93.9% accuracy) at a mask sparsity level of 10%,

9

which would reduce storage requirements by a factor of 5. At lower mask sparsity levels, we see some
degradation in performance. We find that accuracy tends to decrease as we decrease the frequency of
updating the mask, but this effect is relatively small. As mentioned earlier, we also found that using a
fixed mask significantly degraded performance, though only by a few percent at a mask sparsity level
of 10%. This suggests that the FISH Mask could also be useful for identifying sparse subnetworks
to train before training begins, as conjectured by the Lottery Ticket Hypothesis [15]. We leave the
exploration of this possibility for future work. Lastly, the FISH Mask’s performance is unanimously
better than the Random Mask across the three mask sparsity levels.

4.4 Ablations

Having established the effectiveness of training with a FISH mask, we now ablate a few design
choices to help demonstrate the robustness of our approach. We perform all ablation experiments in
the parameter-efficient transfer learning setup described in section 4.1.

4.4.1 True Fisher vs. Empirical Fisher

In section 2, we note that past work has approximated the Fisher information matrix (eq. (3)) using
either the expectation over y ∼ pθ(y|x) (“true Fisher”) or ground-truth labels (“empirical Fisher”).
While past work has shown that using the empirical Fisher can be detrimental in optimization
settings [34, 26], we mainly use the Fisher information as a signal of parameter importance. The
empirical Fisher also has the benefit that it avoids marginalizing over or sampling from pθ(y|x) and
only requires computing the gradient for a single value of y. When comparing the performance
of using the true or empirical Fisher to compute a 0.5%-sparse FISH Mask for parameter-efficient
transfer learning, we observe that both methods achieve near-identical performance with an average
validation-set GLUE score of 82.5 in both cases. Since computing the empirical Fisher can be more
computationally efficient, we used the empirical Fisher for all experiments.

4.4.2 Sample Ablation

We also ablate the number of samples, N , used to compute the FISH Mask to study if more
samples are beneficial. The results for parameter-efficient transfer learning on GLUE are shown in
fig. 2, right. At a sample count of 0, the FISH Mask is equivalent to the Random Mask baseline
presented in section 4.1 in which parameters to update are selected at random instead of informed
by the Fisher information. We observe that FISH Mask performance on the GLUE validation set
is surprisingly stable across many values of samples, with just 32 samples needed to achieve the
highest-possible performance. These suggest that using the approximate Fisher information is a
data-efficient approach of computing parameter importance, and we therefore ran all experiments
with a sample count N = 1024, except in distributed training we use N = 256 for efficiency.

5 Conclusion

In this work, we proposed FISH Mask training as a novel method for pre-computing fixed sparse
masks of a model’s parameters to update over many subsequent iterations. The FISH Mask estimates
the importance of each of a model’s parameters by first approximating the Fisher information of
each parameter and then selecting the k parameters with the largest Fisher information to include
in the mask. We demonstrate the usefulness of FISH Mask training in several settings, including
parameter-efficient transfer learning, distributed training, and reducing storage requirements of model
checkpoints. In future work, we hope to explore methods for improving the performance of FISH
Mask training at lower mask sparsity levels, possibly by considering other measures of parameter
importance. We also hope to further demonstrate the efficacy of FISH Mask in real-world settings
where the benefits of sparse parameter updating are even more pronounced, such as in Federated
Learning. The integration of FISH Masks across tasks and sharing amongst practitioners could also
be a useful line of inquiry, as recent frameworks such as AdapterHub [39] have enabled for Adapter
modules [19].

10

Acknowledgments and Disclosure of Funding

We thank Yoon Kim, Michael Matena, and Demi Guo for helpful discussions.

References
[1] Alessandro Achille, Giovanni Paolini, and Stefano Soatto. Where is the information in a deep

neural network? arXiv preprint arXiv:1905.12213, 2019.

[2] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. CoRR, abs/1811.04918, 2018. URL
http://arxiv.org/abs/1811.04918.

[4] SI Amari. Neural learning in structured parameter spaces-natural riemannian gradient. Advances
in neural information processing systems, pages 127–133, 1997.

[5] Ankur Bapna, Naveen Arivazhagan, and Orhan Firat. Simple, scalable adaptation for neural
machine translation. arXiv preprint arXiv:1909.08478, 2019.

[6] Elad Ben-Zaken, Shauli Ravfogel, and Yoav Goldberg. BitFit: Simple parameter-efficient
fine-tuning for transformer-based masked language models. 2021.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020. URL https:
//arxiv.org/abs/2002.05709.

[9] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E. Hinton.
Big self-supervised models are strong semi-supervised learners. CoRR, abs/2006.10029, 2020.
URL https://arxiv.org/abs/2006.10029.

[10] Elliot J. Crowley, Jack Turner, Amos Storkey, and Michael O’Boyle. Pruning neural networks:
is it time to nip it in the bud? 2018.

[11] J. Dean, G. Corrado, Rajat Monga, Kai Chen, M. Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng. Large scale distributed
deep networks. In NIPS, 2012.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://www.aclweb.org/anthology/N19-1423.

[13] Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communication quantization
for data-parallel training of deep neural networks. In 2nd Workshop on Machine Learning in
HPC Environments (MLHPC), 2016.

[14] Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, 222(594-604):309–368, 1922.

11

http://arxiv.org/abs/1811.04918
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.10029
https://www.aclweb.org/anthology/N19-1423

[15] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[16] Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. CoRR, abs/2012.07463, 2020. URL https://arxiv.org/abs/2012.07463.

[17] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International Conference on Machine Learning, 2016.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

[19] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. CoRR, abs/1902.00751, 2019. URL http://arxiv.org/abs/1902.00751.

[20] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifica-
tion. CoRR, abs/1801.06146, 2018. URL http://arxiv.org/abs/1801.06146.

[21] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13), 2017.

[22] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimiza-
tion: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

[23] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

[24] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019.

[25] A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[26] Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical fisher
approximation for natural gradient descent. arXiv preprint arXiv:1905.12558, 2019.

[27] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop.
In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[28] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[29] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[30] Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang,
Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for
practical network compression. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 7021–7032. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/liu21ab.html.

[31] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l_0 regularization. arXiv preprint arXiv:1712.01312, 2017.

[32] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient
low-rank hypercomplex adapter layers, 2021.

[33] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson.
Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks, 2021.

12

https://arxiv.org/abs/2012.07463
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/1801.06146
https://proceedings.mlr.press/v139/liu21ab.html
https://proceedings.mlr.press/v139/liu21ab.html

[34] James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

[35] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. Communication-efficient learning of deep networks from decentralized data, 2017.

[36] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

[37] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv
preprint arXiv:1301.3584, 2013.

[38] Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. To tune or not to tune? adapting
pretrained representations to diverse tasks. arXiv preprint arXiv:1903.05987, 2019.

[39] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulic, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers.
CoRR, abs/2007.07779, 2020. URL https://arxiv.org/abs/2007.07779.

[40] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21, 2020.

[41] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. arXiv preprint arXiv:1705.08045, 2017.

[42] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems, volume 24. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/
paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf.

[43] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 2020.

[44] Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In
Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[45] Zeyi Tao and Qun Li. esgd: Communication efficient distributed deep learning on the edge. In
{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

[46] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction
with dense networks and fisher pruning. CoRR, abs/1801.05787, 2018. URL http://arxiv.
org/abs/1801.05787.

[47] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction
with dense networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

[48] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding.
CoRR, abs/1804.07461, 2018. URL http://arxiv.org/abs/1804.07461.

[49] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[50] Mengjie Zhao, Tao Lin, Martin Jaggi, and Hinrich Schütze. Masking as an efficient alternative
to finetuning for pretrained language models. CoRR, abs/2004.12406, 2020. URL https:
//arxiv.org/abs/2004.12406.

13

https://arxiv.org/abs/2007.07779
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2004.12406
https://arxiv.org/abs/2004.12406

	Introduction
	The Fisher-Induced Sparse uncHanging (FISH) Mask
	Fisher Information
	Computing Fixed Sparse Masks

	Related Work
	Parameter-Efficient Transfer Learning
	Distributed Training
	Network Pruning

	Experiments
	Parameter-Efficient Transfer Learning
	Distributed Training
	Efficient Checkpointing
	Ablations
	True Fisher vs. Empirical Fisher
	Sample Ablation

	Conclusion

