
A Theoretical Guarantees for FINE Algorithm

This section provides the detailed proof for Theorem 1 and the lower bounds of the precision and
recall. We derive such theorems with the concentration inequalities in probabilistic theory.

A.1 Preliminaries

Spectral Norm. In this section, we frequently use the spectral norm. For any matrix A ∈ Rm×n,
the spectral norm are defined as follows:

‖A‖2 = sup
x∈Rn:‖x‖=1

‖Ax‖,

where aij is the (i, j) element of A.

Singular Value Decomposition (SVD). Let A ∈ Rm×n. There exist orthogonal matrices that
satisfy the following:

U = [u1,u2, · · · ,um] ∈ Rm×m and V = [v1,v2, · · · ,vn] ∈ Rn×n

such that U>AV = diag[σ1, σ2, · · · , σmin{m,n}]
(3)

where σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} which are called singular values and diag[·] is a diagonal matrix
whose diagonal consists of the vector in the bracket [·]. (Note that UU> = U>U = I when U is
an orthogonal matrix).

A.2 Proof of Theorem 1

We deal with some require lemmas which are used for the proof of Theorem 1.
Lemma 1. Let V and W be orthogonal matrices and V = [V1,V2] and W = [W1,W2] with
V1,W1 ∈ RN×N . Then, we have

∥∥V1V
>
1 −W1V

>
1

∥∥
2

=
∥∥V>1 W2

∥∥
2

=
∥∥V>2 W1

∥∥
2
.

Proof. From the orthogonal invariance property,

∥∥V1V
>
1 −W1W

>
1

∥∥
2

=
∥∥V>(V1V

>
1 −W1W

>
1)W

∥∥
2

=

∥∥∥∥[0 V>1 W2

−V>2 W1 0

]∥∥∥∥
2

= max{
∥∥V>1 W2

∥∥
2
,
∥∥V>2 W1

∥∥
2
},

where the last line can be obtained from ‖A‖22 = maxx∈RN :‖x‖2=1 ‖Ax‖22.

Thus, to conclude this proof, it suffices to show that
∥∥V>1 W2

∥∥
2

=
∥∥V>2 W1

∥∥
2
.

Since W1W
>
1 + W2W

>
2 = I,

∥∥V>1 W2

∥∥2

2
= max

x∈RK :‖x‖2=1
x>V>1 W2W

>
2 V1x

= max
x∈RK :‖x‖2=1

V>V>1 (I−W1W
>
1)V1x

= max
x∈RK :‖x‖2=1

1− x>V>1 W1W
>
1 V1x

= 1− max
x∈RK :‖x‖2=1

x>V>1 W1W
>
1 V1x

= 1− λk(V>1 W1W
>
1 V1)

= 1− σk(V>1 W1)2,

14

where σk(V>1 W1) is the k-th singular value of V>1 W1. Analogously, we can show that

∥∥W>
1 V2

∥∥2

2
= 1− σk(V>1 W1)2.

Thus, we have

∥∥V1V
>
1 −W1W

>
1

∥∥
2

=
∥∥V>1 W2

∥∥
2

=
∥∥V>2 W1

∥∥
2

=
√

1− σk(V>1 W1)2.

Lemma 2. (Weyl’s Theorem) For any real matrices A,B ∈ Rm×n,

σi(A + B) ≤ σi(A) + σ1(B).

Proof. From the definition of the SVD, for any given matrix X ∈ Rm×n.

σi(X) = sup
V:dim(V)=i

inf
v∈V:‖v‖2=1

∥∥v>(A + B)
∥∥

2

≤ sup
V:dim(V)=i

inf
v∈V:‖v‖2=1

∥∥v>A
∥∥

2
+
∥∥v>B

∥∥
2

≤ sup
V:dim(V)=i

inf
v∈V:‖v‖2=1

∥∥v>A
∥∥

2
+ ‖B‖2

≤ σi(A) + σ1(B).

Lemma 3. (David-Kahan sin Theorem) For given symmetric matrices A,B ∈ Rn×n, let A =
UΛU> and A + B = ŪΛ̄Ū> be eigenvalue decomposition of A and A + B. Then,

∥∥U1:k(U1:k)> − Ū1:k(Ū1:k)>
∥∥

2
≤

‖B‖2
λk(A)− λk+1(A)− ‖B‖2

,

where U1:k and Ū1:k denote the first k columns of U and Ū, respectively.

Proof. Assume that A and A + B have non-negative eigenvalues. If not, there exists a large enough
constant c to make Ã + cI so that Ã and Ã + B become positive semi-definite matrices. Note that
A (resp. A + B) and Ã (resp. Ã + B) share the same eigenvectors and eigenvalue gaps λi(A) −
λi+1(A).

From the Lemma 2, we have

λi(A)− ‖B‖2 ≤ λi(A + B) ≤ λi(A) + ‖B‖2 . (4)

Thus,

(λk+1(A) + ‖B‖2)||(Ūk+1:n)>Uk+1:n||2 ≥ ||(Ūk+1:n)>(A + B)U1:k||2 (5)

≥ ||(Ūk+1:n)>AU1:k||2 − ‖B‖2 (6)

≥ λk(A)||(Ūk+1:n)>U1:k||2 − ‖B‖2 (7)

From (7), we have

||U1:k(U1:k)> − Ū1:k(Ū1:k)>||2 ≤
‖B‖2

λk(A)− λk+1(A)− ‖B‖2
.

15

Proof of (5) : Since the columns of Ūk+1:n are singular vectors of A + B,

(Ūk+1:n)>(A + B)U1:k = Λ̄k+1:n(Ūk+1:n)>U1:k.

Therefore,

∥∥(Ūk+1:n)>(A + B)U1:k

∥∥
2
≤
∥∥Λ̄k+1:n

∥∥
2

∥∥(Ūk+1:n)>U1:k

∥∥
2

= λk+1(A+B)
∥∥(Ūk+1:n)>U1:k

∥∥
2

From (4), we have λk+1(A + B) ≤ λk+1(A) + ‖B‖2
Proof of (6) : From the triangle inequality,

∥∥(Ūk+1:n)>AU1:k

∥∥
2

=
∥∥(Ūk+1:n)>(A + B)U1:k + (−Ūk+1:n)>BU1:k

∥∥
2

≤
∥∥Ūk+1:n)>(A + B)U1:k

∥∥
2

+
∥∥(−Ūk+1:n)>BU1:k

∥∥
2
.

We have

∥∥(−Ūk+1:n)>BU1:k

∥∥
2
≤
∥∥(−Ūk+1:n)>

∥∥
2
‖B‖2 ‖U1:k‖2 = ‖B‖2 .

Proof of (7) : Since the columns of U1:k are singular vectors of A,

(Ūk+1:n)>AU1:k = (Ūk+1:n)>U1:kΛ1:k

Therefore,

∥∥(Ūk+1:n)>AU1:k

∥∥
2

=
∥∥(Ūk+1:n)>U1:kΛ1:k

∥∥
2
≥
∥∥(Ūk+1:n)>U1:k

∥∥
2
λk(A).

Lemma 4. Let M ∈ Sd×d and let Nε be an ε-net of Sd−1. Then

‖M‖2 ≤
1

1− 2ε
max
y∈Nε

|y>My|

Proof. Let M ∈ Sd×d and let Nε be an ε-net of Sd−1. Furthermore, we define y ∈ Nε satisfy
‖x− y‖2 ≤ ε. Then,

|xMx− y>My| = |x>M(x− y) + y>M(x− y)|
≤ |x>M(x− y)|+ |y>M(x− y)|

(8)

Looking at |x>M(x− y)| we have

|x>M(x− y)| ≤ ‖M(x− y)‖2 ‖x‖2
≤ ‖M‖2 ‖x− y‖2 ‖x‖2
≤ ‖M‖2 ε

(9)

Applying the same argument to y>M(x− y)| gives us |xMx− y>My| ≤ 2ε ‖M‖2. To complete
the proof, we see that ‖M‖2 = maxx∈Sd−1 x>Mx ≤ 2ε ‖M‖2 + maxy∈Nε y

>My. Rearranging
the equation gives ‖M‖2 ≤

1
1−2ε maxy∈Nε y

>My as desired.

16

Lemma 5. Let x1, . . . ,xn be an i.i.d sequence of σ sub-gaussian random vectors such that
V[x1] = Σ and let Σ̂n := 1

N

∑n
i=1 xix

>
i be the empirical gram matrix. Then, there exists a univer-

sal constant C > 0 such that, for δ ∈ (0, 1), with probability at least 1− δ∥∥∥Σ̂n −Σ
∥∥∥

2

σ2
≤ C max{

√
d+ log(2/δ)

n
,
d+ log(2/δ)

n
}

Proof. Applying Lemma 4 on Σ̂n −Σ with ε = 1/4 we have∥∥∥Σ̂n −Σ
∥∥∥

2
≤ 2 max

v∈N1/4

|v>Σ̂n −Σv|

Additionally, we know that N1/4 ≤ 9d. From here, we can apply standard concentration tools as
follows:

P(
∥∥∥Σ̂n −Σ

∥∥∥
2
≥ t) ≤ P(max

v∈N1/4

|v>(Σ̂n −Σ)v| ≥ t/2)

≤ |N1/4|P(|v>i (Σ̂n −Σ)vi| ≥ t/2)

(10)

We rewrite v>i (Σ̂n −Σ)vi as follows:

v>i (Σ̂n −Σ)vi =
1

n

n∑
i=1

(v>i xj)
2 − E

[
(v>i xj)

2
]

=
1

n

n∑
i=1

zj − E[zj]

where zj’s are independent and by assumption v>i xj ∈ SG(σ2) so that zj − E[zj] ∈
SE((16σ2)2, 16σ2). Applying the sub-exponential tail bound gives us

P(v>i (Σ̂n −Σ)vi| ≥ t/2) ≤ 2 exp

[
−n

2
min

{
n

(32σ2)2
,
n

32σ2

}]
so that

P(
∥∥∥Σ̂n −Σ

∥∥∥
2
≥ t) ≤ 2 · 9d2 exp

[
−n

2
min

{
n

(32σ2)2
,
n

32σ2

}]
Inverting the bound gives the desired result.

A.2.1 Proof of Theorem 1

Proof. Let v⊥ be the unit vector, which is orthogonal to v. Then, w can be expressed by v⊥ and
v (i.e. w = cos θ · v + sin θ · v⊥ with −π/2 ≤ θ ≤ π/2). Since vv> + v⊥v

>
⊥ = I, we have

w = vv>w + v⊥v
>
⊥w.

Then, we have

ww> = (vv>w + v⊥v
>
⊥w)(vv>w + v⊥w

>
⊥w)>

= vv>ww>vv> + v⊥v
>
⊥ww>vv> + vv>ww>v⊥v

>
⊥ + v⊥v

>
⊥ww>v⊥v

>
⊥

(11)

Let A and B be the projection matrices for clean instances and whole instances for using the David-
Kahan sin Theorem as followings:

17

A = E

N+∑
i=1

(v + εi)(v + εi)
>

+ v⊥v
>
⊥ww>v⊥v

>
⊥ + σ2I (12)

A + B =

N+∑
i=1

(v + εi)(v + εi)
> +

N−∑
j=1

(w + εj)(w + εj)
> (13)

The difference between first eigenvalue and second eigenvalue of gram matrix A is equal to

λ1(A)− λ2(A) = N+ −N− sin2 θ ≥ N+ −N− sin θ (14)

By triangular inequality, we have

‖B‖2 ≤

∥∥∥∥∥∥
N+∑
i=1

(v + εi)(v + εi)
> − vv> − σ2I

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
N−∑
i=1

(w + εi)(w + εi)
> −ww> − σ2I

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
N−∑
j=1

ww> − v>⊥ww>v⊥v
>
⊥

∥∥∥∥∥∥
2

(15)

For the first and the second terms of RHS in Eq. (15), using Lemma 5, with probability at least
1− δ/2, we can derive each term as followings:

∥∥∥∥∥∥
N+∑
i=1

(v + εi)(v + εi)
> − vv> − σ2I

∥∥∥∥∥∥
2

≤ N+Cσ
2 max

{√
d+ log(4/δ)

N+
,
d+ log(4/δ)

N+

}
,

∥∥∥∥∥∥
N−∑
j=1

(w + εj)(w + εj)
> −ww> − σ2I

∥∥∥∥∥∥
2

≤ N−Cσ2 max

{√
d+ log(4/δ)

N−
,
d+ log(4/δ)

N−

}

As N+, N− →∞, with probability at least 1− δ

1

N+

∥∥∥∥∥∥
N+∑
i=1

(v + εi)(v + εi)
> − vv> − σ2I

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
N−∑
j=1

(w + εj)(w + εj)
> −ww> − σ2I

∥∥∥∥∥∥
2

≤ Cσ2

[√
d+ log(4/δ)

N+
+
N−
N+

√
d+ log(4/δ)

N−

]
= O

(
σ2

√
d+ log(4/δ)

N+
+ σ2τ

√
d+ log(4/δ)

N−

)
(16)

For the third term of RHS in Eq. (15), we have

∥∥∥∥∥∥
N−∑
j=1

ww> − v>⊥ww>v⊥v
>
⊥

∥∥∥∥∥∥
2

= N− ·
∥∥vv>ww>vv> + v⊥v

>
⊥ww>vv> + vv>ww>v⊥v

>
⊥
∥∥

2

≤ N− · 3 cos θ
(17)

18

Hence, by using Eq. (14), Eq. (16), and Eq. (17) for Lemma 3, when τ is sufficiently small, we have

∥∥uu> − vv>
∥∥

2
≤

3τ cos θ +O(σ2
√

d+log(4/δ)
N+

)

1− τ(sin θ + 3 cos θ)−O(σ2
√

d+log(4/δ)
N+

)
. (18)

A.3 Additional Theorem

After projecting the features on the principal component of FINE detector, we aim to guarantee the
lower bounds for the precision and recall of such values with high probability. Since the feature
distribution comprises two Gaussian distributions, the projected distribution is also a mixture of
two Gaussian distributions. Here, by LDA assumptions, its decision boundary with ζ = 0.5 is the
same as the average of mean of two clusters. In this situation, we provide the lower bounds for the
precision and recall of our FINE detector in Theorem 2.

Theorem 2. Let Φ be the cumulative distribution function (CDF) of N (0, 1). Additionally, we
define the zi as linear projection of xi on arbitrary vector. For the decision boundary b =
1
2 (
∑N
i=1 1{yi=1}zi

N+
+
∑N
i=1 1{yi=−1}zi

N−
), with probability 1-δ, the lower bounds for the precision and

recall can be derived as Eq. (21) and Eq. (22).

Proof. N+ and N− are equal to
∑N
i=1 1{Yi=1} and

∑N
i=1 1{Yi=−1}, respectively. With

definition 2, the mean of the projection values of clean instances is (u>v)2 and that of

noisy instances is (u>w)2. By the central limit theorem (CLT), we have
∑N
i=1 1{Yi=1}Zi

N+
∼

N ((u>v)2, σ
2

N+
) and

∑N
i=1 1{Yi=−1}Zi

N−
∼ N ((u>w)2, σ

2

N−
). Furthermore, we can get∑N

i=1 1{Yi=1}Zi
N+

+
∑N
i=1 1{Yi=−1}Zi

N−
∼ N ((u>v)2 + (u>w)2, (1

N+
+ 1

N−
)σ2)

By the concentration inequality on standard Gaussian distribution, we have

P

(∣∣∣∣∣
∑N
i=1 1{Yi=1}Zi

N+
+

∑N
i=1 1{Yi=−1}Zi

N−
− ((u>v)2 + (u>w)2)

∣∣∣∣∣ > ψ

)
< 2 exp (−ψ

2

2
· 1
σ2

N+
+ σ2

N−

)

(19)

Therefore, with probability 1− δ,

(u>v)2 + (u>w)2

2
− C

√(
1

N+
+

1

N+

)
log(2/δ) ≤ b

b ≤ (u>v)2 + (u>w)2

2
+ C

√(
1

N+
+

1

N+

)
log(2/δ)

(20)

19

where C > 0 is a constant. Then, by using the Eq. (20), we can derive the lower bound for the recall
as follows:

RECALL = P(Z > b|Y = +1) = P (Z > b|Y = +1)

≥ P(Z >
µ+ + µ−

2
+ C

√(
1

N+
+

1

N+

)
log(2/δ)|Y = +1)

= P(
Z − µ+

σ
>
−µ+ + µ−

2σ
+

C
√(

1
N+

+ 1
N+

)
log(2/δ)

σ
)

= P(N (0, 1) >

−∆ + 2C
√(

1
N+

+ 1
N+

)
log(2/δ)

2σ
)

= 1− P(N (0, 1) ≤
−∆ + 2C

√(
1
N+

+ 1
N+

)
log(2/δ)

2σ
)

= 1− Φ(

−∆ + 2C
√(

1
N+

+ 1
N+

)
log(2/δ)

2σ
)

= Φ(

∆− 2C
√(

1
N+

+ 1
N+

)
log(2/δ)

2σ
)

(21)

Furthermore, we have lower bound for precision as follows:

PRECISION = P(Y = +1|Z > b)

=
P(Z > b|Y = +1)P (Y = +1)∑

i∈{−1,+1} P(Z > b|Y = i)P (Y = i)

≥
P(Z > µ++µ−

2 + C
√(

1
N+

+ 1
N+

)
log(2/δ)|Y = +1)P (Y = +1)

∑
i∈{−1,+1} P(Z > µ++µ−

2 − C
√(

1
N+

+ 1
N+

)
log(2/δ)|Y = i)P (Y = i)

=

P(Z > µ++µ−
2 + C

√(
1
N+

+ 1
N+

)
log(2/δ)|Y = +1)P (Y = +1)

∑
i∈{−1,+1} P(Z > µ++µ−

2 − C
√(

1
N+

+ 1
N+

)
log(2/δ)|Y = i)P (Y = i)

≥ 1

1 +
P(Z>

µ++µ−
2 +C

√(
1
N+

+ 1
N+

)
log(2/δ)|Y=−1)P (Y=−1)

P(Z>
µ++µ−

2 −C
√(

1
N+

+ 1
N+

)
log(2/δ)|Y=+1)P (Y=+1)

=
1

1 +
p−·Φ(

−∆−2C

√(
1
N+

+ 1
N+

)
log(2/δ)

2σ)

p+·Φ(
∆−2C

√(
1
N+

+ 1
N+

)
log(2/δ)

2σ)

(22)

where ∆ := u>v − u>w, and p+ and p− are the noise distribution for clean instances and noisy
instances, respectively. Additionally, we can find that the difference of mean between two Gaussian

20

distribution, ∆ > 0 is an important factor of computing both lower bounds. As ∆ become larger, we
have larger lower bounds for both recall and precision.

B Implementation Details for section 4

In section 4, there are two reporting styles regarding the test accuracy: (1) reporting the accuracy with
statistics and (2) reporting the best and last test accuracy. For the first one, we leverage an additional
validation set to select the best model [14, 29], and thus the reported accuracy is computed with this
selected model. In the next case, we report both the best and last test accuracy without the usage of
validation set [25]. We reproduce all experimental results referring to other official repositories 3, 4,

5.

Dataset. In our expereiments, we compare the methods regarding image classification on three
benchmark datasets: CIFAR-10, CIFAR-100, and Clothing-1M [44]6. Because CIFAR-10, CIFAR-
100 do not have predefined validation sets, we retain 10% of the training sets to perform valida-
tion [29].

Data Preprocessing We use the same settings in [29]. We apply normalization and simple data
augmentation techniques (random crop and horizontal flip) on the training sets of all datasets. The
size of the random crop is set to 32 for the CIFAR datasets and 224 for Clothing1M referred to
previous works [29, 51, 19].

B.1 Sample-Selection Approaches

As an extension on the experiments in original papers [14, 47, 42, 32], we conduct experiments on
various noise settings. We use the same hyperparameter settings written in each paper (algorithm 2).
Therefore, we unify the hyperparameter settings. In this experiment, we use ResNet-34 models
and reported their accuracy. For using FINE detector, we substitute the Topofilter [42] with FINE.
Specifically, we use 40 epochs for warmup stage, and the data selection using FINE detector is
performed every 10 epochs for computational efficiency referred to the alternative method [42]. The
other settings are the same with them.

B.2 Semi-Superivsed Approaches

DivideMix [25] solves a noisy classification challenge as semi-supervised approach. It trains two
separated networks to avoid confirmation errors. The training pipeleine consists of co-divide phase
and semi-supervised learning (SSL) phase. Firstly, in co-divide phase, two networks divide the whole
training set into clean and noisy subset and provide them to each other. In SSL phase, each network
utilizes clean and noisy subset as labeled and unlabeled training set, respectively, and do the Mix-
Match [4] after processing label adjustment, co-refinement and co-guessing. It adjusts the labels of
given samples with each model’s prediction, and this adjustment can be thought as a label smoothing
for robust training.

In co-divide phase, each network calculates cross-entropy (CE) loss value of each training sample
and fits them into Gaussian Mixture Model (GMM) with two components which indicate the distri-
bution of clean and noisy subsets. From this process, each sample has clean probability which means
how close the sample is to the ‘clean’ components of GMM.

We demonstrate that FINE detector may be a substitute for the noisy detector in co-divide
phase (algorithm 3). In every training epoch in DivideMix, the noisy instances are filtered through
our FINE detector. algorithm 3 represents the details about the modified algorithm, written based on
Dividemix original paper. All hyper-parameters settings are the same with [25], even for the clean
probability threshold ζ.

3https://github.com/bhanML/Co-teaching
4https://github.com/LiJunnan1992/DivideMix
5https://github.com/shengliu66/ELR
6This dataset is not public, and thus we contact the main owner of this dataset to access this dataset. Related

procedures are in https://github.com/Cysu/noisy_label.

21

https://github.com/bhanML/Co-teaching
https://github.com/LiJunnan1992/DivideMix
https://github.com/shengliu66/ELR
https://github.com/Cysu/noisy_label

Algorithm 2: Sample-Selection with FINE
INPUT : weight parameters of a network θ, D = (X ,Y): training set, number of classes K
OUTPUT : θ

1: θ = WarmUp(X ,Y, θ)
2: while e < MaxEpoch do
3: for (xi, yi) ∈ D do
4: zi ← g(xi)
5: Update the gram matrix Σyi ← Σyi + ziz

>
i

6: end for
/* Generate the principal component with eigen decomposition */

7: for k = 1, . . . ,K do
8: Uk,Λk ← EIGEN DECOMPOSITION OF Σk

9: uk ← THE FIRST COLUMN OF Uk

10: end for
/* Compute the alignment score and get clean subset C */

11: for (xi, yi) ∈ Ce−1 do
12: Compute the FINE score fi = 〈uyi , zi〉

2 and Fyi ← Fyi ∪ {fi}
13: end for

/* Finding the samples whose clean probability is larger than ζ */
14: Ce ← Ce∪ GMM (Fk, ζ) for all k = 1, . . . ,K
15: Train network θ using loss function L on Ce
16: end while

Algorithm 3: DivideMix [25] with FINE

INPUT : θ(1) and θ(2): weight parameters of two networks, D = (X ,Y): training set , τ : clean
probability threshold, M : number of augmentations, T : sharpening temperature, λu:
unsupervised loss weight, α: Beta distribution parameter for MixMatch, FINE

OUTPUT : θ(1) and θ(2)

1: θ(1), θ(2) = WarmUp(X ,Y, θ(1), θ(2))
2: while e < MaxEpoch do
3: C(2)

e ,W(2) = FINE(X ,Y, θ(1)) B W(2) is a set of the probabilities from θ(2) model
4: C(1)

e ,W(1) = FINE(X ,Y, θ(2)) B W(1) is a set of the probabilities from θ(1) model
5: for k = 1, 2 do
6: X (k)

e =
{

(xi, yi, wi)|wi ≥ τ, (xi, yi) ∈ C(k)
e ,∀(xi, yi, wi) ∈ (X ,Y,W(k))

}
7: U (k)

e = D −X (k)
e

8: for b = 1 to B do
9: for m = 1 to M do

10: x̂b,m = Augment(xb)
11: ûb,m = Augment(ub)
12: end for
13: pb = 1

MΣmpmodel(x̂b,m; θ(k))
14: ȳb = wbyb + (1− wb)pb
15: ŷb = Sharpen(ȳb, T)
16: q̄b = 1

2MΣm(pmodel(ûb,m; θ(1)) + pmodel(ûb,m; θ(2)))
17: qb = Sharpen(q̄b, T)
18: end for
19: X̂ = {(x̂b,m, ŷb); b ∈ (1, . . . , B),m ∈ (1, . . . ,M)}
20: Û = {(ûb,m, ŷb); b ∈ (1, . . . , B),m ∈ (1, . . . ,M)}
21: LX ,LU = MixMatch(X̂ , Û)
22: L = LX + λuLU + λrLreg
23: θ(k) = SGD(L, θ(k))
24: end for
25: end while

22

B.3 Collaboration with Noise-Robust Loss Functions

We conduct experiments with CE, GCE, SCE, ELR mentioned in subsubsection 4.2.3. We follow
all experiments settings presented in the [29] except for the GCE on CIFAR-100 dataset. We use
ResNet-34 models and trained them using a standard Pytorch SGD optimizer with a momentum of
0.9. We set a batch size of 128 for all experiments. We utilize weight decay of 0.001 and set the initial
learning rate as 0.02, and reduce it by a factor of 100 after 40 and 80 epochs for CIFAR-10 (total
120 epochs) and after 80 and 120 epochs for CIFAR-100 (total 150 epochs). For noise-robust loss
functions, we train the network naively for 50 epochs, and conduct the FINE for every 10 epochs.

C More Results

C.1 Degree of Alignment

We additionally explain the vital role of the first eigenvector compared to other eigenvectors and the
mean vector.

Comparison to other eigenvectors. We provide robustness by means of the way the first eigen-
vector is robust to noisy vectors so that FINE can fix the noisy classifier by using segregated clean
data. Unlike the first eigenvector, the other eigenvectors can be significantly affected by noisy data
(Table 4).

Noise 1st eigenvector 2nd eigenvector

sym 20 0.015 ± 0.009 0.043 ± 0.021

sym 50 0.029 ± 0.019 0.078 ± 0.044

sym 80 0.057 ± 0.038 0.135 ± 0.052

Table 4: Comparison of the perturbations of Eq. (1) (‖uu> − vv>‖) on CIFAR-10 with symmetric
noise. The values in the table are written as mean (std) of the perturbations between u and v obtained
for each class.

Comparison to the mean vector. The mean vector can be a nice ad-hoc solution as a decision
boundary. This is because the first eigenvector of the gram matrix and the mean vector of the cluster
become similar under a low noise ratio. However, because the gram matrix of the cluster becomes
larger in a high noise ratio scenario, naive averaging can cause a lot of perturbation. On the other
side, because the first eigenvector arises from the principal component of the representation vectors,
FINE is more robust to noisy representations so that it has less perturbation and provides better
performance.

To support this explanation, we performed additional experiments by changing the anchor point with
the first eigenvector and the mean vector. As Table 5 shows, the performance degradation occurs as
the noise ratio increases by replacing the first eigenvector with the mean vector

Noise sym 20 sym 50 sym 80

mean eigen mean eigen mean eigen

Acc (%) 90.32 91.42 86.03 87.20 67.78 71.55

F-score 0.8814 0.9217 0.4879 0.8626 0.6593 0.7339

Table 5: Comparison of test accuracies on the CIFAR-10 dataset.

C.2 Detailed values for Figure 7

We provide the detailed values for Figure 7 in Table 6.

23

Table 6: Test accuracies (%) on CIFAR-10 and CIFAR-100 under different noisy types and fractions
for noise-robust loss approaches. The average accuracies and standard deviations over three trials
are reported.

Dataset CIFAR-10 CIFAR-100

Noisy Type Sym Asym Sym Asym

Noise Ratio 20 50 80 40 20 50 80 40

Standard 87.0± 0.1 78.2± 0.8 53.8± 1.0 80.1± 1.4 58.7± 0.3 42.5± 0.3 18.1± 0.8 42.7± 0.6
GCE 89.8± 0.2 86.5± 0.2 64.1± 1.4 76.7± 0.6 66.8± 0.4 57.3± 0.3 29.2± 0.7 47.2± 1.2
SCE* 89.8± 0.3 84.7± 0.3 68.1± 0.8 82.5± 0.5 70.4± 0.1 48.8± 1.3 25.9± 0.4 48.4± 0.9
ELR* 91.2± 0.1 88.2± 0.1 72.9± 0.6 90.1± 0.5 74.2± 0.2 59.1± 0.8 29.8± 0.6 73.3± 0.6

FINE 91.0± 0.1 87.3± 0.2 69.4± 1.1 89.5± 0.1 70.3± 0.2 64.2± 0.5 25.6± 1.2 61.7± 1.0
GCE + FINE 91.4± 0.1 86.9± 0.1 75.3± 1.2 88.9± 0.3 70.5± 0.1 61.5± 0.5 37.0± 2.1 62.4± 0.5
SCE + FINE 90.4± 0.2 85.1± 0.2 70.5± 0.8 86.9± 0.3 70.9± 0.3 64.1± 0.7 29.9± 0.8 64.3± 0.3
ELR + FINE 91.5± 0.1 88.5± 0.1 74.7± 0.5 91.1± 0.2 74.9± 0.2 66.7± 0.4 32.5± 0.5 73.8± 0.4

C.3 Hyperparameter sensitivity towards ζ

We perform additional experiments; we report the test accuracy and f1-score on CIFAR-10 with a
symmetric noise ratio of 80% across the value of the hyperparameter (Table 7). We can observe that
the performance change is small in the acceptable range from 0.4 to 0.6.

ζ 0.4 0.45 0.5 0.55 0.6

Acc (%) 69.75 73.02 71.55 68.80 67.78

F-score 0.7270 0.7466 0.7339 0.7165 0.7016

Table 7: Sensitivity analysis for hyperparameter zeta on CIFAR-10 with symmetric noise 80%.

C.4 Feature-dependent Label Noise

We additionally conducted experiments with our FINE methods on the feature-dependent
noise labels dataset (noise rates of 20% and 40% by following the experimental settings of
CORES [32]) (Table 8). To compare our FINE to CORES2.

C.5 Filtering Time Analysis

We compare the training times per one epoch of FINE with other filtering based methods, using a
single Nvidia GeForce RTX 2080. We also report the computational time when the different number
of data is used for eigen decomposition. We discover that there remain little difference as the num-
ber of instances is differently used for eigen decomposition. As Table 9 shows, the computational
efficiency for FINE can be obtained without any degradation issues.

Dataset Noise 0.2 0.4

CIFAR-10 CORES2 89.50 82.84

CIFAR-10 FINE 89.84 86.68

CIFAR-100 CORES2 61.25 48.96

CIFAR-100 FINE 62.21 47.81

Table 8: Comparison of test accuracies on clean datasets under feature-based label noise.

24

Table 9: Filtering Time Analysis on CIFAR-10 dataset

DivideMix [25] FINE FINE using 1% dataset F-Dividemix F-Dividemix using 1% dataset

2.2s 20.1s 1.1s 40.2s 2.1s

C.6 Other Real-world Noisy Datasets

We conduct additional experiments with our FINE method on the mini Webvision dataset for com-
parison with state-of-the-art methods (Table 10). In the comparison with CRUST [32], which is
the state-of-the-art sample selection method, our method achieved 75.24% while CRUST achieved
72.40% on the test dataset of (mini) Webvision. Looking at the results, the difference between Di-
videmix [25] and F-Dividemix is marginal (Table 10). However, the reason for this is that we have
to reduce the batch size due to the limitation of our current GPU, and we cannot do hyperparam-
eter tuning (e.g. weight decay, learning rate). The final version will be able to run experiments by
supplementing this issue, and it is expected that the performance will be improved.

Method Webvision ImageNet

top1 top5 top1 top5

CRUST [32] 72.40 89.56 67.36 87.84

FINE 75.24 90.28 70.08 89.71

DivideMix [25] 77.32 91.64 75.20 90.84

F-DivideMix 77.28 91.44 75.20 91.28

Table 10: Comparison with state-of-the-art methods trained on (mini) WebVision dataset. Numbers
denote top-1 (top-5) accuracy (%) on the WebVision validation set and the ImageNet ILSVRC12
validation set.

25

