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Roadmap. In Section S1, we present useful technical results. Next, in a specific case, we show
that the discrete problem (6) admits a closed-form solution that we discuss in Section S2. Noticeably,
this special case allows the understanding of the behaviour of the estimated DPP kernel in both the
small and large regularization (λ) limits. In Section S3, all the deferred proofs are given. Finally,
Section S4 provides a finer analysis of the empirical results of Section 6 as well as a description of the
convergence of the regularized Picard algorithm to the closed-form solution described in Section S2.

S1 Useful technical results

S1.1 Technical lemmata

We preface the proofs of our main results with three lemmata.

Lemma S1. Let k be a strictly positive definite kernel of a RKHSH and let C be a n× n symmetric
matrix. Assume that {xi}1≤i≤n are such that the Gram matrix K = [kH(xi, xj)]1≤i,j≤n is non-
singular. Then, the non-zero eigenvalues of

∑n
i,j=1 Cijφ(xi)⊗ φ(xj) correspond to the non-zero

eigenvalues of KC.

Proof. By definition of the sampling operator (see Section 1.1), it holds that S∗nCSn =
1
n

∑n
i,j=1 Cijφ(xi) ⊗ φ(xj) and we have SnS∗nC = 1

nKC. Thus, we need to show that the
non-zero eigenvalues S∗nCSn correspond to the non-zero eigenvalues of SnS∗nC.

Let gλ ∈ H be an eigenvector of S∗nCSn with eigenvalue λ 6= 0. First, we show that Sngλ is
an eigenvector of SnS∗nC with eigenvalue λ. We have S∗nCSngλ = λgλ. By acting on both
sides of the latter equation with Sn, we find Sn(S∗nCSn)gλ = λSngλ. This is equivalent to
SnS

∗
nC(Sngλ) = λ(Sngλ). Second, since SnS∗n � 0, remark that SnS∗nC is related by a similarity

to (SnS
∗
n)1/2C(SnS

∗
n)1/2, which is diagonalizable. Since S∗nCSn is at most of rank n, the non-zero

eigenvalues of S∗nCSn match the non-zero eigenvalues of (SnS
∗
n)1/2C(SnS

∗
n)1/2, which in turn are

the same as the non-zero eigenvalues of SnS∗nC.

Lemma S2. Let Σ ∈ S+(Rm) and let I be a subset of {1, . . . ,m}. Then, the function

Σ 7→ log det(Σ) + log det(Im + Σ−1/|I|)II (S1)

is strictly concave on {Σ � 0}.

Proof. To simplify the expression, we do the change of variables Σ 7→ Σ/|I| and analyse
log det(Σ) + log det(Im + Σ−1)II which differs from the original function by an additive constant.
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Let UI be the matrix obtained by selecting the columns of the identity matrix which are indexed by
I. We rewrite the second term in (S1) as

log det(Im + Σ−1)II = log det(I|I| + U>IΣ−1UI) = log det(Im + Σ−1/2UIU
>
IΣ−1/2),

by Sylvester’s identity. This leads to

log det(Σ) + log det(Im + Σ−1)II = log det(Σ + UIU
>
I ).

To check that log det(Σ + UIU
>
I ) is strictly concave on {Σ � 0}, we verify that its Hessian is

negative any direction H. Its first order directional derivative reads Tr
(
(Σ + UIU

>
I )−1H

)
. Hence,

the second order directional derivative in the direction of H writes

−Tr
(
(Σ + UIU

>
I )−1H(Σ + UIU

>
I )−1H

)
,

which is indeed a negative number.

The following result is borrowed from Mariet and Sra [2015, Lemma 2.3.].

Lemma S3. Let Σ ∈ S+(Rm) and let U ∈ Rm×` be a matrix with ` ≤ m orthonormal columns.
Then, the function − log det(U>Σ−1U) is concave on Σ � 0.

Proof. The function− log det(U>Σ−1U) is concave on Σ � 0 since log det(U>Σ−1U) is convex
on Σ � 0 for any U such that U>U = I as stated in Mariet and Sra [2015, Lemma 2.3.].

S1.2 Use of the representer theorem

We here clarify the definition of the representer theorem used in this paper.

S1.2.1 Extended representer theorem

In Section 3, we used a slight extension of the representer theorem of Marteau-Ferey et al. [2020]
which we clarify here. Let us first define some notations. LetH be a RKHS with feature map φ(·)
and {z1, . . . , zm} be a data set such as defined in Section 1.1. Define

hA(z) = 〈φ(z), Aφ(z)〉 and hA(z, z′) = 〈φ(z), Aφ(z′)〉.

In this paper, we consider the problem

min
A∈S+(H)

L (hA(zi, zj))1≤i,j≤m + Tr(A), (S2)

where L is a loss function (specified below). In contrast, the first term of the problem considered
in Marteau-Ferey et al. [2020] is of the following form: L(hA(zi))1≤i≤m. In other words, the latter
loss function involves only diagonal elements 〈φ(zi), Aφ(zi)〉 for 1 ≤ i ≤ mwhile (S2) also involves
off-diagonal elements. Now, denote by Πm the projector on span{φ(zi), i = 1, . . . ,m}, and define

Sm,+(H) = {ΠmAΠm : A ∈ S+(H)}.

Then, we have the following proposition.

Proposition S4 (Extension of Proposition 7 in Marteau-Ferey et al. [2020]). Let L be a lower
semi-continuous function such that L(hA(zi, zj))1≤i,j≤m + Tr(A) is bounded below. Then (S2) has
a solution A? which is in Sm,+(H).

Proof sketch. The key step is the following identity

hA(zi, zj) = 〈φ(zi), Aφ(zj)〉 = 〈φ(zi),ΠmAΠmφ(zj)〉 = hΠmAΠm
(zi, zj), (1 ≤ i, j ≤ m)

which is a direct consequence of the definition of Πm. Also, we have Tr(ΠmAΠm) ≤ Tr(A). The
remainder of the proof follows exactly the same lines as in Marteau-Ferey et al. [2020]. Notice that,
compared with Marteau-Ferey et al. [2020, Proposition 7], we do not require the loss L to be lower
bounded but rather ask the full objective to be lower bounded, which is a weaker assumption but does
not alter the argument.
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S1.2.2 Applying the extended representer theorem

Now, let us prove that the objective of (6), given by fn(A) + λTr(A), is lower bounded. We recall
that

fn(A) = −1

s

s∑
`=1

log det [〈φ(xi), Aφ(xj)〉]i,j∈C` + log det(In + SnAS
∗
n).

For clarity, we recall that C , ∪s`=1C` and I = {x′1, . . . , x′n}. Then, write the set of pointsZ , C∪I
as {z1, . . . , zm} with m = |C| + n. Recall that we placed ourselves on an event happening with
probability one where the sets C1, . . . , Cs, I are disjoint. Now, we denote by Πm the orthogonal
projector on span{φ(zi) : 1 ≤ i ≤ m}, which writes

Πm =

m∑
i,j=1

(K−1)ijφ(zi)⊗ φ(zj). (S3)

First, we have log det(In + SnAS
∗
n) ≥ 0. Second, we use

Tr(A) = Tr (ΠmAΠm) + Tr
(
Π⊥mAΠ⊥m

)
≥ Tr (ΠmAΠm) = Tr (ΠmA) .

Thus, a lower bound on the objective (6) is

fn(A) + λTr(A) ≥ −1

s

s∑
`=1

log det [〈φ(xi), Aφ(xj)〉]i,j∈C` + λTr (ΠmA) .

Now we define the matrix M with elements Mij = 〈φ(zi), Aφ(zj)〉 for 1 ≤ i, j ≤ m and notice that

Tr (ΠmA) = Tr(MK−1) ≥ Tr(M)/λmax(K).

Remark that the matrix defined by M (`) = [〈φ(xi), Aφ(xj)〉]i,j∈C` associated with the `-th DPP
sample for 1 ≤ ` ≤ s is a principal submatrix of the m×m matrix M = [〈φ(zi), Aφ(zj)〉]1≤i,j≤m.
Since the sets C` are disjoint, we have

∑s
`=1 Tr(M (`)) ≤ Tr(M). Denoting λ′ = λ

λmax(K) , by using
the last inequality, we find

fn(A) + λTr(A) ≥ −1

s

s∑
`=1

log detM (`) + λ′
s∑
`=1

Tr(M (`))

=
1

s

s∑
`=1

(
− log detM (`) + sλ′ Tr(M (`))

)
.

Finally, we use the following proposition to show that each term in the above sum is bounded from
below.

Proposition S5. Let a > 0. The function h(σ) = − log(σ) + aσ satisfies h(σ) ≥ h(1/a) =
1 + log(a) for all σ > 0.

Thus a lower bound for the objective of (6) is obtained by applying Proposition S5 with a =
sλ/λmax(K) to the each eigenvalue of M (`) for all 1 ≤ ` ≤ s.

S1.3 Boundedness of the discrete objective function

At first sight, we may wonder if the objective of the optimization problem (12) is lower bounded.
We show here that the optimization problem is well-defined for all regularization parameters λ > 0.
The lower boundedness of the discrete objective follows directly from Section S1.2.2 in the case of a
finite rank operator. For completeness, we repeat below the argument in the discrete case. Explicitly,
this discrete objective reads

g(X) = −1

s

s∑
`=1

log det(XC`C`) + log det

(
I|I| +

1

n
XII

)
+ λTr(XK−1),
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for all X � 0. First, since XII � 0, we have log det
(
I|I| +

1
nXII

)
≥ 0. Next, we use that K � 0

by assumption, which implies that Tr(XK−1) ≥ Tr(X)/λmax(K). Denote λ′ = λ
λmax(K) . Thus,

we can lower bound the objective function as follows:

g(X) ≥ −1

s

s∑
`=1

log det(XC`C`) + λ′Tr(X)

≥ 1

s

s∑
`=1

(
− log det(XC`C`) + λ′sTr(XC`C`)

)
,

where we used that Tr(X) = Tr(XII)+
∑s
`=1 Tr(XC`C`) with Tr(XII) ≥ 0 for X � 0. Hence, by

using Proposition S5, g(X) is bounded from below by a sum of functions which are lower bounded.

S2 Extra result: an explicit solution for the single-sample case

We note that if the dataset is made of only one sample (i.e., s = 1), and if that sample is also used to
approximate the Fredholm determinant (i.e., I = C), then the problem (6) admits an explicit solution.
Proposition S6. Let C = {xi ∈ X}1≤i≤m be such that the kernel matrix K = [kH(xi, xj)]1≤i,j≤m
is invertible. Consider the problem (6) with I = C and λ > 0. Then the solution of (6) has the form
A? =

∑m
i,j=1 C?ijφ(xi)⊗ φ(xj), with

C? = C?(λ) =
1

2
K−2

(
(m2Im + 4mK/λ)1/2 −mIm

)
.

Proof. By the representer theorem in Marteau-Ferey et al. [2020, Theorem 1], the solution is of the
form A =

∑m
i,j=1 Cijφ(xi)⊗ φ(xj) where C is the solution of

min
C�0
− log det (KCK) + log det (Im + KCK/m) + λTr(KC),

Define X = KCK and denote the objective by g(X) = − log det(X) + log det(Im + 1
mX) +

λTr(K−1X). Let H be a m × m symmetric matrix. By taking a directional derivative of the
objective in the direction H, we find a first order condition Tr [DHg(X)H] = 0, with DHg(X) =
−X−1 + (X +mIm)−1 +λK−1. Since this condition should be satisfied for all H, we simply solve
the equation DHg(X) = 0. Thanks to the invertibility of K, we have equivalently

X2 +mX− m

λ
K = 0.

A simple algebraic manipulation yields X? = 1
2

(
(m2Im + 4mK/λ)1/2 −mIm

)
� 0. To check

that X? is minimum, it is sufficient to analyse the Hessian of the objective in any direction H. Let
t ≥ 0 small enough such that X + tH � 0. The second order derivative of g(X + tH) writes

d2

dt2
g(X + tH)|t=0 = Tr(HX−1HX−1)− Tr(H(X +mIm)−1H(X +mIm)−1).

By using the first order condition X−1
? = (X? +mIm)−1 + λK−1, we find

d2

dt2
g(X? + tH)|t=0 = Tr

(
H(λK−1)H

(
λK−1 + 2(X? +mIm)−1

))
= Tr

(
MNM

)
.

with M = (λK−1)1/2H(λK−1)1/2 and

N = I + 2(λK−1)−1/2(X? +mIm)−1(λK−1)−1/2 � 0.

Notice that MNM � 0 since N � 0. Therefore, it holds d2

dt2 g(X? + tH)|t=0 ≥ 0. Since this is true
for any direction H, the matrix X? is a local minimum of g(X).

While the exact solution of Proposition S6 is hard to intepret, if the regularization parameter goes to
zero, the estimated correlation kernel tends to that of a projection DPP. In what follows, the notation
f(λ) ∼ g(λ) stands for limλ→+∞ f(λ)/g(λ) = 1.
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Proposition S7 (Projection DPP in the low regularization limit). Under the assumptions of
Proposition S6, the correlation kernel K(λ) = SA?(λ)S∗(SA?(λ)S∗ + I)−1, with A?(λ) =∑m

i,j=1 C?ij(λ)φ(xi) ⊗ φ(xj) and C?(λ) given in Proposition S6, has a range that is indepen-
dent of λ. Furthermore, K(λ) converges to the projection operator onto that range when λ→ 0. In
particular, the integral kernel of A?(λ) has the following asymptotic expansion

a?(x, y) ∼ (m/λ)1/2k>x K−3/2ky as λ→ 0,

pointwisely, with kx = [kH(x, x1) . . . , kH(x, xm)]>.

Proof. As shown in Lemma S1, the non-zero eigenvalues of A?(λ) are the eigenvalues of KC?(λ)
since K is non-singular. The eigenvalues of KC?(λ) are σ`(λ) = m

2ς`
(
√

1 + 4 ς`
mλ − 1) where

ς` is the `-th eigenvalue of K for 1 ≤ ` ≤ m. Thus, the operator A?(λ) is of finite rank, i.e.,
A?(λ) =

∑m
`=1 σ`(λ)v` ⊗ v`, where the normalized eigenvectors v` are independent of λ. The

eigenvalues satisfy σ`(λ)→ +∞ as λ→ 0, such that limλ→0 σ`(λ)
√
λ is finite. Note that A?(λ) =∑m

`=1 σ`(λ)(Sv`)⊗ (Sv`) is of finite rank and Sv` does not depend on λ. Hence, the operator

K(λ) =
√
λSA?(λ)S∗

(√
λSA?(λ)S∗ +

√
λI
)−1

,

converges to the projector on the range of SA?(λ)S∗ as λ→ 0.

On the other hand, as the regularization parameter goes to infinity, the integral kernel of A?(λ)
behaves asymptotically as an out-of-sample Nyström approximation.
Proposition S8 (Large regularization limit). Under the assumptions of Proposition S6, the integral
kernel of A?(λ) has the following asymptotic expansion

a?(x, y) ∼ λ−1k>x K−1ky as λ→ +∞,
pointwisely, with kx = [kH(x, x1) . . . , kH(x, xm)]>.

The proof of this result is a simple consequence of the series expansion
√

1 + 4x = 1 + 2x+O(x2).

S3 Deferred proofs

S3.1 Proof of Lemma 2

Proof of Lemma 2. Since V ∗V is the orthogonal projector onto the span of φ(zi), 1 ≤ i ≤ m, we
have

Φ>i B̄Φj = 〈V ∗V φ(xi), AV
∗V φ(xj)〉 = 〈φ(xi), Aφ(xj)〉.

By Sylvester’s identity, and since ‖V ∗V ‖op ≤ 1, it holds

log det(Im + B̄) = log det(I + V AV ∗) = log det(I + V ∗V A) ≤ log det(I +A).

Similarly, it holds that Tr(B̄) = Tr(V ∗V A) ≤ Tr(A).

S3.2 Approximation of the Fredholm determinant

Before giving the proof of Theorem 1, we remind a well-known and useful formula for the Fredholm
determinant of an operator. Let M be a trace class endomorphism of a separable Hilbert space.
Denote by λ`(M) its (possibly infinitely many) eigenvalues for ` ≥ 1, including multiplicities. Then,
we have

det(I +M) =
∏
`

(1 + λ`(M)),

where the (infinite) product is uniformly convergent, see Bornemann [2010, Eq. (3.1)] and references
therein. Now, let F1 and F2 be two separable Hilbert spaces. Let T : F1 → F2 such that T ∗T is
trace class. Note that T ∗T is self-adjoint and positive semi-definite. Then, T ∗T and TT ∗ have the
same non-zero eigenvalues (Jacobson’s lemma) and Sylvester’s identity

det(I + TT ∗) = det(I + T ∗T ),

holds. This can be seen as a consequence of the singular value decomposition of a compact operator;
see Weidmann [1980, page 170, Theorem 7.6]. We now give the proof of Theorem 1.
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Proof of Theorem 1. To begin, we recall two useful facts. First, If M and N are two trace
class endomorphisms of the same Hilbert space, then log det(I + M) + log det(I + N) =
log det ((I +M)(I +N)); see e.g. Simon [1977, Thm 3.8]. Second, if M is a trace class endomor-
phisms of a Hilbert space, we have (I+M)−1 = I−M(M+I)−1, and thus, det((I+M)−1) is a well-
defined Fredholm determinant since M(M + I)−1 is trace class. Now, define d = log det(I+SAS∗)
and dn = log det(In + SnAS

∗
n). Using Sylvester’s identity and the aforementioned facts, we write

dn − d = log det(In + SnAS
∗
n)− log det(I + SAS∗)

= log det(I +A1/2S∗nSnA
1/2)− log det(I +A1/2S∗SA1/2) (Sylvester’s identity)

= log det
(

(I +A1/2S∗nSnA
1/2)(I +A1/2S∗SA1/2)−1

)
. (S4)

By a direct substitution, we verify that dn − d = log det (I + En) , with

En = (I +A1/2S∗SA1/2)−1/2A1/2(S∗nSn − S∗S)A1/2(I +A1/2S∗SA1/2)−1/2.

Note that, in view of (S4), det (I + En) is a positive real number. Next, by using S∗nSn − S∗S �
‖S∗nSn − S∗S‖opI and Sylvester’s identity, we find

dn − d ≤ log det
(
I + ‖S∗nSn − S∗S‖op(I +A1/2S∗SA1/2)−1/2A(I +A1/2S∗SA1/2)−1/2

)
= log det

(
I + ‖S∗nSn − S∗S‖opA1/2(I +A1/2S∗SA1/2)−1A1/2

)
≤ log det(I + ‖S∗nSn − S∗S‖opA).

The latter bound is finite, since for M a trace-class operator, we have |det(I +M)| ≤ exp(‖M‖?),
where ‖M‖? is the trace (or nuclear) norm. By exchanging the roles of S∗nSn and S∗S, we also find

d− dn ≤ log det(I + ‖S∗nSn − S∗S‖opA)

and thus, by combining the two cases, we find

|d− dn| ≤ log det(I + ‖S∗nSn − S∗S‖opA).

Now, in order to upper bound ‖S∗S−S∗nSn‖op with high probability, we use the following Bernstein
inequality for a sum of random operators; see Rudi et al. [2015, Proposition 12] and Minsker [2017].

Proposition S9 (Bernstein’s inequality for a sum of i.i.d. random operators). LetH be a separable
Hilbert space and let X1, . . . , Xn be a sequence of independent and identically distributed self-
adjoint positive random operators onH. Assume that EX = 0 and that there exists a real number
` > 0 such that λmax(X) ≤ ` almost surely. Let Σ be a trace class positive operator such that
E(X2) � Σ. Then, for any δ ∈ (0, 1),

λmax

(
1

n

n∑
i=1

Xi

)
≤ 2`β

3n
+

√
2‖Σ‖opβ

n
, where β = log

(
2 Tr(Σ)

‖Σ‖opδ

)
,

with probability 1− δ. If there further exists an `′ such that ‖X‖op ≤ `′ almost surely, then, for any
δ ∈ (0, 1/2), ∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
op

≤ 2`′β

3n
+

√
2‖Σ‖opβ

n
, where β = log

(
2 Tr(Σ)

‖Σ‖opδ

)
,

holds with probability 1− 2δ.

To apply Proposition S9 and conclude the proof, first recall the expression of the covariance operator

C = S∗S =

∫
X
φ(x)⊗ φ(x)dµ(x),

and of its sample version

S∗nSn =
1

n

n∑
i=1

φ(xi)⊗ φ(xi).
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DefineXi = φ(xi)⊗φ(xi)−
∫
X φ(x)⊗φ(x)dµ(x). It is easy to check that EXi = 0 since E[φ(xi)⊗

φ(xi)] =
∫
X φ(x)⊗φ(x)dµ(x). Then, using the triangle inequality and that supx∈X kH(x, x) ≤ κ2,

we find the bound

‖Xi‖op =

∥∥∥∥∫
X

(
φ(xi)⊗ φ(xi)− φ(x)⊗ φ(x)

)
dµ(x)

∥∥∥∥
op

≤
∫
X

(∥∥∥φ(xi)⊗ φ(xi)
∥∥∥
op

+
∥∥∥φ(x)⊗ φ(x)

∥∥∥
op

)
dµ(x)

≤ 2κ2 , `′.

Next, we compute a bound on the variance by bounding the second moment, namely

E(X2
i ) = E

[(
φ(xi)⊗ φ(xi)

)2
]
−
(
E
[
φ(xi)⊗ φ(xi)

])2

� E
[(
φ(xi)⊗ φ(xi)

)2
]

� κ2E
[
φ(xi)⊗ φ(xi)

]
, Σ,

where we used
(
φ(xi)⊗ φ(xi)

)2

= kH(xi, xi)
(
φ(xi)⊗ φ(xi)

)
. Also, we have

Tr(Σ) = Tr
(
κ2E

[
φ(x)⊗ φ(x)

])
= κ2

∫
X
kH(x, x)dµ(x) ≤ κ4.

Moreover,

‖Σ‖op = κ2
∥∥∥E [φ(x)⊗ φ(x)

]∥∥∥
op

= κ2λmax(S∗S) = κ2λmax(TkH),

where we used that S∗S = TkH is the integral operator on L2(X ) with integral kernel k. We are
finally ready to apply Proposition S9. Since

β ≤ log

(
2κ2

λmax(TkH)δ

)
,

it holds, with probability at least 1− 2δ,

‖S∗S − S∗nSn‖op ≤
4κ2 log

(
2κ2

λmax(TkH )δ

)
3n

+

√√√√2κ2λmax(TkH) log
(

2κ2

λmax(TkH )δ

)
n

.

This concludes the proof of Theorem 1.

S3.3 Statistical guarantee for the approximation of the log-likelihood by its sampled version

Proof of Theorem 4. The proof follows similar lines as in Rudi et al. [2020, Proof of Thm 5], with
several adaptations. Let B? ∈ S+(Rm) be the solution of (9). Notice that A? and V ∗B?V are
distinct operators. Let B̄ = V A?V

∗ ∈ S+(Rm) as in Lemma 2. Since B? has an optimal objective
value, we have

fn(V ∗B?V ) + Tr(λB?) ≤ fn(V ∗B̄V ) + Tr(λB̄).

Now we use the properties of B̄ given in Lemma 2, namely that fn(A?) = fn(V ∗B̄V ) and Tr(λB̄) ≤
Tr(λA?). Then it holds

fn(V ∗B̄V ) + Tr(λB̄) ≤ fn(A?) + Tr(λA?).

By combining the last two inequalities, we have fn(V ∗B?V ) + Tr(λB?) ≤ fn(A?) + Tr(λA?) and
therefore

fn(V ∗B?V )− fn(A?) ≤ Tr(λA?)− Tr(λB?). (S5)
We will use (S5) to derive upper and lower bounds on the gap f(A?)− fn(V ∗B?V ).
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Lower bound. Using Theorem 1, we have with high probability

|f(A?)− fn(A?)| ≤ log det(I + cnA),

and, in particular, this gives
f(A?)− fn(A?) ≤ Tr(cnA).

By combining this last inequality with (S5) and by using Tr(λB?) ≥ 0, we have the lower bound

∆ = f(A?)− fn(V ∗B?V ) = f(A?)− fn(A?) + fn(A?)− fn(V ∗B?V )

≥ −Tr(cnA?) + Tr(λB?)− Tr(λA?) (S6)
≥ −(cn + λ) Tr(A?).

Upper bound. We have the bound with high probability (for the same event as above)

∆ = f(A?)− fn(B?) = f(A?)− f(V ∗B?V )︸ ︷︷ ︸
≤0

+f(V ∗B?V )− fn(V ∗B?V )

≤ log det(I + cnV
∗B?V ) (Theorem 1)

≤ Tr(cnV V
∗B?) (cyclicity)

≤ Tr(cnB?). (since V V ∗ is a projector) (S7)

By combining this with (S6), we find

−Tr(cnA?) + Tr(λB?)− Tr(λA?) ≤ Tr(cnB?).

Since, by assumption, we have cn ≤ λ− cn, the latter inequality becomes

cn Tr(B?) ≤ (cn + λ) Tr(A?). (S8)

By using (S8) in the bound in (S7), we obtain

f(A?)− fn(V ∗B?V ) ≤ (cn + λ) Tr(A?),

Thus, the upper and lower bound yield together

|f(A?)− fn(V ∗B?V )| ≤ (cn + λ) Tr(A?) ≤
(
λ

2
+ λ

)
Tr(A?),

where we used once more 2cn ≤ λ. This is the desired result.

Proof of Corollary 5. We use the triangle inequality

|f(A?)− f(VB?V
∗)| ≤ |f(A?)− fn(VB?V

∗)|+ |fn(VB?V
∗)− f(VB?V

∗)|.

The first term is upper bounded whp by Theorem 4. The second term is bounded by Theorem 1 as
follows

|fn(VB?V
∗)− f(VB?V

∗)| ≤ Tr(cnB?)

with Tr(cnB?) ≤ 3
2λTr(A?) as in (S8) in the proof of Theorem 4.

S3.4 Numerical approach: convergence study

Proof of Theorem 3. This proof follows the same technique as in Mariet and Sra [2015], with some
extensions. Let Σ = X−1. We decompose the objective

g(Σ−1) = log det

(
Im +

1

|I|
Σ−1

)
II
− 1

s

s∑
`=1

log det(U>` Σ−1U`) + λTr(Σ−1K−1)

as the following sum: g(Σ−1) = h1(Σ) + h2(Σ), where h1(Σ) = − log det(Σ) + λTr(Σ−1K−1)
is a strictly convex function on Σ � 0 and

h2(Σ) = log det(Σ) + log det

(
Im +

1

|I|
Σ−1

)
II
− 1

s

s∑
`=1

log det(U>` Σ−1U`)
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is concave on Σ � 0. We refer to Lemma S2 and S3 for the former and latter statements, respectively.
Then, we use the concavity of h2 to write the following upper bound

h2(Σ) ≤ h2(Y) + Tr
(
∇h2(Y)(Σ−Y)

)
,

where the matrix-valued gradient is

∇h2(Y) = Y−1 −Y−1UI
(
|I|I|I| + U>IY−1UI

)−1
U>IY−1

+
1

s

s∑
`=1

Y−1U`

(
U>` Y−1U`

)−1
U>` Y−1.

Define the auxillary function ξ(Σ,Y) , h1(Σ) + h2(Y) + Tr (∇h2(Y)(Σ−Y)) which satisfies
g(Σ−1) ≤ ξ(Σ,Y) and g(Σ−1) = ξ(Σ,Σ). We define the iteration Xk = Σ−1

k where

Σk+1 = arg min
Σ�0

ξ(Σ,Σk),

so that it holds g(Σ−1
k+1) ≤ ξ(Σk+1,Σk) ≤ ξ(Σk,Σk) = g(Σ−1

k ). Thus, this iteration has monotone
decreasing objectives. It remains to show that this iteration corresponds to (13). The solution of the
above minimization problem can be obtained by solving the first order optimality condition since
ξ(·,Y) is strictly convex. This gives

−Σ−1 − λΣ−1K−1Σ−1 + Σ−1
k −Σ−1

k UI
(
|I|I|I| + U>IΣ−1

k UI
)−1

U>IΣ−1
k

+
1

s

s∑
`=1

Σ−1
k U`

(
U>` Σ−1

k U`

)−1
U>` Σ−1

k = 0.

Now, we replace X = Σ−1 in the above condition. After a simple algebraic manipulation, we obtain
the following condition

X + λXK−1X = p(Xk),

where, as defined in (13), p(X) = X + X∆X and

∆ =
1

s

s∑
`=1

U`X
−1
C`C`U

>
` −UI

(
|I|I|I| + U>IXUI

)−1
U>I .

Finally, we introduce the Cholesky decomposition K = R>R, so that we have an equivalent identity

R−1>XR−1 + λ
(
R−1>XR−1

)2 −R−1>p(Xk)R−1 = 0.

Let X′ = R−1>XR−1 and p′(Xk) = R−1>p(Xk)R−1. The positive definite solution of this
second order matrix equation write

X′ =
−Im + (Im + 4λp′(Xk))

1/2

2λ
,

which directly yields (13).

S3.5 Approximation of the correlation kernel

We start by proving the following useful result.
Theorem S10 (Correlation kernel approximation, formal version). Let δ ∈ (0, 1] be the failure
probability and let γ > 0 be a scale factor. Let K̂(γ) be the approximation defined in (11) with i.i.d.

sampling of p points. Let p be large enough so that t(p) > 1 with t(p) = 4c2β
3γp +

√
2c2β
γp where

c2 = κ2‖A‖op and β = log
(

4deff (γ)
δ‖K(γ)‖op

)
Then, with probability 1− δ it holds that

1

1 + t(p)
K(γ) � K̂(γ) � 1

1− t(p)
K(γ).

Furthermore, if we assume γ ≤ λmax(A), we can take β = log
(

8deff (γ)
δ

)
≤ 8deff (γ)

δ .
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Proof. For simplicity, define Ψ : H → Rm as Ψ =
√
mΛSm, which is such that A? = Ψ∗Ψ. Then,

we write
K̂ = SΨ∗(ΨS∗pSpΨ

∗ + γIm)−1ΨS∗,

where we recall that S∗pSp = 1
p

∑p
i=1 φ(x′′i )⊗ φ(x′′i ). Next, we used the following result.

Proposition S11 (Proposition 5 in Rudi et al. [2018] with minor adaptations). Let γ > 0 and
v1, . . . , vp with p ≥ 1 be identically distributed random vectors on a separable Hilbert space H , such
that there exists c2 > 0 for which ‖v‖H ≤ c2 almost surely. Denote by Q the Hermitian operator
Q = 1

p

∑p
i=1 E[vi ⊗ vi]. Let Qp = 1

p

∑p
i=1 vi ⊗ vi. Then for any δ ∈ (0, 1], the following holds

‖(Q+ γI)−1/2(Q−Qp)(Q+ γI)−1/2‖op ≤
4c2β

3γp
+

√
2c2β

γp
,

with probability 1− δ and β = log
4 Tr(Q(Q+γI)−1)
δ‖Q(Q+γI)−1‖op ≤ 8

c2/‖Q‖op+Tr(Q(Q+γI)−1)
δ .

Then, we merely define the following vector vi = Ψφ(x′′i ) for 1 ≤ i ≤ p so that

Qp = ΨS∗pSpΨ
∗ =

1

p

p∑
i=1

Ψ
(
φ(x′′i )⊗ φ(x′′i )

)
Ψ∗.

Furthermore, we define Q = ΨS∗SΨ∗. Also, we have S∗S =
∫
X φ(x) ⊗ φ(x)dµ(x), so that

E[S∗pSp] = S∗S. Hence, it holds E[Qp] = Q. First, by using Ψ∗Ψ � ‖Ψ∗Ψ‖opI , we have

‖v‖22 = 〈φ(x),Ψ∗Ψφ(x)〉 ≤ kH(x, x)‖Ψ∗Ψ‖op ≤ κ2‖Ψ∗Ψ‖op = κ2‖A?‖op,
almost surely. Next, we calculate the following quantity

Tr
[
Q(Q + γIm)−1

]
= Tr

[
ΨS∗SΨ∗(ΨS∗SΨ∗ + γIm)−1

]
= Tr

[
SΨ∗(ΨS∗SΨ∗ + γIm)−1ΨS∗

]
= Tr

[
SΨ∗ΨS∗(SΨ∗ΨS∗ + γI)−1

]
= Tr

[
A(A + γI)−1

]
,

where we used the push-through identity at the next to last equality.

For obtaining the bound on β, we first write

‖Q(Q + γIm)−1‖op = ‖A(A + γI)−1‖op = (1 + γ/λmax(A))−1.

To lower bound the latter quantity we require γ ≤ λmax(A) and hence ‖Q(Q + γIm)−1‖op ≥ 1/2.
For the remainder of the proof, we show the main matrix inequality. For convenience, define the
upperbound in Proposition S11 as

t(p) =
4c2β

3γp
+

√
2c2β

γp
. (S9)

Thanks to Proposition S11, we know that with probability 1− δ, we have

−t (ΨSS∗Ψ∗ + γIm) � ΨSS∗Ψ∗ −ΨS∗pSpΨ
∗ � t (ΨSS∗Ψ∗ + γIm) ,

or equivalently

ΨSS∗Ψ∗ − t(ΨSS∗Ψ∗ + γIm) � ΨS∗pSpΨ
∗ � ΨSS∗Ψ∗ + t(ΨSS∗Ψ∗ + γIm).

By simply adding γIm to these inequalities, we obtain

(1− t)(ΨSS∗Ψ∗ + γIm) � ΨS∗pSpΨ
∗ + γIm � (1 + t)(ΨSS∗Ψ∗ + γIm).

Hence, if t < 1, by a simple manipulation, we find

(1 + t)−1(ΨSS∗Ψ∗ + γIm)−1 � (ΨS∗pSpΨ
∗ + γIm)−1 � (1− t)−1(ΨSS∗Ψ∗ + γIm)−1.

By acting with SΨ∗ on the left and ΨS∗ on the right, and then, using the push-through identity

SΨ∗(ΨSS∗Ψ∗ + γIm)−1ΨS∗ = (SΨ∗ΨS + γI)−1S∗Ψ∗ΨS∗,

the desired result follows.
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We can now prove Theorem 6 by simplifying some of the bounds given in Theorem S10.

Proof of Theorem 6. Consider the upper bound given in (S9). We will simplify it to capture the

dominant behavior as p → +∞. Assume
√

2c2β
γp < 1, or equivalently p > 2c2β

γ . In this case, we
give a simple upper bound on t(p) as follows

t(p) <

(
2

3
+ 1

)√
2c2β

γp
<

√
8c2β

γp
,

so that we avoid manipulating cumbersome expressions. Thus, if we want the latter bound to be
smaller than ε ∈ (0, 1), we require

p ≥ 8c2β

γε2
,

which is indeed larger than 2c2β
γ since 1/ε > 1. Thus, by using the same arguments as in the proof of

Theorem S10, we have the multiplicative error bound

1

1 + ε
K(γ) � K̂(γ) � 1

1− ε
K(γ),

with probability at least 1− δ if

p ≥ 8c2β

γε2
=

8κ2‖A‖op
γε2

log

(
4deff(γ)

δ‖K‖op

)
where the last equality is obtained by substituting c2 = κ2‖A‖op and β = log

(
4deff (γ)
δ‖K(γ)‖op

)
given in

Theorem S10.

S4 Supplementary empirical results

S4.1 Finer analysis of the Gaussian L-ensemble estimation problem of Section 6

In this section, we report results corresponding to the simulation setting of Section 6 with ρ = 100.

Intensity estimation from several DPP samples. In Figure S1, we replicate the setting of Figure 1
with s = 3 and s = 10 DPP samples and a smaller regularization parameter. The estimated intensity
is then closer to the ground truth (ρ = 100) for a large value of s, although there are small areas
of high intensity at the boundary of the domain [0, 1]2. A small improvement is also observed by
increasing s from 3 (left) to 10 (right), namely the variance of the estimated intensity tends to decrease
when s increases. In Figure S2, we illustrate the intensity estimation in the case of a large and small
σ, respectively on the left and right columns. As expected, a large value of σ has a regularization
effect but also leads to an underestimation of the intensity. On the contrary, a small value of σ seems
to cause inhomogeneities in the estimated intensity.

Correlation structure estimation. The general form of the correlation kernel is also important.
In order to visualize the shape of the correlation kernel k̂(x, y), we display in Figure S3 the Gram
matrices of the estimated [k̂(x, x′)]x,x′∈grid and ground truth correlation kernels [k(x, x′)]x,x′∈grid on
a square grid, for the same parameters as in Figure S1 (RHS). After removing the boundary effects,
we observe that the estimated correlation kernel shape closely resembles the ground truth although
the decay of the estimated kernel seems to be a bit slower. Moreover, we observe some ‘noise’ in the
tail of the estimated kernel. Again, the intensity of the estimated process is also a bit underestimated.

In the context of point processes, it is common to compute summary statistics from samples to
‘understand’ the correlation structure of a stationary process. It is strictly speaking not possible to
calculate e.g. Ripley’s K function (see Baddeley et al. [2015]) since our estimated correlation kernel
is not stationary, that is, there exits no function t(·) such that k̂(x, y) = t(x− y).
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Figure S1: Effet of the number of samples on intensity estimation (with σ = 0.1 and λ = 10−4, as in
Figure 1). Left column: estimation from s = 3 DPP samples. Right column: estimation from s = 10

DPP samples. The first row is a heatmap of the intensity k̂(x, x) on a 100× 100 grid within [0, 1]2.
The second row is the same data matrix in a flattened format, that is, each column of the 100× 100
data matrix is concatenated to form a 10000 × 1 matrix whose entries are plotted. Notice that the
sharp peaks are due to boundary effects. These peaks are regularly spaced due to the column-wise
unfolding.

S4.2 Convergence of the regularized Picard iteration

In particular, we illustrate the convergence of the regularized Picard iteration to the exact solution
given in Proposition S6. In Figure S4, we solve the problem (6) in the case I = C with s = 1 where
C is the unique DPP sample. For simplicity, we select the DPP sample used in Figure 1 (ρ = 100,
bottom row). This illustrates that the regularized Picard iteration indeed converges to the unique
solution in this special case.

S4.3 Complexity and computing ressources

Complexity. The space complexity of our method is dominated by the space complexity of storing
the kernel matrix K in Algorithm 1, namely O(m2) where we recall that m = |Z| with Z ,
∪s`=1C` ∪ I. The time complexity of one iteration of (14) is dominated by the matrix square root,
which is similar to the eigendecomposition, i.e., O(m3). The time complexity of Algorithm 2 is
dominated by the Cholesky decomposition and the linear system solution, i.e., O(m3).

Computing ressources. A typical computation time is 65 minutes to solve the example of Figure 1
(bottom row) on 8 virtual cores of a server with two 18 core Intel Xeon E5-2695 v4s (2.1 Ghz). The
computational bottleneck is the regularized Picard iteration.
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Figure S2: Effet of the bandwidth σ on intensity estimation. Left column: large value (σ = 0.15,
λ = 10−4) with s = 10 DPP samples. Right column: small value (σ = 0.05, λ = 10−4) with s = 3
DPP samples. The first row is a heatmap of the intensity on [0, 1]2. The second row is the same data
matrix in a flattened format, that is, each column of the 100 × 100 data matrix is concatenated to
form a 10000× 1 matrix whose entries are plotted. Notice that the sharp peaks at the bottom row are
due to boundary effects. These peaks are regularly spaced due to the column-wise unfolding.

13



Figure S3: Correlation kernel estimation without boundary effect. We display a Gram matrix of
the estimated correlation kernel [k̂(x, x′)]x,x′∈grid (left column) and ground truth correlation kernel
[k(x, x′)]x,x′∈grid (right column) on a 30 × 30 grid within [0.2, 0.8]2 for the example of Figure S1
with s = 10, σ = 0.1 and λ = 10−4. The first row is a heatmap of the Gram matrices, while the
second row is a one-dimensional slice of the above Gram matrices at index 400. This second row of
plots allows to visually compare the bell shape of the approximate and exact correlation kernels. The
apparent discontinuities in the Gaussian kernel shape are an artifact due to the manner the grid points
are indexed. Notice that the correlation kernels are evaluated on a smaller domain within [0, 1]2 in
order to remove boundary effects.

Figure S4: Convergence towards the exact solution for the example of Figure 1 (bottom row) with
the parameters σ = 0.1 and λ = 0.1. Left: Relative error with the exact solution in Frobenius norm
‖B−Bexact‖F /‖Bexact‖F w.r.t. the iteration number. Right: Objective value (blue line) and optimal
objective (red line) vs iteration number. The stopping criterion is here tol = 10−7.
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