
A Proofs of the Main Results

A.1 Proposition 1

Proof For ease of understanding, we recall that the generative model in (5) factorizes the joint
distribution as p(Z,G,Θ,D) = p(Z)p(G |Z)p(Θ |G)p(D |G,Θ). First, let us consider case (a),
the setting where the marginal likelihood p(D |G) can be computed in closed form. We get

Ep(G | D)f(G) =
∑
G

p(G | D)f(G) (A.1)

=
∑
G

p(G,D)f(G)

p(D)
(A.2)

=
∑
G

∫
Z

p(Z,G,D)f(G)

p(D)
dZ (A.3)

=
∑
G

∫
Z

p(Z)p(G |Z)p(D |G)f(G)

p(D)
dZ (A.4)

by the generative model in (5)

=
∑
G

∫
Z

p(Z | D)p(G |Z)p(D |G)f(G)

p(D |Z)
dZ (A.5)

since p(Z | D) =
p(Z)p(D |Z)

p(D)

=

∫
Z

p(Z | D)

∑
G p(G |Z)p(D |G)f(G)

p(D |Z)
dZ rearranging (A.6)

=

∫
Z

p(Z | D)

∑
G p(G |Z)p(D |G)f(G)∑

G p(G,D |Z)
dZ (A.7)

by the law of total probability

=

∫
Z

p(Z | D)

∑
G p(G |Z)p(D |G)f(G)∑

G p(G |Z)p(D |G)
dZ (A.8)

expanding p(G,D |Z) by the generative model in (5)

= Ep(Z | D)

[
Ep(G |Z)

[
f(G)p(D |G)

]
Ep(G |Z)

[
p(D |G)

] ]
(A.9)

as desired for (a).

Finally, let us consider (b), the general case. The derivation essentially follows the same ideas as for
(a) but does not marginalize out Θ.

Ep(G,Θ |D)f(G,Θ) (A.10)

=
∑
G

∫
Θ

p(G,Θ | D)f(G,Θ)dΘ (A.11)

=
∑
G

∫
Θ

p(G,Θ,D)f(G,Θ)

p(D)
dΘ (A.12)

=
∑
G

∫
Θ

∫
Z

p(Z,G,Θ,D)f(G,Θ)

p(D)
dZdΘ (A.13)
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=
∑
G

∫
Θ

∫
Z

p(Z)p(G |Z)p(Θ |G)p(D |G,Θ)f(G,Θ)

p(D)
dZdΘ (A.14)

by the generative model in (5)

=
∑
G

∫
Θ

∫
Z

p(Z,Θ | D)p(G |Z)p(Θ |G)p(D |G,Θ)f(G,Θ)

p(D,Θ |Z)
dZdΘ (A.15)

since p(Z,Θ | D) =
p(Z)p(Θ,D |Z)

p(D)

=

∫
Θ

∫
Z

p(Z,Θ | D)

∑
G p(G |Z)p(Θ |G)p(D |G,Θ)f(G,Θ)

p(Θ,D |Z)
dZdΘ (A.16)

rearranging

=

∫
Θ

∫
Z

p(Z,Θ | D)

∑
G p(G |Z)p(Θ |G)p(D |G,Θ)f(G,Θ)∑

G p(G,Θ,D |Z)
dZdΘ (A.17)

by the law of total probability

=

∫
Θ

∫
Z

p(Z,Θ | D)

∑
G p(G |Z)p(Θ |G)p(D |G,Θ)f(G,Θ)∑

G p(G |Z)p(Θ |G)p(D |G,Θ)
dZdΘ (A.18)

expanding p(G,Θ,D |Z) by the generative model in (5)

= Ep(Z,Θ | D)

[
Ep(G |Z)

[
f(G,Θ)p(Θ |G)p(D |G,Θ)

]
Ep(G |Z)

[
p(Θ |G)p(D |G,Θ)

] ]
(A.19)

which is the statement in (b).

A.2 Proposition 2

Proof We will derive the gradients of the unnormalized posterior since

∇Z log p(Z | D) = ∇Z log p(Z,D)−∇Z log p(D) = ∇Z log p(Z,D) (A.20)

and analogously for the other two expressions. Through straightforward manipulation and using the
identity∇x log f(x) = ∇xf(x)/f(x), we obtain

∇Z log p(Z,D) = ∇Z log p(Z) +∇Z log p(D |Z) (A.21)

= ∇Z log p(Z) +
∇Z p(D |Z)

p(D |Z)
(A.22)

= ∇Z log p(Z) +
∇Z

[∑
G p(G |Z)p(D |G)

]∑
G p(G |Z)p(D |G)

(A.23)

= ∇Z log p(Z) +
∇Z Ep(G |Z)[p(D |G)]

Ep(G |Z)[p(D |G)]
(A.24)

Analogously, we get

∇Z log p(Z,Θ,D) = ∇Z log p(Z) +∇Z log p(Θ,D |Z) (A.25)

= ∇Z log p(Z) +
∇Z p(Θ,D |Z)

p(Θ,D |Z)
(A.26)

= ∇Z log p(Z) +
∇Z

[∑
G p(G |Z)p(Θ,D |G)

]∑
G p(G |Z)p(Θ,D |G)

(A.27)
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= ∇Z log p(Z) +
∇Z Ep(G |Z)[p(Θ,D |G)]

Ep(G |Z)[p(Θ,D |G)]
(A.28)

Lastly, using the same ideas as above, we arrive at

∇Θ log p(Z,Θ,D) = ∇Θ log p(Z) +∇Θ log p(Θ,D |Z) (A.29)

=
∇Θ p(Θ,D |Z)

p(Θ,D |Z)
(A.30)

=
∇Θ

[∑
G p(G |Z)p(Θ,D |G)

]∑
G p(G |Z)p(Θ,D |G)

(A.31)

=

∑
G p(G |Z)∇Θp(Θ,D |G)∑

G p(G |Z)p(Θ,D |G)
(A.32)

=
Ep(G |Z)

[
∇Θp(Θ,D |G)

]
Ep(G |Z)[p(Θ,D |G)]

(A.33)

In the above, without any additional factor modeling a prior belief over graphs, the score of the latent
prior pβ(Z) as defined in (8) is given by

∇Z log pβ(Z) = −β ∇Z Ep(G |Z)[h(G)]− 1

σ2
z

Z (A.34)

Practical considerations Estimating expectations of the form Ep(G |Z)[f(G)] with Monte Carlo
sampling can be numerically challenging when f are probability densities and thus often close to
zero. In practice, we recommend the log-sum-exp trick for applying Proposition 2. Let us define

M

LΣE
m=1
{x(m)} := log

(
M∑
m=1

exp
(
x(m)

))
(A.35)

For M Monte Carlo samples G(m) ∼ p(G |Z), we can rewrite the estimator for the expectation as

Ep(G |Z)[f(G)] ≈ 1

M

M∑
m=1

f(G(m)) = exp

(
log

(
M∑
m=1

f
(
G(m)

))
− logM

)
(A.36)

= exp

(
M

LΣE
m=1

{
log f

(
G(m)

)}
− logM

)
(A.37)

Computing LΣE can be made numerically stable by subtracting and adding maxm{x(m)} before and
after applying LΣE to {x(m)}, respectively. Stable LΣE can be extended to handle negative-valued
f inside the expectation, e.g., for the gradient of f , and to the ratios of expectations in Proposition 2.

A.3 Equations (16) and (17)

Proof The sigmoid function converges to the unit step function, i.e. σα(x)→ 1[x > 0] as α→∞.
Hence, the edge probabilities Gα(Z) defined in (7) converge to a (binary) matrix G as α → ∞.
Extending the notation of (7), we will denote this single limiting graph implied by Z as G∞(Z)
where

G∞(Z)ij :=

{
1 if u>i vj > 0 and i 6= j

0 otherwise

The above implies that when the temperature parameter α is annealed to∞, the probability mass
function and correspondingly the expectation simplify:

As α→∞ : pα(G |Z)→ 1[G = G∞(Z)]

Epα(G |Z)[f(G)]→ f(G∞(Z))
(A.38)

Again, let us first consider case (a). Starting with Proposition 1(a) in the first step, we can use the
above insight to simplify the inner expectations:

Ep(G | D)

[
f(G)

]
= Ep(Z | D)

[
Epα(G |Z)

[
f(G)p(D |G)

]
Epα(G |Z)

[
p(D |G)

] ]
(A.39)
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α→∞−→ Ep(Z | D)

[
f(G∞(Z))p(D |G∞(Z))

p(D |G∞(Z))

]
(A.40)

= Ep(Z | D)

[
f(G∞(Z))

]
(A.41)

Analogously, we get for the general case (b):

Ep(G,Θ | D)

[
f(G,Θ)

]
= Ep(Z,Θ | D)

[
Epα(G |Z)

[
f(G,Θ)p(Θ |G)p(D |G,Θ)

]
Epα(G |Z)

[
p(Θ |G)p(D |G,Θ)

] ]
(A.42)

α→∞−→ Ep(Z,Θ | D)

[
f(G∞(Z),Θ)p(Θ |G∞(Z))p(D |G∞(Z),Θ)

p(Θ |G∞(Z))p(D |G∞(Z),Θ)

]
(A.43)

= Ep(Z,Θ | D)

[
f(G∞(Z),Θ)

]
(A.44)

B Gradient Estimation for Bayesian Inference

To derive the expressions for the gradient estimators in (12) and (14) for both the marginal likelihood
and the likelihood cases, we will use a generic function f(G) as a placeholder for either p(D |G) or
p(D |G,Θ), since the results hold for general densities f(G).

B.1 Gumbel-Softmax Estimator for the Likelihood Gradient

In general, for a Bernoulli random variable X with p(X = 1) = q, it holds that

X
d
= 1

[
G1 + log q > G0 + log(1− q)

]
(B.1)

when G0, G1 ∼ Gumbel(0, 1). This is the Gumbel-max trick. Since the unit step function 1[·] does
not have an informative gradient, Maddison et al. [48] and Jang et al. [49] have proposed to use the
sigmoid function στ (·) with parameter τ as a soft relaxation of 1[·].
Using this so-called Gumbel-softmax trick, we can reparameterize the entries of G under the graph
model in (6). Starting from the Gumbel-max equality in (B.1), we rearrange the inequality inside
the indicator into the form “> 0” and apply the sigmoid relaxation with parameter τ . We obtain the
following soft relaxation for each entry of G:

gij ≈ στ
(
G1 −G0 + log σα(u>i vj)− log(1− σα(u>i vj))

)
(B.2)

= στ

(
L+ log

(
σα(u>i vj)

σα(−u>i vj)

))
(B.3)

= στ

(
L+ log

(
exp(αu>i vj)

exp(αu>i vj) + 1

exp(αu>i vj) + 1

1

))
(B.4)

= στ
(
L+ log

(
exp(αu>i vj)

))
(B.5)

= στ
(
L+ αu>i vj

)
(B.6)

where L ∼ Logistic(0, 1) since L d
= G1 − G0 when G0, G1 ∼ Gumbel(0, 1). For i = j, we set

gij := 0 by default in accordance with the graph model in (6). Since this allows us to separate
the randomness in sampling from the distribution p(G |Z) from the values of Z, we can move the
gradient operator inside the expectation and obtain the estimator given in (12):

∇ZEp(G |Z)

[
f(G)

]
≈ Ep(L)

[
∇Z f(Gτ (L,Z))

]
= Ep(L)

[
∇G f(G)

∣∣
G=Gτ (L,Z)

· ∇Z Gτ (L,Z)
] (B.7)

While the reparameterization trick generally provides a lower variance estimate of the gradient, the
form in (12) is biased when τ < ∞ because we use a soft relaxation of the true distribution. In
addition, the estimator in (12) requires that∇Gp(D |G) or∇Gp(Θ,D |G) is available, depending
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on the inference task. In case p(D |G) or p(Θ,D |G) is only defined for discrete G, it is possible to
evaluate ∇Gp(D |G) or ∇Gp(Θ,D |G) using hard Gumbel-max samples of G (i.e., with τ =∞).
As before, however, one would use soft Gumbel-softmax samples in ∇Z Gτ (L,Z) to obtain an
informative gradient. Lastly, we can use this estimator to approximate the score of the latent prior
∇Z log p(Z) given in (8) because the acyclicity constraint h(G) is differentiable with respect to G.
In practice, the log-sum-exp trick described in Section A.2 as well as the score function identity
∇xf(x) = f(x)∇x log f(x) should be used for numerically stable computation of the estimator.

B.2 Score Function Estimator for the Likelihood Gradient

To arrive at the estimator in (14), we expand the gradient expression as

∇ZEp(G |Z)

[
f(G)

]
=
∑
G

f(G)∇Zp(G |Z) =
∑
G

f(G)p(G |Z)∇Z log p(G |Z) (B.8)

= Ep(G |Z)

[
f(G)∇Z log p(G |Z)

]
(B.9)

where (B.8) uses the fact that ∇Z log p(G |Z) = ∇Zp(G |Z)/p(G |Z). Finally, we recall the
well-known property of the score function that Ep(G |Z)[∇Z log p(G |Z)] = 0. Due to this, for any
constant b as written in (14), the estimator is unbiased because the additional term involving b has
zero expectation. The constant can be used to reduce the variance of the Monte Carlo estimator [51].
In our experiments, we always use b = 0.

C Background: Stein Variational Gradient Descent

This section describes Stein variational gradient descent (SVGD) by Liu and Wang [19]. The overview
is meant as supplementary material for Section 5, where we propose to use SVGD for inferring the
DiBS posteriors p(Z | D) and p(Z,Θ | D). In contrast to sampling-based MCMC or optimization-
based variational inference methods, SVGD iteratively transports a fixed set of particles to closely
match a target distribution, akin to the gradient descent algorithm in optimization. We refer the reader
to Liu and Wang [19] for additional details.

Let p(x) with x ∈ X be a differentiable density that we want to sample from, e.g., to estimate
an expectation. Starting from a smooth reference density q(x), SVGD aims to find a one-to-one
transform t : X 7→ X such that the transformed density q[t](x̃) with x̃ := t(x) minimizes the
KL-divergence to p. In particular, Liu and Wang [19] propose to use the incremental transform

t(x) = x + η φ(x) (C.1)

When |η| is sufficiently small, the Jacobian of t has full rank and t is one-to-one. The key result by
Liu and Wang [19] links the incremental transform t in (C.1) to prior work on reproducing kernel
Hilbert spaces (RKHSs). The authors show that if φ lies in the unit ball of the RKHS induced by a
kernel k, then the transform t maximizing the descent on the KL divergence from q[t] to p uses an
incremental update φ proportional to

φ∗q,p(·) = Eq(x)
[
k(x, ·)∇x log p(x)> +∇xk(x, ·)

]
(C.2)

This suggests an iterative procedure of repeatedly applying the update of (C.1) with φ = φ∗q,p(·)
from (C.2) to a finite set of randomly initialized particles {x(m)}Mm=1. At each iteration t, the m-th
particle x(m) is then deterministically updated according to:

x
(m)
t+1 ← x

(m)
t + ηt φ(x

(m)
t )

where φ(x) =
1

M

M∑
k=1

[
k(x

(k)
t ,x)∇

x
(k)
t

log p(x
(k)
t ) +∇

x
(k)
t
k(x

(k)
t ,x)

] (C.3)

For sufficiently small step sizes ηt, the sequence of particles eventually converges, in which case
the transform t reduces to the identity mapping. The particle update in (C.3) consists of a gradient
ascent term driving the particles to high-density regions, and a term involving∇xk(x, ·) that acts as
a repulsive force between particles, preventing them from collapsing into the modes of p(x).
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D General Algorithm

Algorithm 2 DiBS with SVGD [19] for inference of p(G,Θ | D)

Input: Initial latent and parameter particles {(Z(m)
0 ,Θ

(m)
0 )}Mm=1, kernel k, schedules for ηt, αt, βt

Output: Set of graph and parameter particles {(G(m),Θ(m))}Mm=1 approximating p(G,Θ | D)
1: Incorporate prior belief of p(G) into p(Z) . See Section 4.2
2: for iteration t = 0 to T − 1 do
3: Estimate score∇Z log p(Z,Θ | D) given in (10) for each Z

(m)
t . See (12) and (14)

4: Estimate score∇Θ log p(Z,Θ | D) given in (11) for each Θ
(m)
t

5: for particle m = 1 to M do
6: Z

(m)
t+1 ← Z

(m)
t + ηt φ

Z
t

(
Z

(m)
t ,Θ

(m)
t

)
. SVGD step

where φZ
t (·, ·) :=

1

M

M∑
k=1

[
k
(
(Z

(k)
t ,Θ

(k)
t ), (·, ·)

)
∇

Z
(k)
t

log p
(
Z

(k)
t ,Θ

(k)
t | D

)
+∇

Z
(k)
t
k
(
(Z

(k)
t ,Θ

(k)
t ), (·, ·)

)]
7: Θ

(m)
t+1 ← Θ

(m)
t + ηt φ

Θ
t

(
Z

(m)
t ,Θ

(m)
t

)
where φΘ

t (·, ·) is analogous to φZ
t (·, ·) but using gradients∇

Θ
(k)
t

instead of∇
Z

(k)
t

8: return {(G∞(Z
(m)
T ),Θ

(m)
T )}Mm=1 . See (16) and (17)

E Experimental Details

E.1 Gaussian Bayesian Networks

In our experiments, we consider Bayesian networks with Gaussian local conditional distributions of
each variable given its parents. For both linear or nonlinear Gaussian BNs, which will be defined
presently, the generative model for synthetic data simulation as well as the parameter prior used for
joint inference are set to standard Gaussian distributions. We fix the observation noise to σ2 = 0.1
for all nodes both during synthetic data generation and joint posterior inference, rendering the causal
structure fully identifiable [61].

Linear Analogous to linear regression, linear Gaussian BNs model the mean of a given variable as
a linear function of its parents:

p(x |G,Θ) =

d∏
i=1

N (xi;θ
>
i xpa(i), σ

2)

or p(x |G,Θ) = N
(
x; (G ◦Θ)>x, σ2I

) (E.1)

where “◦” denotes elementwise multiplication. In our experiments, DiBS uses the second parameteri-
zation in (E.1) to allow for a constant dimensionality of the conditional distribution parameters Θ
and make the likelihood well-defined for the Gumbel-softmax estimator in (12).

When inferring the marginal posterior p(G | D) for linear Gaussian BNs, we follow the predominant
choice in the literature and employ the Bayesian Gaussian Equivalent (BGe) marginal likelihood,
under which Markov equivalent structures are scored equally [16, 17]. Details on the computation of
the BGe score are provided by Kuipers et al. [62]. Following the notation of Geiger and Heckerman
[17] and Kuipers et al. [62], we use the standard effective sample size hyperparameters αµ = 1 and
αω = d+ 2 as well as the diagonal form of the Wishart inverse scale matrix for the Normal-Wishart
parameter prior underlying the BGe score.

Nonlinear The interaction between variables x can straightforwardly be extended to be nonlinear,
e.g., using neural networks. In Section 6.3, we follow Zheng et al. [27] and consider (fully connected)
feed-forward neural networks (FFNs) of the form

FFN( · ; Θ) : Rd → R

FFN(u; Θ) := Θ(L)σ
(
. . .Θ(2)σ

(
Θ(1)u + θ

(1)
b

)
+ θ

(2)
b . . .

)
+ θ

(L)
b

(E.2)
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with weights Θ(l) ∈ Rdl×dl−1 , biases θ(l)
b ∈ Rdl , and elementwise activation function σ : R→ R.

Zheng et al. [27] show that the class of fully connected neural networks in (E.2) that do not depend
on the value of uk is equivalent to the class of fully connected neural networks in (E.2) where the k-th
column of Θ(1) equals zero. This insight allows us to define a nonlinear Gaussian BN parameterized
by a fully connected neural network:

p(x |G,Θ) =

d∏
i=1

N
(
xi; FFN

(
G>i ◦ x; Θi

)
, σ2

)
(E.3)

As required for a BN, each variable is independent of its non-descendants given its parents. The mask
representation in (E.1) and (E.3) is equivalent to the concept of a structural gate used by Kalainathan
et al. [63]. Note that the conditional distribution parameters for a single nonlinear Gaussian BN of
the form in (E.3) contain the weights and biases of d different neural networks, one for the local
conditional distribution of each node.

E.2 Evaluation metrics

We provide additional details on the evaluation metrics used throughout the paper. Bayesian structure
learning beyond five variables is notoriously difficult to evaluate since the ground truth posterior is
not accessible. We hence rely and build on the metrics established in the literature.

Expected structural Hamming distance The structural Hamming distance SHD(G,G∗) between
two graphs G and G∗ counts the edge changes that separate the essential graphs representing the
MECs of G and G∗ [8, 55]. We define the expected structural Hamming distance to the ground truth
graph G∗ under the inferred posterior as

E-SHD(p,G∗) :=
∑
G

p(G | D) · SHD(G,G∗) .

Empirically, the E-SHD is similar to the L1 edge error used by Tong and Koller [11] and Murphy
[10], but also takes into account the MEC. The E-SHD is computed via Monte Carlo estimation of
the expectation using samples from the posterior. Note that the DAG bootstrap variants and DiBS+
use the weighted mixture rather than the empirical distribution of samples. In the joint inference
setting, we empirically marginalize out Θ to obtain p(G | D).

Receiver operating characteristic The marginal posterior p(G | D) provides a confidence estimate
p(gij = 1 | D) for whether a given edge (i, j) is present in the ground truth DAG G∗. Recall that
the marginal posterior edge probability p(gij = 1 | D) is the posterior mean of an indicator for the
presence of that edge, i.e., p(gij = 1 | D) = Ep(G | D)1[gij = 1], which amounts to counting the
proportion of graphs with gij = 1 (and to weighted counting for the DAG bootstrap variants and
DiBS+). The receiver operating characteristic (ROC) curve is then obtained by viewing the presence
of each of the d2 possible edges in a d-node graph as a binary classification task and varying the
decision threshold from 0 to 1 under our confidence estimates p(gij = 1 | D). The area under the
receiver operating characteristic curve (AUROC) evaluates faithful uncertainty quantification of the
posterior. In general, random guessing achieves an AUROC of 0.5 in expectation; a perfect classifier
achieves an AUROC of 1.

Held-out log likelihood We also evaluate the ability to predict future observations by computing
the average negative log likelihood on 100 held-out observations Dtest defined as

neg. LL(p,Dtest) := −
∑
G,Θ

p(G,Θ | D) · log p(Dtest |G,Θ) .

As for E-SHD, the neg. LL is a posterior mean and thus computed via Monte Carlo estimation using
samples from the posterior. When inferring p(G | D), the corresponding neg. MLL metric uses the
marginal likelihood p(Dtest |G) instead of the likelihood p(Dtest |G,Θ).

Held-out log interventional likelihood Lastly, to capture relevant performance metrics in causal
inference [10, 12], we also compute the negative interventional log likelihood. Given an interventional
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data set (Dint, I), the interventional likelihood is given by

p(Dint |G,Θ, I) =
∏

x(n)∈D

∏
j=1
j /∈I

p(x
(n)
j |x

(n)
Gj
,θj)

(E.4)

where xGj are the values of the parents of variable j in G, and θj parameterizes the local conditional
distribution of j. The neg. I-LL and neg. I-MLL metrics are defined analogous to the neg. LL and neg.
MLL in (19) but use the interventional likelihood in (E.4) instead of the observational likelihood. For
marginal posterior inference, we likewise use the interventional marginal likelihood p(Dint |G, I)
instead. In our experiments, we obtain interventional data (Dint, I) by randomly selecting 10% of the
variables and clamping them to zero in the ground-truth data-generating process. The reported neg.
I-LL and I-MLL scores are the average of 10 different interventional data sets with |Dint| = 100.

E.3 Hyperparameters

In all evaluations, DiBS is run for 3,000 iterations and uses the simple linear constraint schedule
βt := t. At t= 0, the initial latent particles {Z0}Mm=1 and parameter particles {Θ0}Mm=1 are initialized
by sampling from their prior distributions. For the step size schedule ηt, we use the adaptive learning
rate method RMSProp with learning rate 0.005. We always use 128 samples for Monte Carlo
estimation of the gradients. Finally, the bandwidths γz, γθ of the kernel in (15) and the slope of
a linear schedule αt are chosen in separate held-out instances of each setting in Section 6 and are
listed in Table 2. As illustrated by the application in Section 7, the provided hyperparameters can be
expected to apply to problem settings of comparable magnitude.

While the latent variable scale σz can in principle be set arbitrarily, we always set σz = 1/
√
k

in the prior p(Z), which makes the norm in the SE kernel given in (15) roughly invariant with
respect to the latent dimension k, ignoring the acyclicity term. This follows from the fact that
||u||2 ∼ Gamma(k/2, 2σ2

z) when ui ∼ N (0, σ2
z), in which case E[||u||2] = kσ2

z .

Table 2: DiBS hyperparameter choices for αt and bandwidths γz, γθ. Here, α̃ denotes the slope in
the linear schedule αt := α̃t.

Model d α̃ γz γθ

BGe 20 2 2 -
50 2 50 -

Linear Gaussian 20 0.2 5 500
50 0.02 15 1,000

Nonlinear Gaussian 20 0.02 5 1,000
50 0.01 15 2,000

E.4 Baseline Methods

Structure MCMC (MC3, M-MC3, G-MC3) Designed for inference of the marginal posterior
p(G | D), structure MCMC [36, 37] performs sampling in the space of DAGs by adding, deleting, and
reversing one edge at a time without violating acyclicity. The acceptance probability of a proposed
graph G′ is given by

min

{
1,
|N (G )| · p(D |G′)p(G′)
|N (G′)| · p(D |G )p(G )

}
(E.5)

where G is the current particle andN (G) is the collection of DAGs reachable from G with one edge
change. Following [37], the ratio of neighborhoods is approximated to equal one, which allows for
only computing N (G′) when accepting G′. We implement MC3 using the efficient ancestor matrix
trick for finding acyclic proposals [37]. For marginal inference under the BGe marginal likelihood,
we compute the Bayes factor in (E.5) by only taking into account the affected node families.

For all of MC3, M-MC3, and G-MC3, we specify a burn-in period of 100k samples and then collect a
sample every 10k steps, which makes the wall time of MC3 and DiBS on CPUs comparable. Both
M-MC3 and G-MC3 use a simple Gaussian random walk proposal for the parameters, respectively,
with scale selected to roughly obtain an acceptance rate of 0.2 in each setting [64], when feasible in
combination with the graph proposal.
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Nonparametric DAG bootstrap (BPC, BGES, BPC∗, BGES∗) The nonparametric DAG boot-
strap [42] performs model averaging by bootstrapping the observations D to yield a collection of
synthetic data sets, each of which is used to learn a single graph, here using the GES and PC algo-
rithms [6, 7]. The collection of unique single graphs approximates the posterior by weighting each
graph by its unnormalized posterior probability in (2), analogous to DiBS+. The closed-form maxi-
mum likelihood parameter estimate for linear Gaussian BNs with known G, which is used by BPC∗
and BGES∗ to allow approximating the joint posterior, is provided by Hauser and Bühlmann [57].
For joint posterior inference, BPC∗ and BGES∗ use p(G,Θ,D) rather than p(G,D) for weighting
the inferred BN models.

Since the GES and PC algorithms only return essential graphs, i.e., MECs, we favor them in computing
the AUROC score. We orient a predicted undirected edge correctly when a ground truth edge exists
and only count a falsely predicted undirected edge as a single mistake. The held-out likelihood
metrics given in (19) are computed for a random consistent DAG extension of the essential graph
[65]. Enumerating the possibly exponential number of DAGs in an MEC is infeasible in general [66].
Implementations of the PC and GES algorithms are given by the CausalDiscoveryToolbox [67],
which is published under an MIT Licence and executes their commonly used R implementations.

F Efficient Implementation and Computing Resources

DiBS and SVGD operate on continuous tensors and solely rely on Monte Carlo estimation and
parallel gradient ascent-like updates. Thus, our inference framework allows for a highly efficient
implementation using vectorized operations, automatic differentiation, just-in-time compilation, and
hardware acceleration. For this purpose, we implement DiBS with JAX [68], which is published under
an Apache Licence. Our code is publicly available at: https://github.com/larslorch/dibs.

Table 3 summarizes the computing time of DiBS on GPU and CPUs for a superset of the inference
tasks on BNs with Erdős-Rényi structures in Section 6. The GPU wall times for medium-sized
inference tasks of up to around 20 nodes and 30 particles lie on the order of seconds or a few minutes.
None of the baseline methods considered in this work are comparable in terms of efficiency and
usage of modern hardware accelerators. Moreover, in larger inference problems than evaluated here,
JAX would directly allow for the computations of DiBS to be performed in a distributed fashion, e.g.,
by updating batches of SVGD particles across multiple GPU devices. Note that BGe wall times are
relatively slow because the closed-form marginal likelihood involves determinants [16, 17].

Table 3: Wall times of DiBS for the hyperparameters described in Section E.3. Times are the mean of
10 random restarts. M denotes the number of particles, d the number of nodes, and GPU/CPU the pro-
cessing backend of JAX. We used one NVIDIA GEFORCE RTX 2080 TI GPU or one full 2.70GHz
INTEL XEONGOLD 6150 CPU node to measure GPU and CPU wall time, respectively, for each
run. Experiments marked by a dash exceeded the GPU memory. The main experiments of Sections
6 and 7 were performed in bulk on Oracle BM.STANDARD.E2.64 CPU machines and no GPUs.

Model

Wall time (min)
GPU CPU

d = 10 20 50 10 20 50

BGe
M = 10 0.349 0.892 8.111 3.337 18.251 216.844
M = 30 0.609 2.084 — 9.380 52.203 659.106

Linear Gaussian
M = 10 0.370 0.603 1.571 1.410 3.738 21.531
M = 30 0.612 1.153 3.975 4.703 13.163 74.914

Nonlinear Gaussian
M = 10 2.702 6.139 24.117 10.019 27.749 128.820
M = 30 7.476 17.667 — 28.130 79.628 388.992

22

https://github.com/larslorch/dibs


G Results for Gaussian Bayesian networks with d = 50 variables
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Figure 5: Marginal posterior inference of linear Gaussian BNs with d = 50 variables using the BGe
marginal likelihood. The metrics are aggregated for 30 random BNs of each graph type. While DiBS
and DiBS+ are competitive in the structural E-SHD and AUROC metrics, we find that the baselines
specifically designed for marginal posterior inference perform favorably in the likelihood-based
metrics. We hypothesize that this is due to the high variance incurred by the score function estimator
that DiBS needs to use in the marginal inference setting under the BGe model (cf. Section 6.2).
To reach comparable results with DiBS in this high-dimensional setting, the DiBS score function
gradient estimator may require more than the default 128 Monte Carlo samples used here.
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Figure 6: Joint posterior inference of linear Gaussian BNs with d = 50 variables. The first and
second rows show the aggregate metrics for inference of 30 random BNs with Erdős-Rényi and
scale-free structures, respectively. Analogous to inference for d = 20 variables, DiBS+ outperforms
all alternatives to joint posterior inference of the graph and the conditional distribution parameters
across the metrics.
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Figure 7: Joint posterior inference of nonlinear Gaussian BNs with d = 50 variables, where each
local conditional distribution is parameterized by a 2-layer neural network with five hidden nodes.
In this setting, the total number of conditional distribution parameters in a given BN amounts to
|Θ| = 13,050 weights and biases. The metrics are aggregated for inference of 30 random BNs of
each graph type. Here, DiBS only infers 10 particles to make the wall time on CPUs comparable
to M-MC3 and G-MC3. As for posterior inference of BNs with d = 20 variables, DiBS and DiBS+
perform favorably compared to the MC3 baselines.

H Additional Analyses and Ablation Studies

Having compared DiBS with several alternative approaches to Bayesian structure learning in Section
6, this supplementary section is devoted to a more in depth analysis of some of its properties. This is
done by changing, or leaving out single design aspects of the algorithm and studying the effect on the
previous metrics.

As in Section 6, DiBS and its instantiation with SVGD are used interchangeably here, and DiBS+
denotes the weighted mixture of particles. Since the metrics do not qualitatively differ between
inference of Erdős-Rényi and scale-free BN structures in our experiments of Section 6, we only
consider the former here. Unless mentioned otherwise, the following experimental setup corresponds
to joint posterior inference of linear Gaussian BNs with d = 20 variables in Section 6.2.

H.1 Graph Embedding Representation

In Section 4.2, we propose to use a generative graph model pα(G |Z) that is based on the inner
product of latent embeddings for each node. In particular, we choose pα(gij = 1 |Z) = σα(u>i vj)
with latent variables Z = [U,V]. In Figure 8, we contrast this modeling choice with the more trivial
variant pα(gij = 1 |Z) = σα(zij), where single scalars rather than inner products between latent
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Figure 8: Contrasting the bilinear graph model of Section 4.2 with its more trivial variant, where each
latent variable models the edge probabilities directly via the sigmoid. The plots aggregate the results
for joint inference of 30 randomly generated linear Gaussian BNs with d = 20 variables.
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Figure 9: DiBS for joint inference of linear Gaussian BNs with d = 20 variables for different sizes of
the latent variables Z ∈ R2×d×k. Lower rank parameterizations of the matrix of edge probabilities
balance the tradeoff between computational efficiency and posterior approximation quality.

vectors encode the edge probabilities. Bengio et al. [69] and Ke et al. [31] use the scalar variant with
fixed α = 1 in the context of causal inference.

The comparison in Figure 8 illustrates that incorporating only the bilinear parameterization of edge
probabilities in the generative graph model improves performance by a significant margin. We
hypothesize that the coupling between edges results in smoother densities, which might be less prone
to local minima in gradient-based methods such as DiBS.

H.2 Graph Embedding Dimensionality

Another feature of the inner product representation of graphs is the ability to control the dimen-
sionality of the posterior inference task. As described in Section 5, we generally set k = d for the
latent variables Z ∈ R2×d×k that parameterize our graph model pα(G |Z). This leaves the matrix
of edge probabilities fully expressible and without a rank constraint. In principle, however, the
formulation in (6) allows us to arbitrarily vary k. This creates a trade-off between the complexity of
the parameterization and the tractability and dimensionality challenges in approximate inference of
p(Z | D) or p(Z,Θ | D). Limiting k < d has connections to the theory of low-rank realizations of
sign matrices.

We perform inference with DiBS for k ∈ {5, 7, 10, 15, 20}, leaving all other aspects of the algorithm
unchanged. Hence, the corresponding posterior over Z has {200, 280, 400, 600, 800} dimensions,
respectively. The results in Figure 9 suggest that lower values of k = 15, or even k = 10, are already
able to achieve competitive performance across all metrics. Interestingly, the structural E-SHD metric
appears to suffer most from a small loss in complexity.

In this context, one should keep in mind that the bandwidth parameters γz and γθ were set to achieve
good performance with k = d = 20. It is possible that lower values of k can reach performances that
are even closer to the full-rank variant of DiBS with alternative settings for γz and γθ. In addition, a
lower-rank DiBS variant could be particularly promising for inference of very large BNs, where the
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Figure 10: Performance of DiBS and DiBS+ as a function the number of particle transport steps T .
As previously, the plots aggregate the results for inference of 30 randomly generated linear 20-node
Gaussian BNs. The latent variable Z is specified with its default dimensions k = d = 20. After
already roughly 1,000 iterations, DiBS and DiBS+ obtain good posterior approximations.
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computational challenges of the full O(d2) latent representation might outweigh its benefits in terms
of expressibility.

H.3 Particle Transport Iterations

Since DiBS uses Stein variational gradient descent [19] for posterior inference, our method iteratively
transports a set of latent graph particles, or latent graph and parameter tuples, for a number of T steps.
As the particles are randomly initialized, the approximation quality of SVGD particles (and thus
also DiBS particles) improves with the number of steps. We are interested in the degree to which a
small number of transport steps provide a good posterior approximation in the face of computational
constraints.

In Figure 10, we show the performance of DiBS as a function of the number of transport steps. We
find that even a smaller number of iterations achieves competitive results across the metrics. In
addition, the variance of performance in the predictive metrics neg. LL and neg. I-LL decreases
monotonically as a function of the performed transforms, whereas the variation in E-SHD remains
roughly the same.

H.4 Uncertainty Quantification Within a Markov Equivalence Class

When performing posterior inference of p(G | D) with the BGe marginal likelihood and a uniform
prior p(G), each Markov equivalent structure is assigned equal likelihood. This might be desirable
considering that causal edge directions are often not fully identifiable from purely observational data.
As DiBS infers a posterior over DAGs rather than MECs, we aim to validate the ability of DiBS to
correctly quantify the uncertainty present in nonidentifiable edge directions.

To this end, we consider a 4-node example Bayesian network, small enough to allow for the closed-
form computation of the ground-truth posterior by exhaustive enumeration of all possible DAGs.
This enables us to compute the true single and pairwise posterior edge marginals and contrast them
with the approximate posterior marginals inferred by DiBS. The graph structure for this analysis is
chosen to contain both an identifiable v-structure and a nonidentifiable edge pair. Figure 11 shows
the ground truth DAG G∗0, its linear Gaussian parameters, and the observational model. In addition,

x1 x2

x0

x3
G∗0

2

3

−2

1

p(x0) = N (x0; 0, 1)

p(x1 |x0) = N (x1; 2x0, 1)

p(x2 |x0) = N (x2;−2x0, 1)

p(x3 |x1, x2) = N (x3; 3x1 + x2, 1)

(H.1)

x1 x2

x0

x3G∗MEC

x1 x2

x0

x3G∗1

x1 x2

x0

x3G∗2

Figure 11: Four-node example linear Gaussian Bayesian network. Under the BGe marginal likelihood
and a uniform prior, G∗0, G∗1, and G∗2 are scored equally. While the v-structure x1 → x3 ← x2 is an
identifiable feature of the MEC of G∗0 and thus present in G∗MEC, the edge directions of x1 —x0 —x2
cannot be distinguished even given infinite observational data.
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Table 4: Ground truth and average inferred posterior marginals given N = 100 observations from the
ground truth model in Figure 11. Listed are the probabilities for the nonidentifiable edge structure
x1 —x0 —x2 (top) and the identifiable v-structure x1 → x3 ← x2 (bottom). Averaged over 30
random particle initilizations, DiBS+ correctly quantifies the confidence and uncertainty in the
v-structure and nonidentifable edge pair, respectively.

DiBS DiBS+ Ground Truth
p(x1 → x0, x0 → x2 | D) 0.134 0.216 0.298
p(x1 → x0, x0 ← x2 | D) 0.201 0.037 0.052
p(x1 ← x0, x0 → x2 | D) 0.223 0.409 0.311
p(x1 ← x0, x0 ← x2 | D) 0.103 0.298 0.297
p(x1 → x3, x3 → x2 | D) 0.157 0.013 0.017
p(x1 → x3, x3 ← x2 | D) 0.338 0.934 0.914
p(x1 ← x3, x3 → x2 | D) 0.275 0.034 0.043
p(x1 ← x3, x3 ← x2 | D) 0.154 0.019 0.025

Figure 11 lists the essential graph G∗MEC as well as the two other Markov equivalent DAGs G∗1 and
G∗2 in the MEC represented by G∗MEC.

We perform marginal posterior inference with DiBS using the experimental setup and hyperparameters
for 20-node linear Gaussian BNs. In this example setting, DiBS employs a uniform prior over graphs
and uses the default k = d = 4. Table 4 shows the ground truth and inferred pairwise edge marginals
under the posterior. We find that DiBS+ correctly infers both the uncertainty in the edge directions
of x1 —x0 —x2 as well as the high confidence in the presence of the v-structure x1 → x3 ← x2.
While the unweighted particles of DiBS do not exhibit false confidence in structures that are not
present in G∗0, its inferred degree of uncertainty is too high compared to the ground truth. The
DiBS+ variant overcomes the inexact empirical average of DiBS by weighting the particles by their
unnormalized posterior probabilities.

I Experimental Details for Application to Protein Signaling Networks

The data by Sachs et al. [3] as well as the corresponding consensus graph used in Section 7 are taken
as provided by the CausalDiscoveryToolbox [67], which is published under an MIT Licence. We
standardize the data for inference. Because N is large, DiBS uses minibatches of 100 observations
to estimate the scores of the posterior. All hyperparameters and BN specifications are chosen by
default exactly as during the synthetic evaluation of linear and nonlinear Gaussian BNs in Table
2, respectively, except that DiBS correspondingly uses k = d = 11. For joint posterior inference
of linear Gaussian BNs, BPC∗ and BGES∗ still use the BGe marginal likelihood; since metrics are
very similar to BPC and BGES, their scores are not reported.

In line with inference on synthetic data in Section 6, the BGe marginal likelihood employed for the
experiments in Section 7 uses the default effective sample sizes αµ = 1 and αω = d+ 2 described in
Appendix E.1. Likewise, we again set the noise level for inference with the explicitly parameterized
linear and nonlinear Gaussian networks to σ2 = 0.1.

Since the effective sample size αµ and the noise level σ2 may affect the model complexity of the
inferred BNs, e.g., the mean number of inferred edges in the DAG, we provide additional results
for alternative values of these Bayesian network model hyperparameters in Tables 5 and 6. Overall,
we find that increasing the effective sample size αµ does not significantly change metrics across the
considered methods. However, higher fixed noise levels σ2 do result in less inferred edges, which
tends to lead to lower E-SHD but worse AUROC, i.e., less calibrated edge confidence scores. We
note that these are not free parameters of the inference methods that approximate the posterior, but
specifications of the inferred BN models themselves.
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Table 5: Additional results for marginal posterior inference of protein signaling pathways under the
BGe marginal likelihood of linear Gaussian BNs [16, 17]. Changing the effective sample size in the
BGe Normal-Wishart prior does not result in significantly different metrics compared to the default
αµ = 1 used in all of our experiments. For αµ = 10, DiBS and DiBS+ average an expected number
of 39.6 and 35.4 edges, respectively. Metrics are the mean ± SD of 30 random restarts.

αµ = 10
E-SHD AUROC

MC3 34.3 ± 0.4 0.622 ± 0.020
BPC 25.5 ± 2.3 0.566 ± 0.020
BGES 33.8 ± 1.8 0.641 ± 0.034
DiBS 37.9 ± 0.5 0.637 ± 0.046
DiBS+ 35.1 ± 1.8 0.627 ± 0.050

Table 6: Additional results for joint posterior inference of protein signaling pathways under explicitly
parameterized linear (top) and nonlinear (bottom) Gaussian BNs. The hyperparameter σ2 specifies
the noise level underlying the inferred Bayesian networks. We find that higher noise levels σ2 tend to
result in less edges. When inferring linear Gaussian BNs with σ2 = 0.01 (σ2 = 1), DiBS averages
an expected number of 11.6 (8.8) edges, DiBS+ 13.8 (9.9) edges. For nonlinear Gaussian BNs with
σ2 = 0.01 (σ2 = 1), DiBS averages 15.6 (5.2) edges, DiBS+ 17.5 (6.8) edges. Due to less false
positives, the E-SHD improves, but the degree of uncertainty in the presence of edges is quantified
less accurately, resulting in worse AUROC. Metrics are the mean ± SD of 30 random restarts.

σ2 = 0.01 σ2 = 1
E-SHD AUROC E-SHD AUROC

M-MC3 38.1 ± 3.4 0.536 ± 0.082 33.1 ± 3.4 0.543 ± 0.105
G-MC3 30.9 ± 3.0 0.518 ± 0.051 29.8 ± 3.7 0.531 ± 0.078
DiBS 23.0 ± 0.5 0.595 ± 0.069 20.3 ± 0.4 0.601 ± 0.039
DiBS+ 22.9 ± 2.0 0.540 ± 0.048 20.0 ± 1.4 0.569 ± 0.040

σ2 = 0.01 σ2 = 1
E-SHD AUROC E-SHD AUROC

M-MC3 38.7 ± 3.2 0.555 ± 0.101 18.4 ± 0.1 0.501 ± 0.043
G-MC3 34.9 ± 3.6 0.542 ± 0.064 30.6 ± 2.5 0.538 ± 0.059
DiBS 24.3 ± 0.6 0.582 ± 0.050 17.7 ± 0.1 0.550 ± 0.020
DiBS+ 24.9 ± 2.9 0.535 ± 0.045 18.5 ± 0.5 0.530 ± 0.028
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