
Learning Nonparametric Volterra Kernels with
Gaussian Processes

Magnus Ross
Department of Computer Science

University of Sheffield, UK
mross1@sheffield.ac.uk

Michael T. Smith
Department of Computer Science

University of Sheffield, UK
m.t.smith@sheffield.ac.uk

Mauricio A. Álvarez
Department of Computer Science

University of Sheffield, UK
mauricio.alvarez@sheffield.ac.uk

Abstract

This paper introduces a method for the nonparametric Bayesian learning of non-
linear operators, through the use of the Volterra series with kernels represented
using Gaussian processes (GPs), which we term the nonparametric Volterra kernels
model (NVKM). When the input function to the operator is unobserved and has a
GP prior, the NVKM constitutes a powerful method for both single and multiple
output regression, and can be viewed as a nonlinear and nonparametric latent force
model. When the input function is observed, the NVKM can be used to perform
Bayesian system identification. We use recent advances in efficient sampling of
explicit functions from GPs to map process realisations through the Volterra series
without resorting to numerical integration, allowing scalability through doubly
stochastic variational inference, and avoiding the need for Gaussian approximations
of the output processes. We demonstrate the performance of the model for both
multiple output regression and system identification using standard benchmarks.

1 Introduction

Gaussian processes (GPs) constitute a general method for placing prior distributions over functions,
with the properties of samples from the distribution being controlled primarily by the form of the
covariance function [22]. Process convolutions (PCs) are one powerful method for building such
covariance functions [4, 13, 3]. In the PC framework, the function we wish to model is assumed to be
generated by the application of some convolution operator to a base GP with some simple covariance,
and since linear operators applied to GPs result in GPs, the result is another GP with a covariance we
deem desirable. PCs allow models for multiple correlated output functions to be built with ease, by
assuming each output is generated by a different operator applied to the same base function, or set of
functions [30, 13].

The PC framework unifies a number of different ideas in the GP literature. Latent force models
(LFMs) [1] use PCs to include physics based inductive biases in multiple output GP (MOGP) models
by using the Green’s function of a linear differential operator as the kernel of the convolution. This
leads to the interpretation of each output as having been generated by inputting a random latent force
into a linear system, with physical properties described by the differential operator. The Gaussian
process convolution model (GPCM) of Tobar et al. [29] treats the convolution kernel itself as an
unknown function to be inferred from data, and places a GP prior over it. Linear systems are entirely
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described by their Green’s function, so one can interpret the GPCM as a nonparametric, linear LFM,
in which the form of the system itself is inferred from data.

In the physical world, nonlinear systems are the norm, and linearity is an approximation. As a
consequence it is desirable when dealing with physical data to have models that can incorporate
nonlinearity naturally. Often however, given a certain set of data, it is not clear exactly what form this
nonlinearity takes, and so introducing specific parametric nonlinear operators can be overly restrictive.
Álvarez et al. [2] present a model known as the nonlinear convolved MOGP (NCMOGP) which
introduces nonlinearity to MOGPs via the Volterra series [8], a nonlinear series expansion used widely
for systems identification, whose properties are controlled by a set of square integrable functions
of increasing dimensionality known as the Volterra kernels (VKs). The NCMOGP assumes these
functions are both separable and homogeneous, and of parametric Gaussian form, it also approximates
the outputs as GPs in order to make inference tractable.

The present work introduces a new model which drops the separability and homogeneity assumptions
on the VKs, allows their form to be learned directly from data, and makes no approximation on the
distribution of the outputs. We refer to it as the nonparametric Volterra kernels model (NVKM).
We develop a fast sampling method for the NVKM which leverages the recent results of Wilson
et al. [35] on the sampling of explicit functions from GPs to analytically map function realisations
through the Volterra series, avoiding the need for computationally expensive and inaccurate high
dimensional numerical integration. Fast sampling allows for the application of doubly stochastic
variational inference (DSVI) [28] for scalable learning.

The NVKM is well suited to both single and multiple output regression problems, and can be thought
of as an extension of the GPCM to both nonlinear systems and multiple outputs. The NVKM can also
be interpreted as a nonlinear LFM in which the operator is learned directly from data. We additionally
present a variation of the NVKM that can be used for Bayesian systems identification, where the task
is to learn operator mappings between observed input and output data, and show that it allows for
considerably better quantification of uncertainty than competing methods which use recurrence [18].

2 Background

In this section we give a brief introduction to the mathematical background of PCs and the Volterra
series.

Process convolutions In the PC framework, the set of output functions {fd(t)}Dd=1, with D being
the number of outputs, is generated by the application of some set of linear operators, specifically
convolution operators, to a latent function u represented by a Gaussian process, fd(t) =

∫
T Gd(t−

τ)u(τ)dτ , where T is the domain of integration, and the function Gd is known variously as the
convolutional kernel, smoothing kernel, impulse response or Green’s function, depending on context.
Assuming that the input u is bounded, the function Gd must be square integrable to ensure the output
is finite. A linear operator acting on a GP produces another GP [22], and so we obtain D distinct
GPs. Since the latent function u is shared across the outputs, these D GPs are correlated, allowing
joint variations to be captured, whilst the convolution with Gd adapts u to each output. Álvarez et al.
[3] show that many MOGP models can be recast in terms of the PC framework by particular choices
of Gd and u. In LFMs, Gd is taken to be the Green’s function of some differential operator. We can
then interpret each output as resulting from a shared random force being fed into a distinct linear
system, represented by the differential operator. The smoothing kernels are usually taken to have
parametric, often Gaussian form. Tobar et al. [29] use the PC framework for a single output, and
make the smoothing kernel itself a GP, giving rise to the GPCM. Bruinsma [7] extends the GPCM to
the multiple output case, although the model was not applied to data.

Volterra Series The PC framework can be extended to represent a broader class of output functions
by instead considering the outputs {fd(t)}Dd=1 as being the result of some nonlinear system, acting
on the latent function u. The Volterra series is a series approximation for nonlinear systems that is
widely used in the field of system identification [8]. It is given by,

f(t) =

C∑
c=1

∫
T
Gc(t− τ1, . . . , t− τc)

c∏
j=1

u(τj)dτj , (1)
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where f is the system output, Gc is the cth order VK, u is the system input, and C is the order of
the approximation. We can think of the Volterra series as an extension of the well known Taylor
expansion, that allows f to have memory of the past values of u, that is to say f depends on u at all
values t ∈ T . The Volterra series can approximate a broad class of nonlinear operators, however it
is unable to represent certain properties of general nonlinear systems, for example chaos. Álvarez
et al. [2] use Equation (1) to construct the NCMOGP, applying the Volterra series with d distinct sets
of VKs {Gd,c}Cc=1 to a shared latent GP input u, to produce outputs {fd(t)}Dd=1. Since the Volterra
series is a nonlinear operator, the output becomes an intractable, non-Gaussian process. The authors
perform inference by approximating the outputs as GPs and using the first and second moments of
the output process to form its mean and covariance function. To enable to computation of these
moments, the authors restrict the set of VKs to those which are both separable and homogeneous, i.e.
Gd,c(t1, . . . , tc) =

∏c
i=1Gd(ti). Additionally, since the moment computation requires analytically

solving a number of non-trivial convolution integrals, the authors only consider a Gaussian form for
the VKs.

3 The nonparametric Volterra kernels model

The NVKM relaxes the restrictions of separability and homogeneity which are placed on the VKs in
the NCMOGP, and represents these kernels as independent GPs, allowing their form and uncertainty
to be inferred directly from data. The generative process for the NVKM can be stated as

u(t) ∼ GP(0, k(u)(t, t′)),

Gd,c(t) ∼ GP(0, k(Gd,c)(t, t′)), t ∈ Rc, ∀c ∈ 1, . . . , C, ∀d ∈ 1, . . . , D,

fd(t) =

C∑
c=1

∫ ∞
−∞

Gd,c(t− τ1, . . . , t− τc)
c∏
j=1

u(τj)dτj ,

(2)

where k(u)(t, t′) is the covariance function for the input process, and k(Gd,c)(t, t′) is the covariance
function for the cth VK of the dth output. We follow Tobar et al. [29] in using the decaying square ex-
ponential (DSE) covariance for the VKs, which is a modification to the ubiquitous square exponential
(SE) covariance that ensures the samples have finite energy.1 The DSE covariance has the form

kDSE(t, t′) = σ2 exp(−α(‖t‖2 + ‖t′‖2)− γ‖t− t′‖2), (3)

where ‖ · ‖ is the or `2 norm, σ is the amplitude, α controls the rate at which the samples decay away
from the origin, and γ is related to the length scale l of the samples by γ = 1

l2 . A diagram of the
generative process for the model is shown in Figure 1. Obtaining an exact distribution over the outputs
fd is intractable, since it involves integration over nonlinear combinations of infinite dimensional
stochastic processes. In order to sample from the model, and perform inference, approximations
must be introduced. In particular, we employ the results of Wilson et al. [35] to sample in linear
time, which enables efficient learning through the use of variational inducing points [27] with doubly
stochastic variational inference (DSVI) [28].

3.1 Sampling

One could sample from the model by drawing from the input and filter GPs at some finite set of
locations, and then using the samples with some method for numerical integration to find the output.
As the dimensionality of the filters increases, however, many points would be needed to obtain an
accurate answer, this quickly becomes computationally intractable, since sampling exactly from a
GP has cubic time complexity with respect to the number of points requested. We can sidestep this
problem, and avoid the need for any numerical integration, by representing samples from the GPs
explicitly as functions. Using the results from Wilson et al. [35], and following their notation, we can
write a sample from a GP f : Rc −→ R, with covariance function k(t, t′), given M inducing variables
v ∈ RM with corresponding inducing inputs {zj}Mj=1, with zj ∈ Rc, as

(f |v)(t) =

Nb∑
i=1

wiφi(t) +

M∑
j=1

qjk(t, zj), (4)

1This is shown in Appendix A of the supplemental material.
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Figure 1: A diagram of the generative process for the NVKM with C = 2 and D = 3, showing the
stages of computation of the first order (on the left side) and second order (in the center) terms of the
Volterra series for three outputs, shown in the rows, with the star representing a convolution. The 1D
contribution from the second order term is obtained by taking the diagonal of the result of the 2D
convolution.

where {φi}Nb
i=1 is a random Fourier basis, with Nb being the number of basis functions in the

approximation, w ∈ RNb with entries wi ∼ N (0, 1), and qj are the entries of the vector q =
K−1(v − Φw), where K ∈ RM×M , with elements Km,n = k(zn, zm), is the covariance matrix of
the inducing points, and Φ ∈ RM×Nb is a feature matrix, with each basis function being evaluated at
each inducing location. The random Fourier basis is obtained by first sampling βi ∼ U(0, 2π), where
U is the uniform distribution, and then sampling θi ∼ FT (k), where FT is the Fourier transform of
the covariance function, which is the spectral density of the process. The basis functions are then
given by φi(t) =

√
2/Nb cos(θ>i t + βi). We can see Equation (4) as consisting of an approximate

GP prior, using a random Fourier features approximation [21], with a correction term which uses
Matheron’s update rule to account for the inducing points. By using Equation (4), samples can
be obtained in linear time with respect to the number of requested points. It should be noted that
Equation (4) only applies to GPs with stationary kernels, however, the DSE covariance required
for Gc,d, is non-stationary. It can be shown that the process exp(−α||t||2)G′c,d(t) has the DSE
covariance if G′c,d has the SE covariance. We can then write a sample from the output of the NVKM
as,

(fd|{vGd,c}Cc=1,v
u)(t) =

C∑
c=1

∫ ∞
−∞

e−α
∑c

i=1(t−τi)
2

(G′d,c|vGd,c)(t− τ1, . . . , t− τc)
c∏
j=1

(u|vu)(τj)dτj ,
(5)

which can be computed analytically, assuming that u also has the SE covariance, by representing the
Fourier basis in complex form, and factorising the integrals, leading to combinations of sums and
products of single dimensional integrals of the form

∫∞
−∞ exp(−ax2 + bx)dx =

√
π/a exp(b2/4a).

See Appendix B in the supplemental material for details of the computation.

3.2 Inference

Learning with the NVKM implies making inference of the input process u, along with all VKs
{Gd,c}C,Dc,d=1, from observed output data {yd}Dd=1 with yd ∈ RNd , which are the functions {fd}Dd=1

evaluated at points {td}Dd=1 with td ∈ RNd , corrupted by some i.i.d Gaussian noise. That is to say
yd,i = fd(td,i) + εd,i with ε ∼ N (0, σ2

yd
). Let vGd,c = Gd,c(z

G
d,c) denote the inducing points for the

VKs, and vu = u(zu) denote the inducing points for the input. The joint distribution over these
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inducing points and the latent functions then has the following form

p({yd}Dd=1, {Gd,c,vGd,c}
C,D
c,d=1, u,v

u) =

D,Nd∏
d,i=1

p(yd,i|fd(td,i))
D,C∏
d,c=1

p(Gd,c|vGd,c)p(vGd,c)p(u|vu)p(vu), (6)

where fd(td,i) depends on the VKs and input through Equation (2), the likelihood is p(yd,i|fd(td,i)) =
N (yd,i; fd(td,i), σ

2
yd

) , p(Gd,c|vGd,c) and p(u|vu) are GP posterior distributions, and p(vu) and
p(vGd,c) are the prior distributions over the inducing points. The dependency structure of the model is
described in Figure 2. We form an approximate variational distribution, in a similar way to Tobar
et al. [29], using a structured mean field approximation. That is to say, we mirror the form of the
true joint distribution, and replace the prior distributions over the inducing points with variational
distributions, q(vGd,c) and q(vu), leading to the variational distribution

q({Gd,c,vGd,c}
C,D
c,d=1, u,v

u) =

D,C∏
d,c=1

p(Gd,c|vGd,c)q(vGd,c)p(u|vu)q(vu). (7)

Given the assumed factorisation of the variational distibution, the optimal form of the variational
posteriors are multivariate Gaussians, q(vu) = N (vu;µu,Σu) and q(vGd,c) = N (vGd,c;µ

G
d,c,Σ

G
d,c),

where the mean vectors and covariance matrices of these distributions are variational parameters.
This form of variational approximation leads to a variational lower bound,

F =

D,Nd∑
d,i=1

Eq[log p(yd,i|fd(td,i))]−
D,C∑
d,c=1

KL[q(vGd,c))||p(vGd,c))]− KL[q(vu)||p(vu)], (8)

where KL[.||.] represents the Kullback-Liebler (KL) divergence, for details see Appendix C in the
supplemental material. The expression above is optimised using gradient descent. The KL divergences
have closed form. The derivation of the bound and KL divergences are given in the supplementary
material. The expectation of the log likelihood of the outputs, given in the first term, is intractable,
due to the nature of nonlinearity introduced by the Volterra series. We instead compute a stochastic
estimate of the log likelihood by sampling from the model and using,

Eq[log p(yd,i|fd(td,i))] ≈
1

S

S∑
s=1

log p(yd,i|(fd|vGd,c,vu)(td,i)), (9)

fd

uvu

Gd,cvG
d,c

yd,i

xj

td,i

txj

c = 1, ..., C i = 1, ..., Nd

j = 1, ..., Nx

d = 1, ..., D

Figure 2: A graphical model for the NVKM,
where the dashed elements are added to form
the IO-NVKM. Note that nodes u, fd, and
Gd,c are not random variables, they are ran-
dom processes, but the distinction is not made
in the diagram for the sake of clarity.

where vGd,c and vu are first sampled from their re-
spective variational distributions, and then used in
Equation (5) to generate a sample from fd. To make
the inference scheme scalable, we compute the bound
on randomly sub-sampled mini batches of the data
set, which alone is known as stochastic variational
inference [14]. When this source of stochasticity is
combined with the stochastic estimate of the expected
log likelihood, we have DSVI [28].

In the standard NVKM model, the input process u
is a latent function with no observed data associated
with it. There are many situations in which, instead
of learning a distribution over some output functions
alone, we wish to learn an operator mapping between
an input function and an output function, or functions.
That is to say, in addition to observing data {yd}Dd=1
we also observed the input process u at locations
tx ∈ RNx corrupted with i.i.d noise, which we denote
x, so xi = u(txi ) + εxi with εx ∼ N (0, σ2

x) . We apply a simple modification to the inference scheme
of the NVKM, in order to form a new model which we term the input/output NVKM (IO-NVKM).
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For the IO-NVKM, we pick up an additional likelihood term in Equation (6), with the variational
distribution remaining unchanged, and we obtain a new bound,

FIO = F +

Nx∑
j=1

Eq[p(xj |u(txj ))], (10)

where p(xj |u(txj )) = N (xj ;u(txj ), σ2
x), F is given by Equation (8) and we approximate the expecta-

tion as in Equation (9). The relationship between the NVKM and IO-NVKM is illustrated in Figure 2
where the dashed sections are added to form the IO model.

4 Related Work

In the this section, we give a brief overview of existing ideas in the literature that have some connection
to the NVKM.

Nonparametric covariances Covariance function design and selection is key to achieving good
performance with GPs. Much work has been done on automatically determining covariance functions
from data, for example by building complex covariances by composing simpler ones together [10], or
by using deep neural networks to warp the input space in complex ways before the application of a
simpler kernel [34]. Flexible parametric covariances can also be designed in frequency space [33].
Alternatively, some efforts have been made to learn covariance functions using GPs themselves. In
addition the the GPCM, another model that learns covariances nonparametrically is due to Benton
et al. [5], who use GPs to represent the log power spectral density, and then apply Bochner’s theorem
to convert this to a representation of the covariance function. GPs are fully specified by their first two
moments, so by learning the covariance function and mean function, one knows all there is to know
about the process. The present work uses the formalism of the Volterra series to learn the properties
of more complex, non-Gaussian processes, nonparametrically. We can think of this as implicitly
learning not just the first and second order moments of the process, but also the higher moments,
depending on the value of C. In the case of C = 1 and D = 1, the NVKM and the GPCM are the
same, except for the fact the GPCM uses the white noise as the input process, whereas we use an SE
GP.

LFMs and MOGPs As discussed in Section 2, we can interpret the first order filter function as
the Green’s function of some linear operator or system, and so by placing a GP prior over it, we
implicitly place a prior over some set of linear systems [29]. Since standard LFMs use an operator of
fixed form, we can interpret the NVKM in the case C = 1, D ≥ 1 as being an LFM in which the
generating differential equation itself is learned from data. LFMs can be extended to cases in which
the differential operator is nonlinear. Hartikainen et al. [12] recast a specific nonlinear LFM in terms
of a state space formalism allowing for inference in linear time. Lawrence et al. [17] use Markov
chain Monte Carlo to infer the parameters of a specific nonlinear ODE describing gene regulation,
using a GP as a latent input function. Ward et al. [31] use black box VI with inverse auto-regressive
flows to infer parameters of the same ODE. WhenC > 1, the NVKM can be interpreted as a nonlinear
nonparametric LFM. Álvarez et al. [2] use the fixed, parametric VKs to build an MOGP model. In
contrast to the NVKM, they approximate the outputs as GPs and use analytical expressions for the
moments to perform exact GP inference.

Nonlinear system identification The IO-NVKM falls into the class of models which aim to
perform system identification. A key concern of systems identification is determining how the output
of certain systems, often represented by differential operators, respond to a given input. GPs have
long been used for the identification of both linear and nonlinear systems. Many models exist which
use GPs to recurrently map between previous and future states, including GP-NARX models [16],
various state space models [26, 25] and recurrent GPs (RGPs) [19]. The thesis of Mattos [18] gives a
summary of these methods. Worden et al. [36] detail a method for the combination of the GP-NARX
model with a mechanistic model based on the physical properties of the system under study, leading
to improved performance over purely data driven approaches. The IO-NVKM differs from these
models in that instead of learning a mapping from the state of the system at a given point to the
next state, we use GPs to learn an operator that maps the whole input function to the whole output
function.
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Figure 3: Model predictions on the synthetic data, with crosses indicating training points and dots
indicating test points. The right plot shows an enhanced view of the peak around t = −9, and the
shaded regions show 2σ confidence.

5 Experiments

For all the following experiments we place the inducing locations for both the input process and VKs
on a fixed grid. The GP representing the cth VK has input dimension c, which means that the number
of inducing points required to fully characterise it scales exponentially with c if they are placed on a
grid. For all experiments we use 15, 102 = 100, 63 = 216 and 44 = 256 inducing points, for each of
the 1st to 4th order filters respectively, centered on zero. We treat the range of the points of each VK
as a hyperparameter, and fix α such that the decaying part of the DSE covariance causes samples to
be near zero at the edge of the range. For u we use approximately 1/10 of the number of inducing
points as data points (average number of data per output for multi-output problems). The VK GP
length scales, VK GP amplitudes, and input GP amplitude are optimised along with the variational
parameters by maximising the variational bound using gradient descent. For computational reasons,
the input process length scale is fixed based on the spacing of the input inducing points, and the
noise hyperparameters are fixed to a small value whilst the other hyperparameters and variational
parameters are optimised, and then estimated afterwards by minimising the bound with all other
variables fixed. The model is implemented using the Jax framework [6]. For all experiments we
use Adam [15]. All models were trained on a single Nvidia K80 GPU. The code is available at
github.com/magnusross/nvkm. In the following sections, details of the three main experiments
are given. An additional experiment, in which data is sampled from the model, and the aim is to
recover the VKs that generated it, is given in Appendix D of the supplemental material.

5.1 Synthetic data

Table 1: Performance on the synthetic data set, showing
mean and standard deviation for 10 repeats.

Model NMSE NLPD

GPCM 0.199 ±0.023 1.080 ±0.130
NVKM (C = 1) 0.196 ±0.047 2.084 ±0.398
NVKM (C = 2) 0.108 ±0.065 0.638 ±0.580
NVKM (C = 3) 0.055 ±0.016 0.124 ±0.107
NVKM (C = 4) 0.084 ±0.087 0.149 ±0.331

To illustrate the advantage of including
nonlinearity in the model we generate a
synthetic single output regression prob-
lem which includes both hard and soft
nonlinearities by sampling g from an
SE GP with length scale 2, computing
fi(t) =

∫
e−2τ

2

hi(τ)g(t − τ)dτ for
h1(t) = sin(6t), h2(t) = sin2(5t) and
h3(t) = cos(4t) by numerical integration,
then computing the output as,

y(t) = min(5f1(t)f2(t) + 5f33 (t), 1) + ε, (11)

with ε ∼ N (0, 0.052). We generate 1200 points in the range t = [−20, 20] and use a random
subset of a third for training and the rest for testing. Table 1 shows the normalised mean square
errors (NMSEs) and negative log probability densities (NLPDs) on the test set for the NVKM with
various values of C as well as the GPCM, with repeats using a different random train/test split, and
different random seeds.2 As we would expect, the NMSE values are very similar for the NVKM

2Results generated using the implementation available at github.com/wesselb/gpcm
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Figure 4: (Top) Diagonal of the inferred Volterra kernels for the the IO-NVKM with C = 3, showing
2σ confidence region. (Bottom) The predicted output for the test set, with the dashed line showing
the true values.

with C = 1 and the GPCM, since the models are nearly equivalent except for the prior on the input
GP. Interestingly the NLPD values are better for the GPCM than the NVKM with C = 1, likely due
to the fact we do not optimise the noise jointly with the bound. As C increases the performance of
the NVKM improves until C = 4. The fact performance does not improve after C = 3 illustrates
the difficulty of identifying higher order nonlinearities in a relatively small training set, an effect
supported by the results of the Cascaded Tanks experiment in the following section. Although the
C = 4 model does have more capacity to represent nonlinearities, the optimisation procedure is
challenging, illustrated by the high variance of the results. Plots of the predictions for the model can
be seen in Figure 3. We can see that increasing the nonlinearity for the NVKMs allows the sharp
spike and the finer grained features, as well as the hard nonlinearities, to be captured simultaneously.

5.2 Cascaded tanks

Table 2: Comparison of performance on the
Cascaded Tanks dataset, with the last best
models reported in [18]. H indicates the
number of hidden layers in the RGP.

Model RMSE NLPD

IO-NVKM (C = 1) 0.835 1.724
IO-NVKM (C = 2) 0.716 1.311
IO-NVKM (C = 3) 0.532 0.879
IO-NVKM (C = 4) 0.600 0.998
RGP (H = 1) 0.797 2.33
RGP (H = 2) 0.308 7.79
GP-NARX 1.50 1080
Var. GP-NARX 0.504 119.3

To demonstrate the IO-NVKM, we use a standard
benchmark for nonlinear systems identification know
as Cascaded Tanks [24].3 The system comprises two
vertically stacked tanks filled with water, with water
being pumped from a reservoir to the top tank, which
then drains into the lower tank and finally back to the
reservoir. The training data is two time series of 1024
points, one being the input to the system, which is the
voltage fed into the pump, and the second being the
output, which is the measured water level in the lower
tank. For testing, an additional input signal, again of
1024 points, is provided, and the task is to predict the
corresponding output water level. The system is consid-
ered challenging because it contains hard nonlinearities
when the tanks reach maximum capacity and overflow
(see the regions around 600s and 2900s in Figure 4), it
has unobserved internal state, and has a relatively small training set. Table 2 shows the predictive
root mean square errors (RMSEs) and NLPDs for the IO-NVKM with various C, as well as four
other GP based models for system identification from [18]. For each C, five random settings of VK
ranges were tested, and each training was repeated three times with different initialisations. The
setting and initialisation with the lowest combined NLPD on the training input and output data is
shown. Although the RGP with H = 2 provides the best RMSE of the model, this comes at the cost
of poor NLPD values. All IO-NVKMs achieve considerably better NLPD values than the alternatives
indicating much better quantification of uncertainty. Of the IO-NVKMs, C = 3 performs best in both
metrics. Figure 4 show the predictions of the C = 3 model on the test set, as well as the inferred
VKs. The uncertainty in the VKs increases with their order, which is natural given the difficulty
of estimating higher order nonlinear effects from a small training set. We can see the first order

3Available at sites.google.com/view/nonlinear-benchmark/
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Figure 5: Predictive means and 2σ confidence regions from the NVKM with C = 3, on the
Cambermet (left) and Chimet (right) outputs from the Weather data set. Orange circles are the
artificially removed test data, black pluses are training data.

Table 3: Comparison of performance on the Weather data set, for the NVKM mean and standard
deviation of three initialisation is shown, along with the best model from [2]

Cambermet Chimet

Model NMSE NLPD NMSE NLPD

NVKM (C = 1) 0.212±0.085 2.182±0.743 1.669±0.052 7.148±0.111
NVKM (C = 2) 0.440±0.286 3.884±2.380 0.939±0.216 4.143±1.197
NVKM (C = 3) 0.253±0.002 2.390±0.123 0.871±0.394 3.994±1.924
NCMOGP (C = 3) 0.44 2.33 0.43 2.18

kernel as approximating the response of a linearized system, and the third order allowing the sharp
nonlinearities around 600s and 2900s to be captured. It should be noted that Worden et al. [36]
achieve a much lower RMSE of 0.191 by using a specific physics model of the system in tandem
with a GP-NARX model, but since we are considering purely data driven approaches here, it is not
directly comparable.

5.3 Weather data

To illustrate the utility of the NVKM for multiple output regression problems, we consider a popular
benchmark in the MOGP literature, consisting of multiple correlated time series of air temperature
measurements taken at four nearby locations on the south coast of England, originally described by
Nguyen et al. [20], which we refer to as Weather.4 The four series are named Bramblemet, Sotonmet,
Cambermet and Chimet, with 1425, 1097, 1441, and 1436 data points, respectively. Bramblemet
and Sotonmet both contain regions of truly missing data, 173 and 201 points in a continuous region
are artificially removed form Cambermet and Chimet with the task being to predict them based
on the all the other data. Table 3 shows the performance of the multiple output NVKM on the
Weather dataset, along with the best performing NCMOGP model of Álvarez et al. [2]. For each C,
five random settings of VK ranges were tested, with each training being repeated three times with
different initialisations, the setting with the best average NLPD value on the training data is shown,
along with its standard deviation. All NVKM models show better or equivalent performance than
the NCMOGP on the Cambermet output, but all show worse performance on the Chimet output,
although on the Chimet output the variance between repeats is high. It should be noted that the LFM
reported by Guarnizo and Álvarez [11] achieves much lower scores, having NMSEs of 0.11 and 0.19
on Cambermet and Chimet respectively, but that model uses six latent functions as opposed to a
single latent function for the NVKM and NCMOGP. Including multiple latent functions may lead to
large performance improvements for the NVKM and is a promising direction for future work.

4Available for download in a convenient from using the wbml package, github.com/wesselb/wbml
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6 Discussion

Societal Impacts It is possible that the NVKM model could incur some negative societal impacts.
GP and MOGP models have long been applied to problems in robotics [9, 32]. Better inclusion of
nonlinearities in these models may enhance the ability of robots, potentially leading to loss of jobs
and livelihoods to automation. On the other hand, the NVKM may have a positive impact on society,
its ability to model weather and climate data have been demonstrated in Section 5, and accurate
climate forecasting models will likely play a key role in any solution to the ongoing climate crisis
[23].

Future Work There are a number of extensions to both the NVKM and IO-NVKM that could
lead to substantial improvements in performance. As briefly mentioned in Section 5, the number of
inducing points required for the VKs scales exponentially with the order of the series, meaning it is
difficult to represent complex features in the higher order terms, without using a computationally
intractable number of points. Whilst initially we saw the increased flexibility of non-separable
VKs as a virtue, it may be that introducing separability leads to more powerful models, since the
number of points needed to specify separable VKs scales linearly. Currently the models do not
support multidimensional inputs, but this could be easily added, requiring the computation of a few
extra integrals, with the complexity scaling linearly with the number of inputs. For the multiple
output model, allowing a shared set of latent functions, with the input to each output’s Volterra
series being a trainable linear combination, in a similar way to LFMs, is highly likely to improve
performance especially for problems with a large number of outputs. Additionally it is likely that the
inference method can be improved significantly, perhaps by going beyond the structured mean field
approximation and using a more flexible variational distribution, or even by forgoing VI entirely and
sampling from the posterior using Markov chain Monte Carlo methods.

Conclusions We have presented a novel model which uses Gaussian processes to learn the kernels
of the Volterra series nonparametrically, allowing for the effective modeling of data with nonlinear
properties. We have developed fast and scalable sampling and inference methods for the the model
and shown its performance on single and multiple output regression problems. Additionally, a
modification to the model was presented that achieves significantly better uncertainty quantification
than competitors on a challenging benchmark for nonlinear systems identification.
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