
Snowflake: Scaling GNNs to high-dimensional
continuous control via parameter freezing

Charlie Blake⇤
University of Oxford

thecharlieblake@gmail.com

Vitaly Kurin
University of Oxford

vitaly.kurin@cs.ox.ac.uk

Maximilian Igl†
University of Oxford

maximilian.igl@gmail.com

Shimon Whiteson
University of Oxford

shimon.whiteson@cs.ox.ac.uk

Abstract

Recent research has shown that graph neural networks (GNNs) can learn policies
for locomotion control that are as effective as a typical multi-layer perceptron
(MLP), with superior transfer and multi-task performance [55, 20]. However,
results have so far been limited to training on small agents, with the performance of
GNNs deteriorating rapidly as the number of sensors and actuators grows. A key
motivation for the use of GNNs in the supervised learning setting is their applicabil-
ity to large graphs, but this benefit has not yet been realised for locomotion control.
We show that poor scaling in GNNs is a result of increasingly unstable policy up-
dates, caused by overfitting in parts of the network during training. To combat this,
we introduce SNOWFLAKE, a GNN training method for high-dimensional continu-
ous control that freezes parameters in selected parts of the network. SNOWFLAKE
significantly boosts the performance of GNNs for locomotion control on large
agents, now matching the performance of MLPs while offering superior transfer
properties.

1 Introduction

Whereas many traditional machine learning models operate on sequential or Euclidean (grid-like)
data representations, GNNs allow for graph-structured inputs. GNNs have yielded breakthroughs
in a variety of complex domains, including drug discovery [33, 50], fraud detection [56], computer
vision [49, 43], and particle physics [18].

GNNs have also been successfully applied to reinforcement learning (RL), with promising results on
locomotion control tasks with small state and action spaces. Not only are GNN policies as effective
as MLPs on certain training tasks, but when a trained policy is transferred to another similar task,
GNNs significantly outperform MLPs [55, 20]. This is largely due to the capacity of a single GNN
to operate over arbitrary graph topologies (patterns of connectivity between nodes) and sizes without
modification. However, so far GNNs in RL have only shown competitive performance with MLPs on
lower-dimensional locomotion control tasks. For higher-dimensional tasks, one must therefore choose
between superior training task performance (MLPs) and superior transfer performance (GNNs).

This paper investigates the factors underlying poor GNN scaling and introduces a method to combat
them. We begin with an analysis of the GNN-based NERVENET architecture [55], which we choose
for its strong zero-shot transfer performance. We show that optimisation updates for the GNN

⇤Corresponding author. Now at Graphcore, Bristol
†Now at Waymo, Oxford

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

policy have a tendency to cause excessive changes in policy space, leading to performance degrading.
To combat this, current state-of-the-art algorithms [46, 48, 1] employ trust region-like constraints,
inspired by natural gradients [2, 23], that limit the change in policy for each update. We outline how
this policy instability can be framed as a form of overfitting—a problem GNN architectures like
NERVENET are known to suffer from in supervised learning, and show that parameter regularisation
(a standard remedy for overfitting) leads to a small improvement in NERVENET performance.

We then investigate which structures in the GNN contribute most to this overfitting, by applying
different learning rates to different parts of the network. Surprisingly, the best performance is attained
when training with a learning rate of zero in the parts of the GNN architecture that encode, decode,
and propagate messages in the graph, in effect training only the part that updates node representations.

We use this approach as the basis of our method, SNOWFLAKE, which freezes the parameters of
particular operations within the GNN to their initialised values, keeping them fixed throughout
training while updating the non-frozen parameters as before. This simple technique enables GNN
policies to be trained much more effectively in high-dimensional environments.

Experimentally, we show that applying SNOWFLAKE to NERVENET dramatically improves asymp-
totic performance and sample complexity on such tasks. We also demonstrate that a policy trained
using SNOWFLAKE exhibits improved zero-shot transfer compared to regular NERVENET or MLPs
on high-dimensional tasks.

2 Background

2.1 Reinforcement Learning

We formalise an RL problem as a Markov decision process (MDP). An MDP is a tuple
hS,A,R, T , ⇢0i. The first two elements define the state space S and the action space A. At
every time step t, the agent employs a policy ⇡(at|st) to output a distribution over actions, selects
action at ⇠ ⇡(·|st), and transitions from state st 2 S to st+1 2 S, as specified by the transition
function T (st+1|st, at) which defines a probability distribution over states. For the transition, the
agent gets a reward rt = R(st, at, st+1). The last element of an MDP specifies initial distribution
over states, i.e., states an agent can be in at time step zero.

Solving an MDP means finding a policy ⇡⇤ that maximises an objective, in our case the expected
discounted sum of rewards J = E⇡ [

P1
t=0 �

trt], where � 2 [0, 1) is a discount factor. Policy
Gradients (PG) [52] find an optimal policy ⇡⇤ by doing gradient ascent on the objective: ✓t+1 =
✓t + ↵r✓J |✓=✓t with ✓ parameterising the policy.

Often, to reduce the variance of the gradient estimate, one learns a value function V (s) =
E⇡ [

P1
t=0 �

trt | s0 = s], and uses it as a critic of the policy. In the resulting actor-critic method, the
policy gradient takes the form: r✓J(✓) = E⇡✓ [

P
t A

⇡✓
t r✓ log ⇡✓(at|st)], where A⇡✓

t is an estimate
of the advantage function A⇡

t = E⇡ [
P1

t=0 �
trt | at, st]� E⇡ [

P1
t=0 �

trt | st] [47].

2.2 Proximal Policy Optimisation

Proximal policy optimisation (PPO) [47] is an actor-critic method that has proved effective for a
variety of domains including locomotion control [17]. PPO approximates the natural gradient using a
first order method, which has the effect of keeping policy updates within a “trust region”. This is
done through the introduction of a surrogate objective to be optimised:

J = E⇡✓0

min

✓
⇡✓(a|s)
⇡✓0(a|s)A

⇡✓0 (s, a), clip
⇣ ⇡✓(a|s)
⇡✓0(a|s) , 1� ✏, 1 + ✏

⌘
A⇡✓0 (s, a)

◆�
(1)

where ✏ is a clipping hyperparameter that effectively limits how much a state-action pair can cause
the overall policy to change at each update. This objective is computed over a number of optimisation
epochs, each of which gives an update to the new policy ⇡✓. If during this process a state-action pair
with a positive advantage A⇡✓0 (s, a) reaches the upper clipping boundary, the objective no longer
provides an incentive for the policy to be improved with respect to that data point. This similarly
applies to state-action pairs with a negative advantage if the lower clipping limit is reached.

2

2.3 Graph Neural Networks

GNNs are a class of neural architecture designed to operate over graph-structured data. We define
a graph as a tuple G = (V,E) comprising a set of nodes V and edges E = {(u, v) | u, v 2 V }. A
labelled graph has corresponding feature vectors for each node and edge that form a pair of matrices
LG = (V ,E), where V = {vv 2 Rp | v 2 V } and E = {eu,v 2 Rq | (u, v) 2 E}. For GNNs we
often consider directed graphs, where the order of an edge (u, v) defines u as the sender and v as the
receiver.

A GNN takes a labelled graph G and outputs a second graph G0 with new labels. Most GNN
architectures retain the same topology for G0 as used in G, in which case a GNN can be viewed as a
mapping from input labels LG to output labels LG0 .

A common GNN framework is the message passing neural network (MPNN) [14], which generates
this mapping using T steps or ‘layers’ of computation. At each layer ⌧ 2 {0, . . . ,T � 1} in the
network, a hidden state h⌧+1

v and message m⌧+1
v is computed for every node v 2 V in the graph.

An MPNN implementation calculates these through its choice of message functions and update

functions, denoted M⌧ and U⌧ respectively. A message function computes representations from
hidden states and edge features, which are then aggregated and passed into an update function to
compute new hidden states:

m⌧+1
v =

X

u2N(v)

M⌧ (h⌧
u,h

⌧
v , eu,v) , h⌧+1

v = U⌧
�
h⌧
v ,m

⌧+1
v

�
, (2)

for all nodes v 2 V , where N(v) = {u | (u, v) 2 E} is the neighbourhood of all sender nodes
connected to receiver v by a directed edge. The node input labels vv are used as the initial hidden
states h0

v . MPNN assumes only node output labels are required, using each final hidden state hT
v as

the output label v0
v .

2.4 NerveNet

NERVENET is an MPNN designed for locomotion control, based on the gated GNN architecture [32].
NERVENET uses the morphology (physical structure) of the agent as the basis for the GNN’s input
graph G, with edges representing body parts and nodes representing the joints that connect them.

NERVENET assumes an MDP where the state s can be factored into input labels V , which are fed to
the GNN to generate output labels: V0 = NERVENET(G,V). These are then used to parameterise a
normal distribution defining the stochastic policy: ⇡(a|s) = N (V0, diag(�2)), where the standard
deviation is a separate vector of parameters learned during training. Actions a are vectors, where each
element represents the force to be applied at a given joint for the subsequent timestep. The policy is
trained using PPO, with parameter updates computed via the Adam optimisation algorithm [25].

Internally, NERVENET uses an encoder Fin to generate initial hidden states from input labels:
h0
v = Fin (vv). This is followed by a message function M⌧ consisting of a single MLP for all

layers ⌧ that takes as input only the state of the sender node: m⌧+1
v =

P
u2N(v) MLP (h⌧

u). The
update function U⌧ is a single gated recurrent unit (GRU) [9] that maintains an internal hidden
state: h⌧+1

v = GRU
�
m⌧+1

v | h⌧
v

�
. NERVENET propagates through T layers of message-passing

and node-updating, before applying a decoder Fout to turn final hidden states into scalar node output
labels: v0

v = Fout(hT
v). A diagram of the NERVENET architecture can be seen in Appendix A.4,

Figure 10.

Knee 0

Root

Hip 0

Hip 1

Knee 1

Body 0

Knee n-1

Body n/2-1

Hip n-1

Hip n

Knee n

Figure 1: A MuJoCo rendering of Centipede-20 and its corresponding morphological graph.

3

3 Analysing GNN Scaling Challenges

In this section, we use NERVENET to analyse the challenges that limit GNNs’ ability to scale.
We focus on NERVENET as its architecture is more closely aligned with the GNN framework
than alternative approaches to structured locomotion control (see Section 4). We use mostly the
same experimental setup as Wang et al. [55], with details of any differences and our choice of
hyperparameters outlined in Appendix A.2.

We focus on environments derived from the Gym [8] suite, using the MuJoCo [53] physics engine.
The main set of tasks we use to assess scaling is the selection of Centipede-n agents [55], chosen
because of their relatively complex structure and ability to be scaled up to high-dimensional input-
action spaces.

The morphology of a Centipede-n agent consists of a line of n/2 body segments, each with a left
and right leg attached (see Figure 1). The graph used as the basis for the GNN corresponds to the
physical structure of the agent’s body. At each timestep in the environment, the MuJoCo engine
sends a feature vector containing the positions of the agent’s body parts and the forces acting on
them, expecting a vector to be returned specifying forces to be applied at each joint (full details of
the state representation are given in Appendix A.2). The agent is rewarded for forward movement
along the y-axis as well as a small ‘survival’ bonus for keeping its body within certain bounds, and
given negative rewards proportional to the size of its actions and the magnitude of force it exerts on
the ground.

Existing work applying GNNs to locomotion control tasks avoid training directly on larger agents,
i.e., those with many nodes in the underlying graph representation. For example, Wang et al. [55] state
that for NERVENET, “training a CentipedeEight from scratch is already very difficult”. Huang
et al. [20] also limit training their SMP architecture to small agent types.

3.1 Scaling Performance

To demonstrate the poor scaling of NERVENET to larger agents, we compare its performance on
a selection of Centipede-n tasks to that of an MLP policy. Figure 2 shows that for the smaller
Centipede-n agents both policies are similarly effective, but as the size of the agent increases, the
performance of NERVENET drops relative to the MLP. A visual inspection of the behaviour of these
agents shows that for Centipede-20, NERVENET barely makes forward progress at all, whereas the
MLP moves effectively.

As in previous literature [e.g., 55, 20], we are ultimately not concerned with outperforming MLPs on
the specific training task, but rather matching their training task performance so that the additional

benefits of GNNs can be realised. In our setting we particularly wish to leverage the strong transfer
benefits of GNNs—as demonstrated by Wang et al. [55]—resulting from their capacity to process
inputs of arbitrary size and structure.

Figure 2: Comparison of the scaling of NERVENET relative to an MLP-based policy. Performance is
similar for the smaller agent sizes, but NERVENET scales poorly to the larger agents.

4

Table 1: KL-divergence from the policy before each update to the policy after, calculated over each
batch. We train on 107 timesteps, recording in the table the mean taken over last 10% of steps.

Policy KL-divergence

Policy type Centipede-6 Centipede-8 Centipede-12 Centipede-20

MLP 0.021 0.024 0.031 0.044
NERVENET 0.115 0.137 0.118 0.123

In other words, the focus of this paper is on deriving a method that can close the gap in Figure 2, as
doing so makes GNNs a better choice overall given the trained policy transfers better than the MLP
equivalent (see Section 5 for experimental results).

3.2 Unstable policy updates

As outlined in Section 2.2, one of the key challenges for on-policy RL is preventing individual
updates from causing excessive changes in policy space (i.e., keeping it within the trust region). Table
1 shows the extent to which this problem contributes to NERVENET’s poor scaling, calculating the
average KL-divergence from the pre-update policy to the post-update policy for both policy types.
NERVENET has a consistently higher KL-divergence than the MLP policy, indicating that PPO finds
it harder to ensure stable policy updates for the GNN.

We emphasise that this discrepancy persists even with carefully-tuned hyperparameter values for
limiting policy divergence. Figure 3 shows the performance of NERVENET across a range of PPO
✏-clipping values (see Section 2.2), and in all cases NERVENET is still substantially inferior to an
MLP (note that our experiments on NERVENET always use the best value of ✏ = 0.1 found here). As
we demonstrate later (in Figure 8), controlling policy divergence effectively is a key component in
making GNNs scale, but we see here that PPO alone does not control the divergence sufficiently to
achieve this.

3.3 Overfitting in NERVENET

Excessive policy divergence resulting from updates can be understood as a form of overfitting.
Whereas the supervised interpretation of overfitting implies poor generalisation from training to test
set, in this case we are concerned with poor generalisation across state-action distributions induced

Figure 3: Final performance of NER-
VENET on Centipede-20 after ten mil-
lion timesteps, across a range of ✏ clip-
ping hyperparameter values. As ✏ in-
creases (i.e., clipping is reduced) the KL
divergence from the old to new policy
(blue) increases. This improves perfor-
mance (orange) up to a point, after which
it begins to deteriorate.

Figure 4: L2 regularisation for NERVENET’s mes-
sage function across a range of values for the L2
penalty �, trained on Centipede-20. Increasing
this penalty reduces the L2 norm of the weights
learned (left). Improved performance for higher
values of � (right) indicates the presence of over-
fitting for the message function.

5

by different iterations of the policy during training. Specifically, each update involves an optimisation
step aiming to increase the expected reward over a batch of trajectories generated using the pre-update

policy. The challenge for RL algorithms is that the agent is then evaluated and trained on trajectories
generated using the post-update policy, i.e., a different distribution to the one optimised on.

Figure 5: Colour-coded final NERVENET
performance after 5M training steps on
Centipede-20 when changing learning rates
for individual GNN components, compared
to the base learning rate of 3⇥ 10�4.

For MPNN architectures like NERVENET, it is a
known deficiency that in the supervised setting, mes-
sage functions implemented as MLPs are prone to
overfitting [16, p.55]. Here, we demonstrate that they
also overfit (using the above interpretation) in our
on-policy RL setting. Figure 4 shows the effect of
applying L2 regularisation (a standard approach to
reducing overfitting) to the NERVENET architecture.
We regularise the parameters ✓ of NERVENET’s mes-
sage function MLP M✓ , adding a �||✓||22 term to our
objective function. At the optimal value of � we see
an improvement in performance (although still sub-
stantially inferior to using an MLP), indicating that
the unregularised message-passing MLPs overfit.

We also investigate lowering the learning rate in dif-
ferent parts of the GNN, with the aim of identifying
where overfitting is localised. If parts of the network
are particularly prone to damaging overfitting, train-
ing them more slowly may reduce their contribution
to policy instability across updates. Results for this
experiment can be seen in Figure 5.

Not only does lowering the learning rate in parts of the model improve performance, but surprisingly
the best performance is obtained when the encoder Fin, message function M and decoder Fout
each have their learning rate set to zero. The encoder and decoder play a similar role to the
message function, all of which are implemented as MLPs, whereas the update function U is a GRU
(we experimented with using an MLP update function, but found that this significantly reduced
performance.).

3.4 Snowflake

Training with a learning rate of zero is equivalent to parameter freezing (e.g., Brock et al. [7]), where
parameters are fixed to their initialised values throughout training. NERVENET can learn a policy
with some of its functions frozen, as learning still takes place in the un-frozen functions. For instance,
if we consider freezing the encoder, this results in an arbitrary mapping of input features to the initial
hidden states. As we still train the update function that processes this representation, so long as key
information from the input features is not lost via the arbitrary encoding, the update function can still
learn useful representations. The same logic applies to using a frozen decoder or message function.

Based on the effectiveness of parameter freezing within parts of the network, we propose a simple
technique for improving the training of GNNs via gradient-based optimisation, which we name
SNOWFLAKE (a naturally-occurring frozen graph structure). SNOWFLAKE assumes a GNN architec-
ture made up internally of functions F 1

✓ , . . . , F
n
✓ , where ✓ denotes the parameters of a given function.

Prior to training we select a fixed subset Z ✓ {F 1
✓ , . . . , F

n
✓ } of these functions. Their parameters

are then placed in SNOWFLAKE’s frozen set ⇣ = {✓ | F✓ 2 Z}. During training, SNOWFLAKE
excludes parameters in ⇣ from being updated by the optimiser, instead fixing them to whatever values
the GNN architecture uses as an initialisation. Gradients still flow through these operations during
backpropagation, but their parameters are not updated. In practice, we found optimal performance for
⇣ = {Fin, Fout,M⌧}, i.e. when freezing the encoder, decoder and message function of the GNN. If
not stated otherwise, this is the architecture we refer to as SNOWFLAKE in subsequent sections. A
visual representation of SNOWFLAKE applied to the NERVENET model can be seen in Figure 11,
Appendix A.4.

For our experiments, we initialise the values in the GNN using the orthogonal initialisation [44]. We
found this to be slightly more effective for frozen and unfrozen training than uniform and Xavier

6

initialisations [15]. For our message function, which has input and output dimensions of the same
size, we find that performance with the frozen orthogonal initialisation is similar to that of simply
using the identity function instead of an MLP. However, in the general case where the input and
output dimensions of functions in the network differ (such as in the encoder and decoder, or in GNN
architectures where layers use representations of different dimensionality), this simplification is not
possible and freezing is required.

4 Related Work

Structured Locomotion Control Several different graph neural network-like architectures [45, 5]
have been proposed to learn policies for locomotion control. Wang et al. [55] introduce NERVENET,
which trains a GNN based on the agent’s morphology, along with a selection of scalable benchmarks.
NERVENET achieves multi-task and transfer learning across morphologies, even in the zero-shot
setting (i.e., without further training), which standard MLP-based policies fail to achieve. Sanchez-
Gonzalez et al. [42] use a GNN-based architecture for learning a model of the environment, which is
then used for model-predictive control.

Huang et al. [20] propose Shared Modular Policies (SMP), which focuses on multi-task training
and shows strong generalisation to out-of-distribution agent morphologies using a single policy. The
architecture of SMP has similarities with a GNN, but requires a tree-based description of the agent’s
morphology, and replaces size- and permutation-invariant aggregation with a fixed-cardinality MLP.
Pathak et al. [39] propose dynamic graph networks (DGN), where a GNN is used to learn a policy
enabling multiple small agents to cooperate by combining their physical structures.

Amorpheus [29] uses an architecture based on transformers [54] to represent locomotion policies.
Transformers can be seen as GNNs using attention for edge-to-vertex aggregation and operating on a
fully connected graph, meaning computational complexity scales quadratically with the graph size.

For all of these existing approaches to GNN-based locomotion control, training is restricted to small
agents. In the case of NERVENET and DGN, emphasis is placed on the ability to perform zero-shot
transfer to larger agents, but this still incurs a significant drop in performance.

Graph-Based Reinforcement Learning GNNs have recently gained traction in RL due to their
support for variable sized inputs and outputs, enabling new RL applications and enhancing the
capabilities of agents on existing benchmarks.

Khalil et al. [24] apply DQN [38] to combinatorial optimisation problems using Structure2Vec [10]
for function approximation. Lederman et al. [30] use policy gradient methods to learn heuristics of a
quantified Boolean formulae solver, while Kurin et al. [28] use DQN [38] with graph networks [5]
to learn the branching heuristic of a Boolean SAT solver. Klissarov and Precup [26] use a GNN to
represent an MDP, which is then used to learn a form of reward shaping. Deac et al. [11] similarly
use a GNN MPD representation to generalise Value Iteration Nets [51] to a broader class of MDPs.

Other approaches involve the construction of graphs based on factorisation of the environmental
state into objects with associated attributes [4, 34]. In multi-agent RL, researchers have used
a similar approach to model the relationship between agents, as well as between environmental
objects [60, 21, 31]. In this setting, increasing the number of agents can result in additional challenges,
such as combinatorial explosion of the action space. Our approach can be potentially useful to the
above work, in improving scaling properties across a variety of domains.

Random Embeddings and Parameter Freezing Embeddings represent feature vectors that have
been projected into a new, typically lower-dimensional space that is easier for models to process.
Bingham and Mannila [6] show that multiplying features by a randomly generated matrix (e.g.,
with entries sampled from a Gaussian distribution) preserves similarity well and empirically attains
comparable performance to PCA. Wang et al. [57] use this approach to apply Bayesian Optimisation
to high dimensional datasets by randomly projecting them into a smaller subspace. For natural
language applications, commonly used pre-trained embeddings (e.g., word2vec [40], GloVe [37])
have been shown to offer only a small benefit over random embeddings on benchmark datasets
[27, 12] and may offer no benefit on industry-scale data [3].

More generally, random embeddings can be induced by freezing typically-learned parameters within
a model to fixed values throughout training. This approach has been explored for transformer

7

architectures, where fixed attention weights (either Gaussian-distributed [59] or hand-crafted [41])
show no significant drop in performance, and even freezing intermediate feedforward layers still
enables surprisingly effective learning [35]. A similar technique can also be found in common
fine-tuning methods, where parameters are pre-trained on another, possibly unsupervised objective,
but frozen during training except for the final layer [e.g., 58, 19].

5 Experiments

We present experiments evaluating the performance of SNOWFLAKE when applied to NERVENET,
and compare against regular NERVENET and MLP policies. We evaluate each model on a selection
of MuJoCo tasks, including three standard tasks from the Gym suite [8] and the Centipede-n

agents from Wang et al. [55]. Note that we do not train on even larger Centipede-n agents due to
wall-clock simulation time becoming prohibitively large.

All training statistics are calculated as the mean across six independent runs (unless specified
otherwise), with the standard error across runs indicated by the shaded areas on each graph. The
average reward typically has high variance, so to smooth our results we plot the mean taken over a
sliding window of 30 data points. Further experimental details are outlined in Appendix A.2.

Scaling to High-Dimensional Tasks Figure 6 compares the scaling properties of the regular
NERVENET model with SNOWFLAKE. As the size of the agent increases, SNOWFLAKE significantly
outperforms NERVENET with comparable asymptotic performance to the MLP. This indicates that
SNOWFLAKE is successful in addressing the deficiencies of regular NERVENET training, and that
freezing overfitting parameters is an effective training strategy in this setting. This holds true across
locomotive agents with substantially different morphologies.

Zero-shot transfer An important motivation for improving GNN scaling is to harness their transfer
capabilities on large tasks. Regular NERVENET is limited by the fact that it can only effectively
train on and transfer between small agent sizes.3 We show in Figure 7 that SNOWFLAKE attains
exceptional zero-shot transfer performance across centipede sizes, surpassing alternative methods.
SNOWFLAKE is the only method that can train a single policy that is effective on Centipede-20

through to 12.

SNOWFLAKE therefore achieves our initial objective: combining the strong training task perfor-
mance of an MLP and the strong transfer performance of regular NERVENET. As a consequence,
SNOWFLAKE-trained GNNs offer the most promising policy representation for locomotion control
tasks where transfer is a desirable property.

3We found that a regular NERVENET policy trained to achieve high training task performance on a smaller
agent (e.g., Centipede-6) does not transfer effectively to larger ones, as reflected in [55, Figure 4].

Figure 6: Comparison of the performance of SNOWFLAKE training, regular NERVENET and the MLP-
based policy. SNOWFLAKE enables effective scaling to the larger agents, significantly outperforming
regular NERVENET and comparable to using an MLP-based policy.

8

Figure 7: Zero-shot transfer performance
for SNOWFLAKE, NERVENET, and MLP
models trained on Centipede-20, evalu-
ated across a range of sizes.

Figure 8: The effect of SNOWFLAKE on policy
divergence and PPO clipping on Centipede-20.
By freezing parts of the network that overfit,
SNOWFLAKE reduces the policy KL divergence lead-
ing to less clipping during training.

Policy Stability and Sample Efficiency By reducing overfitting in parts of the GNN, SNOWFLAKE
mitigates the effect of harmful policy updates seen with regular NERVENET. As a consequence, the
policy can train effectively on smaller batch sizes. This is demonstrated in Figure 9, which shows the
performance of NERVENET trained regularly versus using SNOWFLAKE as the batch size decreases.

A potential benefit of training with smaller batch sizes is improved sample efficiency, as fewer
timesteps are taken in the environment per update. However, smaller batch sizes also lead to increased
policy divergence due to increased noise in the gradient estimate. When the policy divergence is
too great, performance begins to decrease, limiting how small the batch can be. However due to
a reduction in policy divergence as a result of SNOWFLAKE, we can afford to use smaller batch
sizes while still keeping the policy under control. This provides a wider motivation for the use of
SNOWFLAKE than just scaling to larger agents: it also improves sample efficiency across agents
regardless of size.

The success of SNOWFLAKE in scaling to larger agents can also be understood in this context. Without
SNOWFLAKE, for NERVENET to attain strong performance on large agents an infeasibly large batch
size would be required, leading to poor sample efficiency. The more stable policy updates enabled by
SNOWFLAKE make solving these large tasks tractable.

PPO Clipping SNOWFLAKE’s improved policy stability also reduces the amount of clipping
performed by PPO across each training batch. Figure 8 shows the percentage of state-action pairs
that are clipped for regular NERVENET versus SNOWFLAKE on the Centipede-20 agent, as a result
of reduced KL divergence4.

When NERVENET is trained without using SNOWFLAKE a larger percentage of state-action pairs are
clipped during PPO updates—a consequence of the greater policy divergence caused by overfitting.
For PPO if too many data points reach the clipping limit during optimisation, the algorithm is only
able to learn on a small fraction of the experience collected, reducing the effectiveness of training.
One of SNOWFLAKE’s strengths is that because it reduces policy divergence it requires less severe
restrictions to keep the policy within the trust region. The combination of this effect and the ability to
train well on smaller batch sizes enables SNOWFLAKE’s strong performance on the largest agents.

6 Conclusion

We proposed SNOWFLAKE, a method that enables GNN-based policies to be trained effectively on
much larger locomotive agents than was previously possible. We no longer observe a substantial
difference in performance between using GNNs to represent a locomotion policy and the standard
approach of using MLPs, even on the most challenging morphologies. As a consequence, GNNs

4It may seem counter-intuitive that the KL divergence increases over time. This is due to the standard
deviation of the policy (a learned parameter) reducing as training progresses, with the agent trading exploration
for exploitation.

9

(a) NERVENET (b) SNOWFLAKE

Figure 9: Effectiveness of SNOWFLAKE across smaller batch sizes relative to standard NERVENET
training. SNOWFLAKE is able to use smaller batch sizes, leading to improved sample efficiency. This
is due to SNOWFLAKE reducing policy divergence across updates. Corresponding policy divergence
plots can be found in the appendix.

now offer an alternative to MLPs for more than just simple tasks, and if the additional features of
GNNs such as strong transfer are a requirement, then they are likely to be a more effective choice.
We have also provided insight into why poor scaling occurs for certain GNN architectures, and why
parameter freezing is effective in addressing the overfitting problem we identify.

Limitations of our work include the upper-limit on the size of agents we were able to simulate, the
use of a single algorithm and architecture, and a focus only on locomotion control tasks. Future work
may include applying alternative RL algorithms and GNN architectures, schemes for automating the
selection of frozen parts of the network, and applying SNOWFLAKE-like methods to a wider range of
learning problems.

Acknowledgments and Disclosure of Funding

VK is a doctoral student at the University of Oxford funded by Samsung R&D Institute UK through
the AIMS program. SW has received funding from the European Research Council under the
European Union’s Horizon 2020 research and innovation programme (grant agreement number
637713). The experiments were made possible by a generous equipment grant from NVIDIA.

10

