
Efficient Combination of Rematerialization and
Offloading for Training DNNs
Appendix with Missing Proofs

Anonymous Author(s)
Affiliation
Address
email

F1 F2 · · · FL−1 FL loss

B1 B2 B3 · · · BL Bloss

a0 a1 a2 aL−2 aL−1 aL aL+1

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0
a1 a2 aL−1 aL

ā1 ā2 ā3
āL−1 āL āL+1

Figure 1: Data dependencies induced the training phase of Sequential Deep Neural Networks.

Operation Input Output Time Memory overhead

F `all Forward and save all {a`−1} {a`−1, ā`}
uF` of`{ā`−1} {ā`−1, ā`}

F `ck Forward and materialize input {a`−1} {a`−1, a`}
uF` of`{ā`−1} {ā`−1, a`}

F `∅ Forward without saving {a`−1} {a`}
uF` of`{ā`−1} {a`}

Bl Backward step {δ`, ā`, a`−1} {δ`−1}
uB` ob`{δ`, ā`, ā`−1} {δ`−1, ā`−1}

Table 1: Generic operations available in DL frameworks.

A Proof of Lemma 1, Section 4.21

Lemma 1 Let us consider a fixed sequence of operations, for which the available memory increases
(resp. decreases) during execution because of data unloading (resp. prefetching), with its minimum
at mmin. Let us denote byMSo the memory required to process operation o ∈ S , and do the distance
between o and the end (beginning) of sequence S,i.e. the cumulative duration of operations taking
place before (after) operation o. Then, the execution of S needs to be delayed by some idle time

ε = max

(
maxo∈S(MSo − βdo)−mmin

β
, 0

)
.

Let us concentrate on prefetching, while the case with offloading is done analogously. The idle time
is not zero when it is not possible to overlap entirely communications and computations because of
the memory. During prefetching the available memory (excluding the memory needed for operations
in S) is decreasing at speed β until it reaches mmin, following the rule m(d) = mmin + βd,

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

where d denotes the distance to the end of prefetching. Therefore, for each operation o, d must
satisfy mmin + βd ≥ MSo and by construction d ≥ do. Therefore, for each o, some idle time

d− do ≥
MS

o

β − do −
mmin

β must take place before o. Since this constraint must be satisfied for all o,
then

ε = max

(
maxo∈S(MSo − βdo)−mmin

β
, 0

)
.

B Proof of Theorem 1, Section 4.2. Detailed dynamic program to compute2

the optimal sequence3

Theorem 1 Under assumptions of Section 3.2, the problem of finding the minimal processing time for4

the chain from Figure 1, using operations from Table 1 together with offloadingO` and prefetching P`,5

under memory limit MGPU discretized with NGPU values and bandwidth β, can be solved optimally6

with a dynamic programming algorithm with a complexity of O(L2N3
GPU + L3N2

GPU).7

In this section, we detail the dynamic programming equations whose intuition has been given in8

Section 4.9

In order to proceed, one should know the minimal memory requirements for each operation. Given10

the chain between i and j, taking into account the data dependencies from Table 1 and the fact that11

the global input of the chain Ixi = (1− x)ai−1 + xāi−1 (it is equal to ai−1 when x = 0 and āi−112

when x = 1) is already stored in the memory (and counted separately in all equations) and the current13

gradient value should be stored at any time, then14

• Mi,j
F i

∅
= δj + ai + ofi ;15

• ∀k 6= i :Mi,j

Fk
∅

= δj + ak−1 + ak + ofk ;16

• Mi,j
F i

all

= δj + āi + ofi ;17

• ∀k 6= i :Mi,j

Fk
all

= δj + ak−1 + āk + ofk ;18

• Mi,j
Bi

= āi + δi + δi−1 + obi ;19

• ∀k 6= i :Mi,j
Bk

= ak−1 + āk + δk + δk−1 + obk.20

B.1 Forward phase21

In this section, we provide the analysis of the forward phase,i.e. for all operations that take place22

before the computation of the loss. We consider the subchain that starts from layer i and assume23

that its input Ixi is saved by F ick or F iall. To denote the total duration of the execution from Fi to Bi,24

we use OCx(i, Ai,∆Fi
,∆Bi

). We also distinguish between OCFall
x (resp. OCFck

x) that represents25

the duration of the chain execution when the first operation is constrained to be F iall (resp. F ick). By26

construction, the first operation cannot be F i∅ since we assume that the input of the chain must not be27

discarded.28

Case 1: F iall is the first operation29

If the first operation is F iall, then in the optimal schedule the next operation cannot be F i+1
∅ . Indeed,30

as F iall stores āi together with the input Ixi , then this āi should stay in the memory until the backward31

operation Bi. At the same time, as F i+1
∅ discards its input after its execution, then each time when we32

need to recompute ai we need to re-execute Fi. Therefore, if the next operation is F i+1
∅ , the overall33

duration does not change if the first instance of F iall is replaced by F ick, while F iall replaces the last34

Fi that computes ai in the sequence. Simultaneously, this transformed sequence keeps less data in35

memory, which contradicts the optimality of F iall being followed by F i+1
∅ .36

Since we assume memory persistency,i.e. that āi stays in the memory until the backward operation
Bi, the sequence after F iall and before Bi can be computed with a recursive call to the dynamic

2

offload input no offload
v = 1 v = 2

new Av Ai Ai + Ixi
new ∆v

F max{∆Fi
+ Ixi −DF , 0} max{∆Fi

−DF , 0}
new ∆v

B max{∆Bi
−DB , 0}+ Ixi max{∆Bi

−DB , 0}
Table 2: Values for the new state

programming. After this sequence, Bi can be directly executed, having all the necessary input already
stored in device memory. This shows that OCFall

x (i, Ai,∆Fi ,∆Bi) can be computed as

OCFall
x (i, Ai,∆Fi ,∆Bi) = uFi + uBi + min

v=1,2
OCx=1(i+ 1, Avi+1,∆

v
Fi+1

,∆v
Bi+1

) + εF + εB ,

where the values εF and εB represent the idle time required for communications in the forward and
backward respectively, and can be determined using Lemma 1. Taking into account that the maximal
memory occupation for F iall and Bi are given by Mx

Fi
and Mx

Bi
respectively, we obtain

εF = max

Mi,L
F i

all

−MGPU +Mx
Fi

β
, 0

 and εB = max

(
Mi,L

Bi
−MGPU +Mx

Bi

β
, 0

)
.

We also need to compute the new state variables Avi+1,∆
v
Fi+1

,∆v
Bi+1

, where the value of v indicates37

whether the input Ixi is offloaded or not. During the forward step, the communication link is able38

to offload a quantity of data given by DF = (uFi
+ εF)β; similarly, the data that can be prefetched39

during the backward step is given by DB = (uBi
+ εB)β. These values can be used to obtain the40

new state variables, as described in Table 2.41

The final sequence is valid if memory limit is not violated. So ifMi,L
F i

all

+ Ixi > MGPU − Ai or42

Mi,L
Bi

+ Ixi > MGPU −Ai then we set OCFall
x (i, Ai,∆Fi

,∆Bi
) =∞.43

Case 2: F ick is the first operation44

After an F ick operation, any forward operation or offload operation is possible. Let us assume that the45

next saved activation is aj for some j ≥ i, which implies that after F ick there is a sequence of F k∅ for46

i < k ≤ j. Due to memory persistency, it also implies that the sequence processing layers from j + 147

till L can be obtained recursively, looking at OCx=0(j + 1, Avj+1,∆
v
Fj+1

,∆v
Bj+1

) (once again, v48

denotes whether the input Ixi is offloaded or not). Afterwards, processing Bk for i < k ≤ j requires49

recomputing forward operations from ai−1 (or āi−1). Since no offloading operation can be performed50

after the computation of the loss, this corresponds to computing a rematerialization sequence between51

layers i and j that should have ∆Bi
prefetched by the end. C∆(i, j, Ai+Ixi ,∆Bi

) is used to compute52

the optimal duration to process layers from i to j, having Ai + Ixi as a cumulative storage of all53

activations at the GPU, and ∆Bi
that corresponds to the data that has to be prefetched. We show in54

Section B.3 how to compute C∆(i, j, A,∆). This yields the formula for OCFck
x (i, Ai,∆Fi ,∆Bi)55

OCFck
x (i, Ai,∆Fi

,∆Bi
) = min

i≤j≤L−1
(

j∑
k=i

uFk
+ minv=1,2 OCx=0(j + 1, Avj+1,∆

v
Fj+1

,∆v
Bj+1

)

+C∆(i, j, Ai + Ixi ,∆Bi
) + εF),

where εF is computed with the help of Lemma 1

εF = max

maxk=i,...,j(Mi,L

Fk
∅
− β

∑k−1
h=i uFh

)−MGPU +Mx
Fi

β
, 0

 .

Similarly to the Case 1, the values of the new state variables Av , ∆v
F and ∆v

B can be found using the56

formulas in Table 2. The only difference is the possible amount of offloaded data and prefetched data:57

in this case DF = (
∑j
k=i uFk

+ εF)β and DB = C∆(i, j, A,∆Bi
)β.58

3

The final sequence is valid if memory limit is not violated. Thus, if for some k ≥ i we have59

Mi,L

Fk
∅

+ Ixi > MGPU −Ai when Ixi is not offloaded (or when k = i) orMi,L

Fk
∅
> MGPU −Ai when60

Ixi is offloaded, then we set OCFck
x (i, Ai,∆Fi

,∆Bi
) =∞.61

Combining everything together62

Therefore, OCx(i, Ai,∆Fi
,∆Bi

) can be computed as63

OCx(i, Ai,∆Fi ,∆Bi) = min

{
OCFall

x (i, Ai,∆Fi ,∆Bi)

OCFck
x (i, Ai,∆Fi ,∆Bi)

(1)

B.2 Loss: how to concatenate forward and backward phases64

In the previous section, we have shown how to compute the optimal duration of the sequence, using
dynamic programming with OCx(i, Ai,∆Fi ,∆Bi). This dynamic program finds the solution through
recursive calls to smaller sub-chains, until reaching the subchain consisting of only loss computation.
We further represent the loss computation with FL+1 and BL+1 operations. The loss should be
computed with FL+1

all and BL+1, so that this case is similar to OCFall
x and

OCx(L+ 1, Ai,∆Fi
,∆Bi

) = uFL+1
+ uBL+1

+ εF + εB + εG,

where εF and εB are found with the same expressions as the idle times for Case 1 of Forward phase65

(see Section B.1).66

As no offloading is possible during backward propagation and no prefetching is possible during
forward propagation, the idle time between the phases comes from the completion of both communi-
cation tasks, i.e.

εG = (∆FL+2
+ ∆BL+2

)/β.

B.3 Backward phase67

The situation in the case of backward is a bit more complex. We must indeed perform all the68

operations Bj , . . . , Bi+1, with only Ixi and δj into memory. This is nevertheless enough since we69

can execute the whole forward chain Fi+1, . . . , Fj from ai and then the whole chain Bj , . . . , Bi+170

using the values computed during the processing of the forward chain.71

In general, due to memory constraints, it is not possible to perform Fi+1, . . . , FjBj , . . . , Bi+1 in72

sequence. Since we assume that offloading cannot take place in the backward phase, we rely on73

rematerialization in order to save memory if needed. Our goal, given ∆Fi and MFi , is to find a74

valid schedule, that satisfies memory constraints and whose duration is minimal. One additional75

difficulty comes from prefetched data. Indeed, several valid rematerialization sequences for computing76

Bj , . . . , Bi+1 will differ both by their duration and by the amount of data that can be prefetched77

during the sequence. Indeed, for a given ∆Bi
, the sequences that enable to prefetch a lot of data78

during the computation of Bj , . . . , Bi+1 are preferable since they will induce a smaller value of ∆Bj
79

and therefore less memory pressure to perform Bj , . . . BL.80

Let C∆(i, j, A,∆) denotes the optimal duration to execute the chain between layers i and j with A81

denoting the cumulative size of all activations already stored in GPU, including input Ixi , and given82

minimal available memory MGPU −A−∆. In the beginning of the execution Ixi and δj are stored in83

the device memory. Moreover, Ixi must stay in the memory until the end of the execution. Therefore,84

the first operation should be F iall or F ick. Depending on the first operation, the optimal duration can85

be read in CFall

∆ (i, j, A,∆) or CFck

∆ (i, j, A,∆) respectively.86

Case 1: F iall is the first operation87

Let us first notice that after F iall the activation āi must be kept in the memory until its associated
backward operation (due to memory persistency). We must solve the subproblem of finding the
optimal duration for the chain between layers i+ 1 and j, which can be scheduled optimally with
C∆(i + 1, j, A + āi,∆1), according to our assumption. Once Bi+1 is performed, then Bi can be
directly executed, as all necessary input are already in the device memory. Therefore,CFall

∆ (i, j, A,∆)
is given by

C
Fall

∆ (i, j, A,∆) = uFi
+ C∆(i+ 1, j, A+ āi,∆1) + uBi

+ εF
i
all + εBi .

4

The parameters for the recursive call of the dynamic programming are given by

∆1 = max{∆− (uBi
+ εBi)β, 0}.

We can also estimate the minimal available memory when F iall is executed, which is given by
MGPU −A−∆2 where

∆2 = max{∆1 − C∆(i+ 1, j, A+ āi,∆1)β, 0}.
The idle times caused by prefetching can in turn be computed with the help of Lemma 1 as

εBi = max

(
Mi,j

Bi
−MGPU +A+ ∆

β
, 0

)
and εF

i
all = max

Mi,j
F i

all

−MGPU +A+ ∆2

β
, 0

 .

Mi,i
F i

all

> MGPU −A orMi,i
Bi
> MGPU −A means that there is not enough memory to perform this88

sequence, and as previously the dynamic programming cost should be set to∞.89

Case 2: F ick is the first operation90

Let us suppose that F ick is used to save Ixi and consider the next value ai
′

to be kept in memory. To
compute this value, a sequence of F∅ operations from layer i+ 1 till layer i′ is performed. Due to
memory persistency, after checkpointing ai

′
we can find the optimal sequence from i′ + 1 to j by

reading C∆(i′ + 1, j, A+ ai
′
,∆2). Once Bi′+1 is performed, the chain from i to i′ can be scheduled

using C∆(i, i′, A,∆1). Thus, CFck

∆ (i, j, A,∆) is given by

C
Fck

∆ (i, j, A,∆) = min
i≤i′<j

i′∑
k=i

uFk
+ C∆(i′ + 1, j, A+ ai

′
,∆2) + C∆(i, i′, A,∆1) + εF

The parameters for the recursive call of the dynamic programming can be found using
∆1 = ∆ and ∆2 = max{∆1 − C∆(i, i′, A,∆1)β, 0}.

Similarly to the previous case, we can estimate the minimal available memory when forwards from i
to i′ are performed for the first time. This minimal memory is given by MGPU −A−∆3, where

∆3 = max{∆2 − C∆(i′ + 1, j, A+ ai
′
,∆2)β, 0}.

The idle time caused by prefetching can be computed with the help of Lemma 1 as

εF = max

maxk=i,...,i′(Mi,j

Fk
∅
− β(

∑i′

h=k+1 uFh
))−MGPU +A+ ∆3

β
, 0

 .

IfMi,j

Fk
∅
> MGPU −A for some k, i ≤ k < j, then this means that there is not enough memory to91

perform this sequence, and as previously the dynamic programming cost should be set to∞.92

Initialization: solution for a single layer Each recursive call to the dynamic programming is solving
the problem for smaller sub-chains. The recursion stops when reaching the sub-chain consisting of
only one layer. The schedule for one layer i is straightforward: perform F iall and Bi, i.e.

C∆(i, i, A,∆) = uFi
+ uBi

+ ε

where, according to Lemma 1

ε = max

Mi,i
F i

all

− βuBi −MGPU +A+ ∆

β
,
Mi,i

Bi
−MGPU +A+ ∆

β
, 0

 .

Again, this solution will be infeasible if there is not enough memory to perform any operation, i.e. if93

Mi,i
F i

all

> MGPU −A orMi,i
Bi
> MGPU −A. In this case, the dynamic programming cost should be94

set∞.95

Combining everything together:96

Therefore, C∆(i, j, A,∆) can be computed as97

C∆(i, j, A,∆) = min

{
C
Fall

∆ (i, j, A,∆)

C
Fck

∆ (i, j, A,∆)
(2)

5

B.4 Complexity98

Finally, finding the optimal duration schedule for a chain of length L corresponds to computing99

OCx=0(1, 0, 0, 0) using the dynamic programming presented above. The analysis of the complexity100

of the above dynamic programming can be decomposed in two parts. Let NGPU denote the number101

of discretized values for the memory MGPU. During the backward phase, the size of the state space102

is O(L2N2
GPU), and for case 2, computing a new value requires O(L) operations, which leads to103

O(L3N2
GPU) operations. In the forward phase, the size of the state space is O(LN3

GPU), and again104

computing a new value requires O(L) operations. This results in O(L2N3
GPU) operations for the105

forward phase. Therefore, the overall complexity is given by O(L2N3
GPU +L3N2

GPU). In practice, we106

observe that for all the experiments presented in Section 5, discretizing the memory with NGPU = 50107

values is enough since considering a finer discretization does not lead to any practical improvement.108

6

	Proof of Lemma 1, Section 4.2
	Proof of Theorem 1, Section 4.2. Detailed dynamic program to compute the optimal sequence
	Forward phase
	Loss: how to concatenate forward and backward phases
	Backward phase
	Complexity

