
A Evaluation Metrics

A.1 Expected Calibration Error (ECE)

Expected calibration error (ECE) [22] is a common calibration metric, which measures the difference
in expectation between confidence and accuracy:

ECE = E[|P(ŷi = yi|p̂i = p)− p|], (11)

where p̂i is the confidence for node i, ŷi is the prediction, yi is the label and p is the true probability
that ŷi is correctly predicted. However, we cannot exactly know the true probability p, thus Eq. 11
cannot be computed directly. The approximation to ECE is generally employed as the metric:

ECE =
M

∑
m=1

|Bm|
N
|acc(Bm)− con f (Bm)|, (12)

where M is the number of equally-spaced bins (similar to the reliability diagrams as mentioned in
Section 2 that predictions are partitioned into), |Bm| is the number of predictions falling into the m-th
bin according to their confidence and acc(Bm) =

1
|Bm| ∑i∈Bm 1(yi = ŷi), con f (Bm) =

1
|Bm| ∑i∈Bm) p̂i

represent the average accuracy and confidence in each bin respectively. The difference between acc
and conf can be intuitively seemed as the deviation of the outputs to the diagonal in Fig. 1.

A.2 Brier Score (BS)

Brier Score (BS) [4] is another commonly used calibration metric, which measures the accuracy
of probabilistic predictions. The higher the accuracy of predictions is, the lower BS is. For any
given prediction ŷi, BS is the lowest when the prediction probability zi is exactly equal to the true
probability that ŷi is correct. Given the one-hot label yi for node i, BS can be represented as follows:

BS =
1
N

N

∑
i=1

K

∑
k=1

(zi,k− yi,k)
2. (13)

B More Experimental Details

B.1 Datasets and Environment

We choose the commonly used Cora [29], Citeseer [29], Pubmed [29] and CoraFull [3] for evaluation,
where nodes represent papers, edges are the citation relationship between papers, node features
are comprised of bag-of-words vector of the papers and labels represent the fields of papers. We
choose 500 nodes for validation, 1000 nodes for test and select three label rates for the training set
(i.e., 20, 40, 60 labeled nodes per class). The details of these datasets are summarized in Table 5.
Our data are public and do not contain personally identifiable information and offensive content.
The address of our data is https://docs.dgl.ai/en/latest/api/python/dgl.data.html#
node-prediction-datasets and the license is Apache License 2.0. The environment where our
code runs is shown as follows:

• Operating system: Linux version 3.10.0-693.el7.x86_64
• CPU information: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
• GPU information: GeForce RTX 3090

B.2 Additional Experimental Details for Calibration

For temperature scaling, we follow the official implementation in https://github.com/gpleiss/
temperature_scaling with MIT license. The learning rate is 0.01 and the maximum number
of iteration is 50. For matrix scaling, we add an additional off-diagonal regularization term [18]
in case of overfitting. The official implementation is in https://github.com/dirichletcal/
experiments_neurips and we implement it in Pytorch. The learning rate is 0.01 and the maximum
number of iteration is 400.

13

https://docs.dgl.ai/en/latest/api/python/dgl.data.html#node-prediction-datasets
https://docs.dgl.ai/en/latest/api/python/dgl.data.html#node-prediction-datasets
https://github.com/gpleiss/temperature_scaling
https://github.com/gpleiss/temperature_scaling
https://github.com/dirichletcal/experiments_neurips
https://github.com/dirichletcal/experiments_neurips

Table 5: The statistics of the datasets.

Dataset #Nodes #Edges #Classes #Features #Training #Validation #Test
Cora 2708 5429 7 1433 140/280/420 500 1000

Citeseer 3327 4732 6 3703 120/240/360 500 1000
Pubmed 19717 44338 3 500 60/120/180 500 1000
CoraFull 19793 65311 70 8710 1400/2800/4200 500 1000

B.3 Additional Experimental Details for Self-Training

For the four baselines self-training, co-training, union, intersection proposed in [20], the official
implementation is in https://github.com/Davidham3/deeper_insights_into_GCNs and we
implement them in Pytorch. For our new proposed TS-st, the learning rate is 0.001, maximum number
of iteration is 50 for Cora, Citeseer, Pubmed and 25 for CoraFull. More detailed experimental settings
can be seen in Table 9.

B.4 Other Source Code

The acquisition of all the code below complies with the provider’s license and do not contain
personally identifiable information and offensive content. The address of code of baselines are listed
as follows:

GCN (MIT license): https://github.com/tkipf/pygcn

GAT (MIT license): https://github.com/Diego999/pyGAT

Our code can be found in the supplemental material and all the related experimental details (e.g.,
environment, experimental settings for our methods and all the baselines) are included in README.

C Additional Results

C.1 Additional Results for Calibration

NLL and BS. Since NLL and BS can be affected by the accuracy of predictions, we should keep
the accuracy unchanged when evaluating the performance of calibration methods. However, the
accuracy-preserving property cannot be satisfied by MS. Therefore, we omit it from our baselines
for fairness. Table 6 and Table 7 report calibration results evaluated by NLL and BS. We find that
CaGCN is generally better than other baselines at * 0.05 level and ** 0.01 level.

Reliability diagrams. In Section 2 we visualize the under-confidence problem of existing GNNs
using reliability diagram. Here we still employ the same method to make a comparison before and
after confidence calibration. Fig. 8 and Fig. 9 show the reliability diagrams on different models and
networks of various label rates before (odd rows) and after (even rows) calibration. We can see that
the confidence of predictions on all the datasets and models is well-calibrated. Moreover, for further
verifying our conclusion that GNNs are under-confident, we also demonstrate the reliability diagrams
of another four representative GNNs (GraphSAGE [13], APPNP [17], SGC [35], GIN [38]) on all the
datasets with 20, 40, 60 label rates. The results are summarized in Fig. 12, 13, 14. Similarly, we can
observe that in almost all the datasets, the average accuracy of most bins is higher than the average
confidence, which means these models are also under-confident, verifying our conclusion again.

Confidence distribution. In Section 2 we visualize the confidence distribution as a supplement for
the under-confidence problem of existing GNNs. Same as before, here we visualize the confidence
distribution before (odd rows) and after (even rows) confidence on different models and networks of
various label rates to make a comparison. As shown in Fig. 10 and Fig. 11, we can see that a large
quantity of correct predictions have been transformed into a higher confidence range while incorrect
predictions change little.

14

https://github.com/Davidham3/deeper_insights_into_GCNs
https://github.com/tkipf/pygcn
https://github.com/Diego999/pyGAT

Table 6: NLL and the standard deviation (×10−3) on different models and citation networks of
various label rate (L/C).

Dataset L/C GCN GAT

Uncal. TS CaGCN Uncal. TS CaGCN

Cora
20 0.66804.3 0.59983.6 0.59973.6 0.67737.1 0.60146.8 0.5831∗∗4.9
40 0.58854.4 0.53564.5 0.53404.3 0.59963.8 0.52296.2 0.5155∗4.2
60 0.53131.8 0.48823.0 0.4832∗∗1.8 0.53572.8 0.46673.2 0.4579∗∗2.0

Citeseer
20 0.91054.7 0.87004.6 0.8683∗3.0 0.96382.3 0.91575.7 0.8872∗∗4.0
40 0.86344.5 0.83853.7 0.8324∗∗4.2 0.90943.8 0.87355.9 0.8472∗∗5.4
60 0.82032.3 0.80312.6 0.7978∗∗4.0 0.86013.3 0.82755.2 0.8137∗6.4

Pubmed
20 0.55113.2 0.54792.6 0.54542.7 0.57482.2 0.56092.4 0.5416∗∗2.0
40 0.49702.5 0.49392.6 0.49342.1 0.52343.1 0.50884.3 0.4871∗∗3.1
60 0.45272.5 0.44841.9 0.4396∗∗2.2 0.48933.3 0.46814.1 0.4439∗∗2.6

CoraFull
20 1.66514.0 1.52926.0 1.4974∗∗5.5 1.67435.8 1.52116.0 1.4985∗∗9.0
40 1.50195.4 1.33763.9 1.3123∗∗7.2 1.52533.5 1.33793.9 1.3045∗∗6.4
60 1.45702.4 1.27574.1 1.28737.4 1.48523.1 1.28436.3 1.29649.1

Table 7: BS and the standard deviation (×10−3) on different models and citation networks of various
label rate (L/C).

Dataset L/C GCN GAT

Uncal. TS CaGCN Uncal. TS CaGCN

Cora
20 0.30482.1 0.27802.2 0.2746∗∗1.6 0.30782.9 0.28022.5 0.2712∗∗1.7
40 0.26992.0 0.25071.8 0.2486∗1.2 0.27472.0 0.24932.0 0.2446∗1.6
60 0.24181.3 0.22641.5 0.22410.8 0.24271.4 0.22060.8 0.2179∗∗1.1

Citeseer
20 0.43622.7 0.41913.0 0.4120∗∗2.6 0.46021.2 0.43892.8 0.4210∗∗2.3
40 0.40972.4 0.42932.0 0.4057∗∗2.0 0.43681.6 0.42202.5 0.4111∗∗2.2
60 0.40001.4 0.39361.4 0.3915∗1.4 0.41411.4 0.40192.3 0.3961∗3.1

Pubmed
20 0.31302.1 0.31131.4 0.3089∗1.2 0.32291.4 0.31631.8 0.3070∗∗1.1
40 0.28252.0 0.28121.9 0.2797∗1.8 0.29151.9 0.28462.2 0.2759∗∗1.7
60 0.25361.5 0.25141.8 0.2494∗1.3 0.26711.8 0.25771.6 0.2494∗∗1.6

CoraFull
20 0.61031.4 0.57232.0 0.5601∗∗1.9 0.61281.3 0.56901.2 0.5569∗∗3.0
40 0.56452.6 0.51351.8 0.4953∗∗2.1 0.57200.8 0.51551.2 0.4981∗∗1.5
60 0.55270.8 0.49651.3 0.4903∗∗1.7 0.56181.1 0.49921.8 0.4907∗∗3.0

C.2 Additional Results for Self-Training

Classification evaluation of self-training on GAT. Table 8 reports the node classification accuracy
on GAT and its self-training variants. Consistent with the result shown in Table 3, our method still
achieves the best results.

Parameter study. We investigate the effect of the threshold τ in CaGCN-st, i.e., the number of
unlabeled nodes added to the training set. Generally speaking, with the increase of τ , fewer but more
confident nodes will be chosen. Fig. 5 and Fig. 6 show the changing trends of classification accuracy
with respect to τ , where different colors represent different label rates. Basically, both too high and
too low threshold will harm the performance, since a higher value will leave out correct predictions
while a lower value will introduce many incorrect predictions to the label set. CaGCN-st obtains the
best performance when τ is in the range [0.8, 0.9].

15

Table 8: Node classification accuracy and the standard deviation on GAT and its self-training variants.

Dataset L/C Method

Orig. St. Ct. Union Inter. TS-st CaGCN-st

Cora
20 82.100.25 83.030.25 82.160.36 83.180.41 81.870.33 83.620.33 84.08∗0.37
40 83.400.36 84.900.20 83.200.26 83.280.37 83.760.28 85.340.26 85.630.21
60 84.960.21 85.600.12 84.290.27 84.300.43 85.100.27 86.490.18 86.260.25

Citeseer
20 70.860.41 73.020.26 71.580.36 75.380.26 71.440.25 74.280.29 74.340.21
40 71.600.21 74.440.20 72.260.30 76.730.26 73.000.28 75.120.22 75.620.19
60 73.080.19 75.190.25 72.630.36 77.110.30 75.360.20 75.520.29 76.080.39

Pubmed
20 79.350.31 80.470.28 79.200.28 80.250.28 79.310.29 80.040.27 81.17∗∗0.30
40 81.170.30 82.590.31 79.110.49 81.990.31 81.080.28 82.290.34 83.47∗∗0.23
60 83.470.23 83.870.35 83.010.19 82.970.19 83.120.24 82.350.15 83.95∗∗0.47

CoraFull
20 60.940.36 61.190.37 60.150.53 61.150.29 60.810.28 61.300.37 65.46∗∗0.54
40 65.460.41 65.640.56 65.310.22 65.630.41 65.810.59 65.840.43 66.86∗0.56
60 66.520.30 66.570.24 66.460.26 66.430.49 66.600.26 66.290.37 67.45∗0.39

Table 9: Summary of parameters used in CaGCN-st and TS-st. αcal : the parameter for weight decay
in CaGCN, epoch_st: the number of epochs for self-training, s: the number of stage, τ: threshold.

Dataset L/C GCN GAT
CaGCN-st TS-st CaGCN-st TS-st

αcal s τ epoch_st s τ epoch_st αcal s τ epoch_st s τ epoch_st

Cora 20 5e-3 4 0.8 200 3 0.8 50 5e-3 6 0.8 200 3 0.8 50
40 5e-3 2 0.8 200 6 0.8 50 5e-3 4 0.9 200 6 0.8 50
60 5e-3 4 0.8 200 4 0.8 50 5e-3 2 0.8 200 4 0.8 50

Citeseer 20 5e-3 5 0.9 150 5 0.8 50 5e-3 3 0.85 150 5 0.8 50
40 5e-3 2 0.85 150 3 0.8 50 5e-3 2 0.8 150 3 0.8 50
60 5e-3 2 0.8 150 2 0.8 50 5e-3 6 0.8 150 2 0.8 50

Pubmed 20 5e-3 6 0.8 100 2 0.85 50 5e-3 2 0.8 100 2 0.85 50
40 5e-3 4 0.8 100 2 0.85 50 5e-3 2 0.8 100 2 0.85 50
60 5e-3 3 0.8 100 3 0.85 50 5e-3 3 0.85 100 3 0.85 50

CoraFull 20 0.03 4 0.85 500 3 0.95 50 0.03 5 0.95 500 3 0.95 50
40 0.03 4 0.99 500 4 0.99 25 0.03 2 0.95 500 4 0.99 25
60 0.03 5 0.9 500 2 0.95 25 0.03 2 0.95 500 2 0.95 25

Figure 5: The accuracy changing trends on GCN w.r.t the threshold τ

Figure 6: The accuracy changing trends on GAT w.r.t the threshold τ

16

(a) Cora (b) Citeseer (c) CoraFull

Figure 7: The changing trends of test accuracy and NLL of GCN w.r.t epoch on three datasets.

D Why GCNs are poorly calibrated

In this section, we focus on the reason why GNNs are poorly calibrated. It is inspired by the
observation in [12] that modern neural networks can overfit to NLL without overfitting to the
accuracy. Since NLL can be used to measure model calibration as mentioned in Section 3.3, [12]
gives an explanation of miscalibration: modern neural networks achieve better classification accuracy
at the expense of well-calibrated probabilities. Similarly, we conduct an experiment to explore the
relationship between NLL and the accuracy of GNNs.

We take the representative GCN as the example and apply it to Cora, Citeseer, CoraFull with label
rate L/C = 20. We employ the validation set for early stopping in training with a window size of
100 and carefully tune the parameter α for weight decay to obtain the best accuracy and NLL on the
test set respectively. Other parameters follow [16]. The changing trends of accuracy and NLL with
respect to epoch are shown in Fig. 7, where NLL is scaled by a constant to fit the figure. Intuitively,
GCN should achieve the best accuracy when NLL is the lowest. However, we find that GCN does not
achieve the best performance when NLL is the lowest. Taking the Cora dataset in Fig. 7(a) as an
example, we find that GCN achieves the best accuracy when α = 5e−4 but NLL still under-fits at this
time, i.e., NLL has not achieved the lowest value. If we tune α to be 1e−5, NLL generally achieves
the best result, i.e., GCN is better calibrated at this time, while accuracy drops from 81.5% to 79.5%.
This gives an explanation of miscalibration for GNNs: GNNs learn better classification accuracy
at the expense of well-modeled probabilities, i.e., GNNs under-fit to NLL without under-fitting to
accuracy.

17

Figure 8: Reliability diagrams for GCN before (odd rows) and after (even rows) calibration.

18

Figure 9: Reliability diagrams for GAT before (odd rows) and after (even rows) calibration.

19

Figure 10: Confidence distribution before (odd rows) and after (even rows) calibration on GCN.

20

Figure 11: Confidence distribution before (odd rows) and after (even rows) calibration on GAT.

21

Figure 12: Reliability diagrams for GraphSAGE, APPNP, SGC, GIN with label rate to be 20.

22

Figure 13: Reliability diagrams for GraphSAGE, APPNP, SGC, GIN with label rate to be 40.

23

Figure 14: Reliability diagrams for GraphSAGE, APPNP, SGC, GIN with label rate to be 60.

24

	Introduction
	Notation and Preliminary Study
	Confidence Calibration on GCNs
	CaGCN: GCNs as Calibration Function
	The Accuracy-Preserving Property
	Optimization Objective

	Self-training with Confidence Calibration
	Experiments
	Confidence Calibration Evaluation
	Classification Evaluation of Self-Training

	Related Work
	Conclusion
	Evaluation Metrics
	Expected Calibration Error (ECE)
	Brier Score (BS)

	More Experimental Details
	Datasets and Environment
	Additional Experimental Details for Calibration
	Additional Experimental Details for Self-Training
	Other Source Code

	Additional Results
	Additional Results for Calibration
	Additional Results for Self-Training

	Why GCNs are poorly calibrated

