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A Task and training details

A.1 Somatomotor reaction time visual discrimination task and recordings from PMd:

The task, training and electrophysiological methods used to collect the data used here have been
described previously [30] and are reviewed briefly below. All surgical and animal care procedures
were performed in accordance with National Institutes of Health guidelines and were approved by
the Stanford University Institutional Animal Care and Use Committee. Two trained monkeys (Ti and
Ol) performed a visual reaction time discrimination task. The monkeys were trained to discriminate
the dominant color in a central static checkerboard composed of red and green squares and report
their decision with an arm movement. If the monkey correctly reached to and touched the target that
matched the dominant color in the checkerboard, they were rewarded with a drop of juice. This task
is a reaction time task, so that monkeys initiated their action as soon as they felt they had sufficient
evidence to make a decision. On a trial-by-trial basis, we varied the signed color coherence of
the checkerboard, defined as (R � G)/(R + G), where R is the number of red squares and G the
number of green squares. The color coherence value for each trial was chosen uniformly at random
from 14 different values arranged symmetrically from 90% red to 90% green. Reach targets were
located to the left and right of the checkerboard. The target configuration (left red, right green; or
left green, right red) was randomly selected on each trial. Both monkeys demonstrated qualitatively
similar psychometric and reaction-time behavior. 996 units were recorded from Ti (n=546) and Ol
(n=450) while they performed the task [30]. Monkey Ol and Ti’s PMd units both had low choice
color probability. Reported analyses from PMd data use units pooled across Monkey Ol and Ti.

A.2 RNN description and training

We trained a continuous-time RNN to perform the checkerboard task. The RNN is composed of
N artificial neurons (or units) that receive input from Nin time-varying inputs u(t) and produce
Nout time-varying outputs z(t). The RNN defines a network state, denoted by x(t) 2 RN ; the ith
element of x(t) is a scalar describing the “currents” of the ith artificial neuron. The network state is
transformed into the artificial neuron firing rates (or network rates) through the transformation:

r(t) = f(x(t)), (3)

where f(·) is an activation function applied elementwise to x(t). The activation function is typically
nonlinear, endowing the RNN with nonlinear dynamics and expressive modeling capacity [51]. In
this work, we use f(x) = max(x, 0), also known as the rectified linear unit, i.e., f(x) = relu(x). In
the absence of noise, the continuous time RNN is described by the equation

⌧ ẋ(t) = �x(t) +Wrecr(t) +Winu(t) + brec + ✏t, (4)

where ⌧ is a time-constant of the network, Wrec 2 RN⇥N defines how the artificial neurons are
recurrently connected, brec 2 RN defines a constant bias, Win 2 RN⇥Nin maps the RNN’s inputs
onto each artificial neuron, and ✏t is the recurrent noise. The output of the network is given by a
linear readout of the network rates, i.e.,

z(t) = Woutr(t), (5)

where Wout 2 RNout⇥N maps the network rates onto the network outputs.

We trained RNNs to perform the checkerboard task as follows. For all networks, unless we explicitly
varied the amount of units, we used Nin = 4, N = 300, and Nout = 2.

The four inputs were defined as:

1. Whether the left target is red (-1) or green (+1).
2. Whether the right target is red (-1) or green (+1).
3. Signed coherence of red (ranging from -1 to 1), (R�G)/(R+G).
4. Signed coherence of green (ranging from -1 to 1), (G� R)/(R +G). Note that, prior to

the addition of noise, the sum of the signed coherence of red and green is zero.

The inputs, u(t) 2 R4, were defined at each time step, t, in distinct epochs. In the ‘Center Hold’
epoch, which lasted for a time drawn from distribution N (200 ms, 502 ms2), all inputs were set to
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zero. Subsequently, during the ‘Targets’ epoch, which lasted for a time drawn from distribution
U [600 ms, 1000 ms], the colors of the left and right target were input to the network. These inputs
were noiseless, as illustrated in Fig. 1, to reflect that target information is typically unambiguous
in our experiment. Following the ‘Targets’ epoch, the signed red and green coherences were input
into the network during the ‘Decision’ epoch. This epoch lasted for 1500 ms. We added zero mean
independent Gaussian noise to these inputs, with standard deviation equal to 5% of the range of the
input, i.e., the noise was drawn from N (0, 0.12). At every time point, we drew independent noise
samples and added the noise to the signed red and green coherence inputs. We added recurrent noise
✏t, adding noise to each recurrent unit at every time point, from a distribution N (0, 0.052). Following
the ‘Decision’ epoch, there was a ‘Stimulus Off’ epoch, where the inputs were all turned to 0.

The two outputs, z(t) 2 R2 were defined as:

1. Decision variable for a left reach.
2. Decision variable for a right reach.

We defined a desired output, zdes(t), which was 0 in the ‘Center Hold’ and ‘Targets’ epochs. During
the ‘Decision’ epoch, zdes(t) = 1. In the ‘Stimulus Off’ epoch, zdes(t) = 0. In RNN training, we
penalized output reconstruction using a mean-squared error loss,

Lmse =
1

|T |
X

t2T
|z(t)� zdes(t)|2 . (6)

The set T included all times from all epochs except for the first 200 ms of the ‘Decision’ epoch
from the loss. We excluded this time to avoid penalizing the output for not immediately changing its
value (i.e., stepping from 0 to 1) in the ‘Decision’ epoch. Decision variables are believed to reflect a
gradual process consistent with non-instantaneous integration of evidence, e.g., as in drift-diffusion
style models, rather than one that steps immediately to a given output.

To train the RNN, we minimized the loss function:

L = Lmse +
�in

NNin
kWink2F +

�rec

N2
kWreck2F +

�out

NNout
kWoutk2F +

�r

T

X

t

kr(t)k2 + �⌦L⌦, (7)

where

• kAkF denotes the Frobenius norm of matrix A

• �in = �rec = �out = 1,�r = 0 to penalize larger weights.
• �⌦ = 2

• L⌦ is a regularization term that ameliorates vanishing gradients proposed and is described
in prior literature [37, 52].

During the training process, we also incorporated gradient clipping to prevent exploding gradients
[52]. Training was performed using stochastic gradient descent, with gradients calculated using
backpropagation through time. For gradient descent, we used the Adam optimizer, which is a first
order optimizer incorporating adaptive gradients and momentum [53].

Every 200 or 500 training epochs, we generated 2800 cross-validation trials, 100 for each of the 28
possible conditions (14 coherences ⇥ 2 target configurations). For each trial, there was a correct
response (left or right) based on the target configuration and checkerboard coherence. When training,
we defined a “correct decision” to be when the RNNs DV for the correct response was greater than
the other DV and the larger DV was greater than a pre-set threshold of 0.6. We evaluated the network
500ms before the checkerboard was turned off (the end of the trial). We required this criteria to be
satisfied for at least 65% of both leftward and rightward trials. We note that this only affected how
we terminated training. It had no effect on the backpropagated gradients, which depended on the
mean-squared-error loss function. Note that a trial that outputted the correct target but did not reach
the 0.6 threshold would not be counted towards the 65% criteria.

When testing, we defined the RNNs decision to be either: (1) whichever DV output (for left or right)
first crossed a pre-set threshold of 0.6, or (2) if no DV output crossed the pre-set threshold of 0.6
by the end of the ‘Decision epoch,’ then the decision was for whichever DV had a higher value at
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Hyperparameter Value
Number of units 300
Number of areas 3
Learning rate 5e-5
Time Constant 50ms
Discretization bin width 10ms
Rate regularization 0
Weight regularization 1
Activation function Relu
Feedforward connection 10%
Feedback connections 5%
Dale law Yes

Table 1: Hyperparameters of exemplar RNN.

the end of this epoch — an approach that is well established in models of decision-making [54, 55].
If the RNN’s decision on a single trial was the same as the correct response, we labeled this trial
‘correct.’ Otherwise, it was incorrect. The proportion of decisions determined under criterion (2) was
negligible (0.5% across 100 trials for each of 28 conditions). An interpretation for criterion (2) is that
if the RNN’s DV has not achieved the threshold certainty level by the end of a trial, we assign the
RNN’s decision to be the direction for which its DV had the largest value. Finally, in training only,
we introduced ‘catch’ trials 10% of the time. On 50% of catch trials, no inputs were shown to the
RNN and zdes(t) = 0 for all t. On the remaining 50% of catch trials, the targets were shown to the
RNN, but no coherence information was shown; likewise, zdes(t) = 0 for all t on these catch trials.

We trained the three-area RNNs by constraining the recurrent weight matrix Wrec to have connections
between the first and second areas and the second and third areas. In a multi-area network with N

neurons and m areas, each area had N/m neurons. In our 3-area networks, each area had 100 units.
Of these 100 units, 80 were excitatory and 20 were inhibitory. Excitatory units were constrained to
have only positive outgoing weights, while inhibitory units were constrained to have only negative
outgoing weights. We used the pycog repository [37] to implement these architecture constraints.
The parameters for the exemplar RNN used in the paper are shown in Table 1. In our hyperparameter
sweeps, we varied the hyperparameters of the exemplar RNN. For each parameter configuration, we
trained 8 different networks with different random number generator seeds.

B Additional description of analyses

B.1 Decoding analysis for PMd data

For PMd data, we calculated decoding accuracy using 400 ms bins. We report numbers in a window
[-300ms, +100 ms] aligned to movement onset. We used the MATLAB classify command with 75%
training and 25 % test sets. Decoding analyses were performed using 5-31 simultaneously recorded
units from Plexon U-probes and the averages reported are across 51 sessions. To assess whether
decoding accuracies were significant on a session by session basis, we shuffled the labels 200 times
and estimated the 1st and 99th percentiles for this surrogate distribution. The decode accuracy for
direction, color, and context variables for a session was judged to be significant if it lay outside this
shuffled accuracy. Every session had significant direction decode, while no session had significant
color and context decode accuracy.

B.2 Decoding and Mutual information for RNNs

We used a decoder and mutual information approximation to quantify the amount of information
(color, context, direction) present in the network. We trained a neural network to predict a relevant
choice (for example, color) on a test set from the activity of a population of units. We used 700 trials
for training, and 2100 independent trials for testing. To generate the trials for training and testing, we
increased the recurrent noise to be drawn from the distribution (N (0, 0.12)) to prevent overfitting.
For each trial, we averaged data in a window [-300ms, +100ms] around reaction time.
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We trained a neural network with 3 layers, 64 units per layer, leakyRelu activation (↵=0.2), and
dropout (p=0.5), using SGD, to predict the choice given the activity of the population. We removed
the leakyRelu activation for the linear network, and increased dropout (p=0.8). For both the nonlinear
and linear network, we trained the neural network to minimize the cross-entropy loss. We used the
same neural network from the decode to compute an approximation to mutual information, described
in Supplementary Note 2.

B.3 RNN behavior

To evaluate the RNN’s psychometric curve and reaction-time behavior, we generated 200 trials
for each of the 28 conditions, producing 400 trials for each signed coherence. For these trials, we
calculated the proportion of red decisions by the RNN. This corresponds to all trials where the DV
output for the red target first crossed the preset threshold of 0.6; or, if no DV output crossed the
threshold of 0.6, if the DV corresponding to the red target exceeded that corresponding to the green
target. The reaction time was defined to be the time between checkerboard onset to the first time a
DV output exceeded the preset threshold of 0.6. If the DV output never exceeded a threshold of 0.6,
in the reported results, we did not calculate a RT for this trial.

B.4 dPCA

Demixed principal components analysis (dPCA) is a dimensionality reduction technique that provides
a projection of the data onto task related dimensions while preserving overall variance [32]. dPCA
achieves these aims by minimizing a loss function:

Ldpca =
X

c

kXc � PcDcXk2. (8)

Here, Xc refers to data averaged over a “dPCA condition” (such as time, coherence, context, color, or
direction), having the same shape as X 2 RN⇥cT , but with the entries replaced with the condition-
averaged response. The aim is to recover (per dPCA condition c) a Pc and Dc matrix. Pc is constrained
to have orthonormal columns, while Dc is unconstrained. The number of columns of Pc and rows
of Dc reflects the number of components one seeks to find per condition. We project the data onto
the principal components DcX to observe the demixed components (Fig. 4b). The column of Pc

reflects how much the demixed data contributes to each neuron. We use the principal axes from Pc

to compute the axis overlap, as in Kobak et al [32]. We used axes of dimension 1 for RNNs, which
were sufficient to capture most color, context, or direction variance. For the neural data, we used five
components for direction, color and context since the PMd data was higher dimensional than the
RNNs.

Our results were consistent if we used dPCA or TDR (Fig. 14). The top principal axis from each
Pc are analogous to the axes found from TDR. Both methods seek to reconstruct neural activity
from demixed components. To apply TDR, one explicitly parametrizes task variables (See Targeted
Dimensionality Reduction (Appendix B.5)), while DcX serves the purpose of finding demixed
components in dPCA. Overall, the choice of using dPCA or TDR to find the axes did not affect our
conclusions.

For multi-area analyses, we separated the units for each area and found the task-relevant axes for
this subset of units. For the inter-area analyses, we used RNNs with only excitatory connections,
and therefore found the color and direction axis using only the excitatory units (Fig. 15). In all
other analyses, all units were used to identify the axes. For RNN activity, we performed dPCA
using activity over the entire trial. For PMd activity, we used a window of (0ms, 800ms) relative to
checkerboard onset. We restricted time windows for the PMd activity because we wanted to minimize
movement related variance.

B.5 Targeted Dimensionality Reduction

Targeted dimensionality reduction (TDR) is a dimensionality reduction technique that finds low
dimensional projections that have meaningful task interpretations. We applied TDR as described by
the study by Mante et al. [49]. We first z-scored the firing rates of each of the 300 units across time
and trials, so that the firing rates had zero mean and unit standard deviation. We then expressed this
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z-scored firing rate as a function of task parameters using linear regression,

ri,t(k) = �
1
i,tcolor(k) + �

2
i,tdirection(k) + �

3
i,tcontext(k). (9)

Here, ri,t(k) refers to the firing rate of unit i at time t on trial k. The total number of trials is Ntrials.
This regression identifies coefficients �m

i,t that multiply the mth task parameter to explain ri,t(k). We
defined the task parameters as follows:

• color(k) was the signed coherence of the checkerboard on trial k, given by (R�G)/(R+G).

• direction(k) was �1 for a left decision and +1 for a right decision.

• context(k) was the target orientation, taking on �1 if the green (red) target was on the left
(right) and +1 if the green (red) target was on the right (left).

We did not fit a bias term since the rates were z-scored and therefore zero mean. For each
unit, i, we formed a matrix Fi having dimensions Ntrials ⇥ 3, where each row consisted of
[color(k), direction(k), context(k)]. We define ri,t to be the rate of unit i at time t across all
trials. We then solved for the coefficients, denoted by �i,t = [�1

i,t, �
2
i,t, �

3
i,t]

T , using least squares,

�i,t = (FT
i Fi)

�1FT
i ri,t. (10)

Each �i,t is therefore a 3⇥ 1 vector, and concatenating �i,t across t results in �i, a 3⇥ T matrix,
of which there are N . We then formed a tensor where each �i is stacked, leading to a tensor with
dimensions 3 ⇥ T ⇥N . For each of the 3 task variables, we found the time T where the norm of
the regression coefficients, across all units, was largest. For the mth task variable, we denote the
vector �m

max 2 RN to be a vector of coefficients that define a 1-dimensional projection of the neural
population activity related to the mth task variable. These vectors are what we refer to as the task
related axes. To orthogonalize these vectors, we performed QR decomposition on the stacked �max
matrix [�1

max,�
2
max,�

3
max], which is an N ⇥ 3 matrix. This decomposition finds orthogonal axes so

that the axes would capture independent variance.

B.6 Choice probability

To calculate the choice probability for a single unit, we first computed the average firing rate in a
window from [�300 ms, +100 ms] around the reaction time for each trial. We used the average
firing rates calculated across many trials to create a firing rate distribution based on either the color
decision (trials corresponding to a red or green choice) or the direction decision (trials corresponding
to a left or right choice).

To compute the color choice probability, we constructed the firing rate distributions corresponding
to a green choice or red choice. If these two distributions are non-overlapping, then the neuron
has a color choice probability of 1; the average firing rate will either overlap with the red or green
firing rate distributions, but not both. On the other hand, if the two distributions are completely
overlapping, then the neuron has a color choice probability of 0.5; knowing the firing rate of the
neuron provides no information on whether it arose from the red or green firing rate distribution.
When there is partial overlap between these two distributions, then firing rates where the distributions
overlap are ambiguous. We computed choice probability as the area under the probability density
function at locations when the two distributions did not overlap, divided by 2 (to normalize the
probability). To calculate the direction choice probability, we repeated the same calculation using
firing rate distributions corresponding to a left choice or right choice.

B.7 Canonical correlation

We applied CCA to assess the similarity between neural activity and the artificial unit activity [56].
Before applying CCA, we performed principal component analysis to reduce the dimensionality of
the artificial and neural activity to remove noise [56]. We reduced the dimensionality to 3 and 8 for
RNNs and PMd, respectively. These dimensionalities were chosen as they captured over 88% of
the variance for each dataset when aligned to checkerboard. We report the average CCA correlation
coefficients in Fig. 2 using times in a window of [0, 400ms] aligned to checkerboard onset for the
PMd and RNN activity. The data was binned in 10ms bins.

20



B.8 Analyses of inputs and activity

In order to disentangle the effects of external inputs and recurrence, in Fig. 4a, we evaluated the
input contribution and overall activity. For Area 1, we defined the input contribution as Winut,
and for areas 2 and 3, we defined the input contribution as W12r1t , and W23r2t respectively, where
rmt denotes the activity of the units in area m. The activity rmt corresponds to the firing rate that
experimentalists could measure, reflecting a combination of input and recurrent interactions. For
constant inputs, a stable value of the activity implies there is little recurrent processing.

B.9 Inter-Area Projection Analyses

To calculate the overlap between the color and direction axes with the potent and null spaces, we
performed singular value decomposition on the inter-area connections, W12 and W23. W12 and
W23 were 80 ⇥ 80 matrices, and were full rank. Nevertheless, they had near some zero singular
values, indicating that the effective rank of the matrix was less than 80. We defined the potent
dimensions to be the top m right singular vectors, while the null dimensions were the remaining
80�m right singular vectors.

We performed the analyses of Fig. 5a,b by varying the potent and null dimensions, sweeping m from
1 to 80. For each defined potent and null space, we calculated the axis overlap between the direction
(or color) axis and the potent (or null) space by computing the L2-norm of the orthogonal projection
(squared). We report the squared quantity because the expectation of the norm of a projection of a
random vector onto an m-dimensional subspace of an n-dimensional space is m/n. We include an
approximation of the expectation of the projection of a random vector in Fig. 5a,b by averaging the
projection of 100 random vectors. Our results show that the direction axis was always more aligned
with potent dimensions than the color axis, irrespective of the choice of m, and that the direction axis
was preferentially aligned with the top singular vector.

B.10 Visualization of neural activity in a low dimensional space

The activity of multiple units on a single trial is high dimensional, with dimension equal to the number
of units. To visualize the activity in a lower dimensional space, dimensionality reduction techniques
can be used. In addition to TDR, we also utilized Principal Components Analysis (PCA) and t-
distributed Stochastic Neighbor Embedding (tSNE) to visualize neural activity in low-dimensional
spaces.

PCA finds a linear low-dimensional projection of the high dimensional data that maximizes captured
variance. We performed PCA on both the experimental data and RNN rates. PCA is an eigenvalue
decomposition on the data covariance matrix. To calculate the covariance matrix of the data, we
averaged responses across conditions. This reduces single trial variance and emphasizes variance
across conditions. Firing rates were conditioned on reach direction and signed coherence. In both the
experimental data and RNN rates, we had 28 conditions (14 signed coherences each for left and right
reaches).

tSNE embeds high dimensional data in a low dimensional manifold that is nonlinear, enabling
visualization of activity on a nonlinear manifold. The tSNE embedding maintains relative distances
between data points when reducing dimensionality, meaning that points closer in high dimensional
space remain closer when viewed in a low dimensional manifold. We projected our data into a
two dimensional manifold. We used the default parameters from the sickit-learn implementation
(https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html). The data visualized
under tSNE was averaged in a window [-300ms, +100ms] around reaction time.
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C Supplementary Figures
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Figure 7: Psychometric and reaction time curves for single-area (a) and multi-area RNNs (b) with
Dale’s law trained for this study. The hyperparameters used for these RNNs are described in Table 1.
Gray lines represent individual RNNs and the black solid line is the average across all RNNs.
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Fig. 2 for comparison. (e) Single-area RNN neural trajectories in the top 2 PCs. Single-area RNNs had
four trajectory motifs for each combination of (left vs right) and (red vs green). In the Targets epoch,
the RNN’s activity approached one of two locations in state space (light green dots), corresponding to
the two target configurations. In the checkerboard epoch, trajectories separate based on the coherence
of the checkerboard, causing 4 total distinct trajectory motifs. Although the direction decision is not
separable in the principal components, the direction decision is separable in higher dimensions (see
the direction axis found using dPCA in Fig. 13a). (f) dPCA variance captured for the color (28%),
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accuracy in each area for 1- to 4-area RNNs for color, context, and direction corresponding to Fig. 3d.
The 3- and 4-area RNNs had minimal color representations in their last area. Note that the 4-area
RNN also has a minimal color representation in Area 3. (b) Mutual information in each area for 1-
to 4-area RNNs. Color conventions as in Fig. 3. Red is context, dark brown is color, and orange is
direction.
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Figure 11: Results of Fig. 3 reproduced with a linear classifier. This figure reproduces the
simulations in Fig 3, but with a linear classifier. The main conclusions are upheld. (a) Linear decode
accuracy for all hyperparameter sweeps shown in Fig. 3. (a) Mutual information estimated by using
the linear network trained with cross entropy loss.
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Figure 12: Color and direction information through training in Area 3. Each “training epoch”
represents 500 iterations of gradient descent. (a) In the PMd-like 3-area RNNs that were trained with
Dale’s law, color information in Area 3 remained near zero throughout training (two different repre-
sentative networks, light and dark shade). (b) In the unconstrained 3-area RNNs, color information in
Area 3 increased early in training and appeared to plateau (two different networks, light and dark
shade). Networks were only saved if the loss function decreased, so certain training epochs are not
present.
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Figure 13: dPCA trajectories for single-area and 3-area RNNs with No Dale’s law. (a) Projec-
tions onto the dPCA context, color, and direction axes for a single-area RNN. dPCA was able to
find axes that separate the context input, color decision, and direction decision. Importantly, in these
networks, Inputs were non-zero on the direction axis. (b) dPCA projections for the unconstrained
3-area RNNs with color representation in Area 3. Inputs were similarly non-zero on the direction
axis. The context inputs, color decision, and direction decision, had similar projection motifs.
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Figure 14: TDR results closely match dPCA results, and identifies mixed color and context
axes. The direction axis separated trajectories based on the direction choice. The color and context
axes had trajectory separation depending on both color and context. We did not show the orthonor-
malized bases, because we found that the QR decomposition was susceptible to the order in which
orthonormalization was performed. This is further evidence that the color and context axes are closely
aligned.
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Figure 15: dPCA projections when only considering excitatory units. We identified the dPCA
principal axes for context, color, and direction using only excitatory units. Results are consistent with
the results of Fig. 4d.
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Figure 16: Relationship between PCs and inter-area potent space. (a) Variance explained of the
excitatory units in Area 1 by the top principal components and top dimensions of potent space of
W12, swept across all dimensions. (b) Variance explained of the excitatory units in Area 2 by the
top principal components and top dimensions of potent space of W23, swept across all dimensions.
These plots show that the connections between areas do not necessarily propagate the most dominant
axes of variability in the source area to the downstream area. Excitatory units were used for the
comparison because only excitatory units are read out by subsequent areas. These results were upheld
when comparing to the variance explained by the top principal components obtained from all units.
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Figure 17: Projections between Area 1 and Area 2 for a network without Dale’s law (left) and a 2
area network (right), averaged across 8 trained networks. The conventions are the same as in Fig. 5.
The alignment of the direction axis with the top singular vectors is reduced (compare to Fig. 5).
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Figure 18: Structure of W33 of Wrec. Full connectivity matrix of W33, reordered so that the
structured excitatory components lie at the top left. The matrix is composed of a structured excitatory
component (orange and blue), a set of random excitatory units (black), and a set of inhibitory units
(dashed black), with non-obvious structure. The averaged connectivity matrix is shown in Fig. 6e.
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D Supplementary Notes

Supplementary Note 1: Viewing the CB task as an XOR task

Here we show that a nonlinearity is necessary to solve the task, proving that the task cannot be solved
by the linear layer Win. First, we note that the Checkerboard task corresponds to an exclusive-or
(XOR) problem. If we identify the two target configurations as 0 or 1 (corresponding to green on
left, or green on right respectively, with the red target on the complement side), and the dominant
checkerboard color as 0 or 1 (for green or red, respectively), then the output direction d (identified as
0: left, 1: right) can be seen be in Table S1.

If the representation r was purely input driven, then:

r = Winu, (11)

Our readout was a linear readout of the rates, i.e:

d = Woutr (12)

The inputs u are the four dimensional input we trained with. But u is a linear transformation of two
variables: the target orientation ✓, and checkerboard color c, which each can take two values. That is,
if we let q = [✓, c], then, the inputs could be written as a linear transformation of q:

u = Wq, (13)

where W is a linear transformation. Since the mappings from q to d are all linear, they can be
combined into a single linear transformation W̃, i.e.,

d = WoutWinWq = W̃q. (14)

It is not possible for a linear classifier to solve the XOR problem by classifying correct outputs [51].
Hence, the trained RNNs cannot purely be input driven, and requires nonlinearity from the recurrent
interactions to solve the task. After nonlinear processing, the left or right decision could be achieved
by a linear readout of the units.

target configuration color direction
0 0 0
0 1 1
1 0 1
1 1 0

Table 2: Checkerboard task truth table

context signed color signed motion direction
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 3: Mante et al. [49] model truth table
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Supplementary Note 2: Mutual Information Estimation

The entropy of a distribution is defined as

H(x) = Ex⇠p(x)


log

1

p(x)

�
. (15)

The mutual information, I(X;Y ), can be written in terms on an entropy term and as conditional
entropy term:

I(Z;Y ) = H(Y )�H(Y |Z). (16)

We want to show that the usable information lower bounds the mutual information:

I(Z;Y ) � Iu(Z;Y ) := H(Y )� LCE(p(y|z), q(y|z)) (17)

It suffices to show that:
H(Y |Z)  LCE (18)

where LCE is the cross-entropy loss on the test set. For our study, H(Y ) represented the known
distribution of output classes, which in our case were equiprobable.

H(Y |Z) := E(z,y)⇠p(z,y)


log

1

p(y|z)

�
(19)

= E(z,y)⇠p(z,y)


log

1

q(y|z)

�

| {z }
cross-entropy loss

�Ez⇠p(z) [KL(p(y|z)||q(y|z)]
| {z }

�0

, (20)

 E(z,y)⇠p(z,y)


log

1

q(y|z)

�
:= LCE (21)

To approximate H(Y |Z), we first trained a neural network with cross-entropy loss to predict the
output, Y , given the hidden activations, Z, learning a distribution q(y|z). The KL denotes the
Kullback-Liebler divergence. We multiplied (and divided) by an arbitrary variational distribution,
q(y|z), in the logarithm of equation 19, leading to equation 20. The first term in equation 20 is the
cross-entropy loss commonly used for training neural networks. The second term is a KL divergence,
and is therefore non-negative. In our approximator, the distribution, q(y|x), is parametrized by a
neural network. When the distribution q(y|z) = p(y|z), our variational approximation of H(Y |Z),
and hence approximation of I(Z;Y ) is exact [57–59].

In the paper, we additionally report the accuracy of the neural network on the test set. This differs
from the cross-entropy in that the cross-entropy incorporates a weighted measure of the accuracy
based on how “certain” the network is, while the accuracy does not.
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