PLUR: A Unifying, Graph-Based View of Program
Learning, Understanding, and Repair

Zimin Chen* Vincent J. Hellendoorn' Petros Maniatis
KTH Royal Institute Carnegie Mellon University Google Research
of Technology Pittsburgh, USA Mountain View, USA
Stockholm, Sweden vhellend@cs.cmu.edu maniatis@google.com

zimin@kth.se

Pascal Lamblin, Pierre-Antoine Manzagol, Daniel Tarlow, Subhodeep Moitra
Google Research
Montreal, Canada
lamblinp,manzagop,dtarlow,smoitra@google.com

Abstract

Machine learning for understanding and editing source code has recently attracted
significant interest, with many developments in new models, new code represen-
tations, and new tasks. This proliferation can appear disparate and disconnected,
making each approach seemingly unique and incompatible, thus obscuring the
core machine learning challenges and contributions. In this work, we demonstrate
that the landscape can be significantly simplified by taking a general approach
of mapping a graph to a sequence of tokens and pointers. Our main result is to
show that 16 recently published tasks of different shapes can be cast in this form,
based on which a single model architecture achieves near or above state-of-the-
art results on nearly all tasks, outperforming custom models like code2seq and
alternative generic models like Transformers. This unification further enables multi-
task learning and a series of cross-cutting experiments about the importance of
different modeling choices for code understanding and repair tasks. The full frame-
work, called PLUR, is easily extensible to more tasks, and will be open-sourced
(https://github.com/google-research/plur).

1 Introduction

The advent of sequence-to-sequence [Sutskever et al.,|2014]] and, more recently, text-to-text [Raffel
et al., [2019, Radford et al.,|2019] abstractions has provided a simplifying and unifying view of much
work in natural-language processing. By casting problems in this framework, one can apply a single
model architecture to many different problems. This benefits machine learning (ML) researchers
by focusing attention on the core modeling problem. It also amplifies ML advances, because a
general formulation allows practitioners to frame new problems in terms of a standardized abstraction
and then to apply state-of-the-art architectures easily, which also facilitates multi-task and transfer
learning.

In this paper, we ask: What is the equivalent unifying abstraction for machine learning for source
code (ML4Code)? While many ML4Code tasks have been cast in terms of the sequence-to-sequence
abstraction, source code is inherently different from natural language [Hindle et al., 2016]. It is

*Work done during internship at Google.
TWork done during visiting-faculty appointment at Google.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/google-research/plur

syntactically more structured as it is designed to be machine-readable and unambiguously parsable.
As such, it lends itself to more sophisticated automated analysis than natural language (e.g., static
analysis). Furthermore, code tokens follow a power-law distribution due to many rare identifiers,
and exhibit high rate of repetition across files and projects [Allamanis and Sutton, |2013|, |Casalnuovo
et al.,[2019]. In addition, the software engineering community recognizes that significant effort goes
into software maintenance involving small changes, rather than writing code from scratch [[Koskinen)
2003]]. These considerations have led to a wealth of literature going beyond text-to-text models
that make use of graphs, copy mechanisms, pointers, and other custom architectures [Maddison and
Tarlow, 2014} Bielik et al., 2016} |Allamanis et al., 2016, Mukherjee et al., 2017, |Yin and Neubig,
2017, |Allamanis et al.,|2018| |Alon et al.,|2018]|, Dinella et al.} 2020} [Yasunaga and Liang} 2020, Nye
et al.,[2020].

In particular, the GRAPH2TOCOPO formulation from [Tarlow et al.|[2020] pairs a graph encoder with
a Transformer-style decoder augmented with pointers and a copy mechanism and has been shown to
be effective for certain ML4Code tasks. Our proposal is thus to unify around GRAPH2TOCOPO as a
common vernacular for ML4Code. This formulation strictly generalizes text-to-text, by additionally
supporting graph structures over the input when available, allowing the generation of both pointers and
tokens in the output—pointers to specify the input location to edit and tokens to specify the content
of the edit—and it has a built-in copy mechanism to more easily enable the re-use of rare tokens
from the input. This flexibility enables us to take 16 tasks and models from the ML4Code literature
and convert them to a unified form. Using the same hyperparameter sweep and GRAPH2TOCOPO
models, we achieve at or above state-of-the-art results on nearly all tasks, including improving over
the Hoppity model [Dinella et al.| 2020] for program repair, the GREAT model [Hellendoorn et al.|
2020] for variable misuse, and the code2seq model [Alon et al., 2018]] for variable naming.

Having unified a number of previous tasks and achieved strong results, we can then answer a number
of empirical questions: Can we remove the graph structure as input and just use a Transformer
encoder? How important are pointers and copy mechanisms? We can also inspect the differences
between our model and previous ones and observe the importance of different design choices. The
framework also makes it easy to experiment with alternative graph representations of code, and we
demonstrate the effect of five different choices for converting a set of abstract syntax tree (AST) paths
into graphs in the code2seq domain. Finally, we demonstrate that due to the unified representation,
the framework makes it easy to do multi-task learning across classification and repair tasks, yielding
improved performance compared to training the same model separately on each task.

In summary, the resulting framework, called PLUR for Program Learning, Understanding, and
Repair, provides a powerful and simplifying perspective from which to interpret and build upon many
recent ML4Code advances. Open-source code for the full PLUR framework will be available under
an Apache 2 license at https://github.com/google-research/plur.

2 Background and Related Work

Encoders for Source Code Much work has shown the benefit of structured representations of code
based on abstract syntax trees (ASTs) or richer semantic graphs containing control flow and data
flow [[Allamanis et al., 2018 |Brockschmidt et al., 2019} |[Hellendoorn et al., 2020, |/Alon et al., 2018|
Cvitkovic et al., 2019]]. A number of recent models appear to achieve the best of both worlds between
graph neural networks (GNNs) and Transformers, by using the graph structure in conjunction with
relative attention in Transformers [Hellendoorn et al.| 2020, |Shaw et al.| 2018| Wang et al., 2020]].

Decoders for ML4Code Tasks The literature on ML4Code proposes a wealth of decoder archi-
tectures, targeting a diverse array of tasks. Typical classification tasks (e.g., bug detection) tend
to require a simple softmax operation over an output vocabulary. Sequence prediction tasks (e.g.,
function-name prediction) extend this simple mechanism with an autoregressive decoder [Alon et al.|
2018|], or a more complex autoregressive structured decoder [[Chen et al.,[2018]]. Other tasks require
the ability to point to the input, e.g., to localize a bug [Vasic et al.|[2019, |Hellendoorn et al., 2020], or
point to where an edit must take place [Dinella et al., 2020]]. Decoders for such tasks use a pointer
network based on attention [Vinyals et al.,2015]. To handle the very large vocabularies of program
identifiers and string literals, pointers are also often used to copy content from the input, rather than
extract it (or reconstruct it) from a limited vocabulary [[Allamanis et al.| | 2016]—this has also been
used in some natural-language contexts [|Gu et al.,|2016]. Unlike using pointer decoders to produce

https://github.com/google-research/plur

Example Input Graph Input ToCoPo Output Example Output

Pointer.
(Assign)
foo.py — foo.py
o (e
*;équare =(\’"REPLACE” D40 o o >'<;équare =(
x*Y) * X)
AN Graph2ToCoPo Model A .
x y e
| N ey Copy-

Figure 1: Overview of GRAPH2TOCOPO abstractions. The raw example input is ingested as a graph;
it might be source-code, or another task-specific, pre-computed graph representation. The model
produces a TOCOPO output of tokens and pointers, which is compared during training to the ingested
ground-truth target of the original task, also re-formulated as a TOCOPO output. Some tokens may
be produced as copies from the labels of input nodes. The TOCOPO output can be interpreted by the
task to produce the intended raw output, or a task-specific performance metric.

pointers required by the task output, such mechanisms use pointer decoders to identify content in the
input from which to copy into the output, e.g., for summarization [See et al., 2017, Fernandes et al.,
2018]. Tarlow et al.|[2020] proposed combining such decoders into a single decoder that produces
ToCoPo, an autoregressive sequence where each element may be a Token, a COpy, or a POinter.

Source-Code Benchmarks and Frameworks Several recent efforts have created benchmarks of
tasks and datasets for MLL4Code. CuBERT [Kanade et al.,2020a]] released a benchmark of six tasks,
for the purpose of evaluating BERT-style pre-trained code embeddings. CodeSearchNet [Husain
et al., 2019 created a benchmark and a framework for competing implementations targeting code
search and retrieval. CodeXGLUE [Lu et al., 2021]] further expanded the benchmark to include
tasks from code summarization, repair, code generation, and more. It also provided several baseline
model implementations of different characteristics (e.g., CodeBERT [Feng et al., 2020] similar to
BERT [Devlin et al., [2019]], GraphCodeBERT [Guo et al.,[2021] incorporating data-flow edges, etc.),
each adapted to a particular subset of task types (e.g., a GPT-based model for sequence generation,
a BERT-based model for classification, etc.). In contrast, PLUR seeks a single encoder interface,
accepting graphs, and a single decoder interface, producing a mixture of tokens, copies, and pointers,
with the thesis that this single interface, regardless of model architecture underneath the encoder and
decoder, is sufficient to serve a diverse set of ML4Code tasks.

3 A Unifying Framework for Program Understanding and Repair

Our goal from the modeling perspective is specifically not to innovate on machine-learning archi-
tectures. Our challenge is to package strong existing modeling components in a way that achieves
(near) state-of-the-art performance but with maximum simplicity and generality. The novelty in our
work comes from making these choices and demonstrating that the result performs strongly across
the 16 tasks. Fig.[T]illustrates the approach. See details of the software architecture in the Appendix.

3.1 Models

Based on their strong performance across many tasks in machine learning, we start with Transform-
ers as the base modeling architecture. The encoder is applied to the source-code input, and the
decoder generates task-specific sequential outputs. However, we augment the encoder and decoder
to incorporate components that have proven useful in recent work on modeling code, most notably
relational information that can be used to represent syntax, data flow, and control flow. We adopt the
GREAT model as an encoder [Hellendoorn et al., 2020}, an instance of a Transformer with relational
attention bias. Similarly, we adopt the TOCOPO output formulation from [Tarlow et al.| [2020] to
provide a flexible language that enables outputting arbitrary sequences of tokens, copies, and pointers,
along with its modified Transformer decoder architecture. For comparison, we also instantiate this
GRAPH2TOCOPO architecture with a vanilla Transformer encoder, and with a graph neural network
encoder (a Gated-Graph Neural Network [Li et al.,[2016]], or GGNN).

3.2 Input-Output Representations

The next challenge is to adapt a wide variety of recent tasks and datasets into the proposed framework.
In some cases, the translation is straightforward. For example, tasks that use GNN encoders and
have already released graph representations can be directly used. In other cases, there are custom
architectures that do not obviously fit into our proposed unification. However, we show via experi-
ments in Sec. [5]that a light adaptation is able to preserve the favorable inductive biases of the custom
approach without the custom modeling. While we use standard representations of inputs and outputs,
we describe them explicitly here to make clear what the requirements are for mapping an existing
task into the PLUR framework.

The input is represented as a graph composed of nodes and edges. Each node has a discrete label,
a discrete type, and an integer position. The label is used to represent token values like names of
(possibly subtokenized) variables. The type is used to represent more abstract categories, e.g., to
distinguish that some nodes represent source code text and others represent internal AST nodes. The
positions are used to impose a linear ordering on the nodes. This enables a vanilla Transformer
encoder to process the graph like a token sequence. Edges (s, ¢, ¢) are directed, linking a source node
index s to a target node index ¢. Additionally, edges are allowed to have a discrete type e that specifies
the kind of relationship that the nodes have. Our graph edges are directed, but in preprocessing we
always add a corresponding reverse edge (2, S, €reperse) With a fresh type e eperse-

The TOCOPO output can be intuitively viewed as a script that describes the task output in terms of
tokens, drawn from the output vocabulary, and pointers pointing to some input node, concluding with
a DONE token marking the end of the output. Every task can make its own use of these facilities to
express a grammar for its output. For example, a classification task can just use token outputs, one
per expected class; a sequence-prediction task can produce sequence of tokens; a repair task can use
a pointer to point at a particular input node, and a token output to replace that input node. The copy
mechanism in the model enables the production of output by copying the label from an input node.

3.3 The PLUR Tasks

We now briefly describe how we brought 16 tasks and datasets into PLUR, introduced in 9 papers
in the recent ML4Code literature and available under public-domain licenses. The philosophy of
our approach was to approximate the structure of data representation and encoding in the original
papers. The goal is not to emulate the original modeling approach precisely; instead, we aim to
capture the inductive bias intended by a custom architecture into the representation of the input and
ToCoPo output using our standard architecture. See the Appendix for more details about the tasks
and datasets.

ManySStuBs4]J [Karampatsis and Sutton,[2020] Classification of a Java function to a number of
bug types, or as bug-free. We encode the input as a token sequence, and output the class as a
token. We measure classification accuracy.

code2seq [Alon et al., 2018] Sequence prediction of a function name from a Java function body.
We encode the input as a set of AST paths between identifiers (but see also Sec. for a
number of variations), and output a sequence of subtokens constituting a function name.
The reported metric is the F1 score. The original paper differentiated among small, medium,
and large corpora and we keep the distinction here.

funcom [LeClair et al., 2020] Sequence prediction of a method docstring from the method body.
We encode the input as a token chain, and the output is a sequence of subtokens constituting
the docstring. The reported metrics are the BLEU scores.

VarMisuseH [Hellendoorn et al., 2020] Localization and repair of a Python variable-misuse bug
[Allamanis et al., 2018| |Vasic et al., 2019]]. The input is already represented as a graph,
which we use unchanged. We output a special token for a bug-free example, or a pointer
to the bug location, and a token of the correct variable that repairs the bug. We report the
hardest metric for the task, the localization and repair accuracy of the model.

Hoppity [Dinella et al., 2020] Repair of bugs in a corpus of ASTs. Repairs are modifications of the
input AST (node additions, replacements, etc.). The input is already structured as a graph,
which we transcribe to our graph format and use unchanged. We output the transformation
type (as a token), and the transformation arguments, which include a pointer (the AST node

to transform), and other pointers or tokens depending on the transformation type. We report
the repair sequence accuracy (i.e., full match of the repair operations and their arguments).

convattn [Allamanis et al.,[2016] Sequence prediction of a method name from the method body.
We encode the input as a token chain. We output a sequence of subtokens constituting the
method name. The reported metric is the F1 score.

ogb-code [Hu et al., 2021] Sequence prediction of a method name from the method body. The
input is already represented as a graph, which we transcribe into our graph format with no
semantic changes. We output the sequence of method-name tokens. We report the F1 scor

CuBERT [Kanade et al.,[2020a] CuBERT consists of six Python-based tasks defined on ETH
Py150 Open [Kanade et al.,[2020c||. Exception Classification (CuBERT-EC): predict one of
20 exception types in a try/except clause; Wrong Operator Classification (CuBERT-WB):
predict if a function is using the wrong binary operator (e.g., < instead of >); Swapped
Operand Classification (CuBERT-SO): predict if a non-commutative, binary operator’s argu-
ments have been swapped (e.g., a - binsteadof b - a); Function-Docstring Classification
(CuBERT-FD): predict if a documentation string matches a function body; Variable Misuse
Classification (CuBERT-VM): classify a function as containing a variable misuse bug (as
described above); Variable Misuse Localization and Repair (CuBERT-VMR): localize and
repair a variable misuse bug. We encode input as a sequence of subtokens using the original
vocabulary and tokenizer. We output a token for the classification tasks, and a pointer to the
bug, along with the correct variable for CUBERT-VMR. We report classification accuracy
for the classification tasks, and localization and repair accuracy for the last task.

Retrieve & Edit [Hashimoto et al.,2018|] The task is to complete a Python function given the block
comment, function name, and arguments. We encode the block comment, function name,
and arguments as separate token chains and they are all connected to a root node. The output
is a sequence of function tokens. The reported metrics are the correctly predicted average
and maximum number of successive tokens.

Our aim with the choice of datasets was to represent a variety of tasks and representational choices.
For example, VarMisuseH and Hoppity are graph-based program repair tasks but with differing
output representations. CuBERT-VMR is similar to VarMisuseH but does not use a graph-based input
representation. Having chosen these three, we did not include other program repair tasks, and instead
chose to prioritize other kinds of tasks like variable naming, code completion, and bug classification.

4 Using the PLUR Framework

4.1 Model Development & Evaluating Cross-Cutting Model Choices

Perhaps the most natural use of PLUR is as an evaluation suite for new model development; following
the PLUR GRAPH2TOCOPO abstraction enables a new model to be evaluated against all 16 tasks.
Each of these has baseline performance reported in the corresponding 9 papers, and this work provides
additional, PLUR-based model implementations and corresponding performance metrics, to establish
strong, reproducible baselines for future research. We provide these experimental results in Sec.[5.2]

A related use for PLUR is to perform controlled experiments on modeling choices. For example:
How do Transformers compare to GNNs? Are pointer and copy mechanisms helpful? We study
several cross-cutting empirical questions in Sec.[5.3] PLUR provides significant variety across tasks
and some questions have different answers depending on the task. This shows that PLUR allows for
more nuanced conclusions than would be possible from evaluating on a less diverse set of tasks.

There are also a number of interesting conclusions to be drawn by comparing the unified models
against the custom models from the literature. Perhaps surprisingly, we often find that the more
general model works better than the model designed for the particular task. This provides additional
guidance about which modeling choices are important and which are less so. We discuss these results
in Sec.[5.2] alongside the comparisons of the standardized PLUR approach to the original approaches.

IThis task has recently been updated. We will release results for the updated version of the dataset on the
open-source repository accompanying the paper.

fully collapsed | ~ = - _—

I e — - - - - e
_/ \‘/\ /D\ /A\ /C\ /E\ 7\
@ /\g (D U EANYEANVEANVEANY RS WY
5 F X \ N
— = - - foo % bar foo }——(bar
(o)) (&)=>(o) e e
leaves only A/ \\F, — — a a T~
AV o E) N \;»(D);»(c);»(E>\4>< N
J— ———————» o
(\<\,/ N ‘/2\}47‘/5 \A**””l::;/) T - — ‘/\Q‘r
P ’/\%i\\ - N — /7 /\‘)\ - \QL\ < a\\%ﬁoo\\ (Ioo\%\/\bar\\
G Do B T o
- part\allyzollapsed - set of paths

Figure 2: Representation alternatives for code2seq. The original AST is at the top left. Different
arrow types represent distinct edge types.

4.2 Task Exploration

Conversely, a practitioner exploring a new task and dataset can cast their existing data to the
GRAPH2TOCOPO abstraction and use PLUR’s standard model implementations. Without the need
for implementing a new model or even connecting a new data-generation pipeline to a training
framework, a practitioner gains a rapid and powerful path for obtaining results on new tasks.

We demonstrate this process in the context of the code2seq dataset and task. code2seq uses a custom
architecture that represents code as a set of AST paths, and argues that a path-based representation
provides a desirable inductive bias, outperforming alternative methods [Alon et al.,[2018]]. While
we cannot replicate the custom architecture exactly as a GRAPH2TOCOPO model, PLUR enables
graph representations that capture similar favorable inductive biases, as well as experimentation with
alternative, more economical representations that result in fewer graph vertices and model parameters
(see Fig.[2). The original graph representation of a Java function is as a set of AST paths between
identifier leaf nodes. Each leaf contains a sequence of subtokens representing the identifier, and each
path is a sequence of discrete AST node types. Perhaps the most straightforward representation of
this original input is as a graph composed of a set of paths. Every path is a chain of nodes (source
identifier node, followed by all AST nodes along the path, followed by the destination identifier
node), connected via edges. Identifier nodes are further connected to their subtokens, represented
also as subtoken-node chains. We call this the set-of-paths graph representation.

We also develop four alternatives: leaves only: just keep the identifier AST nodes and their subtokens;
path lengths: keep one instance of the identifier AST nodes and their subtokens, and connect them
with edges whose type carries the length of the path between them; partially collapsed: keep one
instance of each identifier node and its subtokens, and connect them via the path chains, collapsing
equivalent path prefixes; fully collapsed: keep one instance of each AST node type, and create the
multigraph that maps the original path edges to those unique node types. We emphasize that the only
change to experiment with these alternatives was in the mapping from the original dataset to the graph
representation used as an input. We show in Sec. [5.4]that this leads to improved performance over the
custom code2seq model, which gives confidence that PLUR allows one to experiment with alternative
input representations without having to simultaneously search for a custom ML architecture.

4.3 Multi-task Learning

The unified view makes it easy to experiment with multi-task learning. The common input repre-
sentation enables the model to improve its input embedding, by seeing more input graphs, and the
common decoder improves its (shared) ability to attend to relevant features of the input.

One benefit of multi-task learning is the ability to train a single model for multiple tasks, which
reduces storage and serving costs. However, even when the savings in storage and serving are not the
goal, a multi-task model can improve the performance of each task. In principle, similar tasks would
benefit from this joint training regime. As an example, CABERT-WB and CuBERT-SO have the
same input representation: subtokenized functions. Since those are binary classification tasks, they

share negative classes but have different positive classes (i.e., bug types). This means that the model
is exposed to twice as many useful negative examples, and also benefits from the discrimination
between positive examples of each class. Especially for small datasets, e.g., CUBERT-EC with only
18K training samples compared to CuBERT-VM’s 700K, a shared encoder and decoder gives the
smaller task a benefit similar to unsupervised pre-training [Kanade et al.,|2020a, |Guo et al.| 2021]].
An additional benefit of the PLUR formulation is that multitask learning is not limited to tasks with
the same output format. Because PLUR uses a flexible decoder even for classification, the same
parameters are shared between classification tasks and localization & repair tasks.

To study multi-task learning, we created a new task, CuBERT-MT, by adding an extra node to each
example with a new type and the task as a label, keeping the output unchanged, and combining all
examples into one dataset. We evaluate the resulting model on the per-task test datasets and metrics
(see Sec. [5.5]for experiments and Appendix for further task details).

5 Experiments

In the experiments we ask the following research questions:

e RQ1: How does the general PLUR approach compare to approaches like GREAT [Hel{
lendoorn et al., 2020], Hoppity [Dinella et al., 2020, and code2seq [Alon et al., 2018]? To
evaluate this, we compare the PLUR family of models to the approaches and metrics used by the
original papers across the 16 tasks.

e RQ2: How do encoders based on the Transformer, GREAT [Hellendoorn et al., 2020], and
GGNN [Li et al., 2016]] compare across the PLUR benchmark? To answer this, we train each
kind of model on each task, and then we evaluate the results.

e RQ3: How important are copy mechanisms? How important are pointers to specify loca-
tions? Does the Transformer effectively have a copy mechanism built in due to the use of attention?
Similarly, can pointers be replaced by special tokens representing locations? We study these ques-
tions by disabling the copy and pointer mechanisms in the PLUR decoder for the Variable Misuse
localization and repair tasks, and compare results against the default decoder.

o RQ4: What is the effect of different graph representations? We study the effect of the graph
representations from Sec.[4.2] and evaluate if we can achieve favorable inductive bias using the
generic GRAPH2TOCOPO architecture.

e RQS: Does multi-task learning provide improvements? PLUR makes it easy to do multi-task
learning even across tasks with different output kinds (e.g., across classification and program repair
tasks). Is this direction promising?

5.1 Experimental Details

We use a common protocol across our experiments and follow the descriptions in Sec. [3.3|to ingest
the 16 tasks. Dataset sizes are in the Appendix. We trained each model variant (GREAT2ToCoPo,
TRANSFORMER2TOCOPO, and GGNN2T0OCO0OPO) on each of the tasks using 8-core TPU-v2s for
acceleration. For each task and model variant, we perform a grid search over hyperparameters and
minor implementation variations (see Appendix). Typical training and evaluation time is 3 days per
task, although larger tasks such as CUBERT-MT took slightly longer. We swept 12 hyperparameter
combinations per task, across 3 models and across the 16 tasks, spending around 14,000 hours of
accelerator time overall. We choose the best checkpoint for each run according to full-sequence
accuracy on a subset of validation data, and we also choose the best hyperparameter setting according
to full-sequence accuracy on the full validation data. We generate test predictions from the best
checkpoint and hyperparameter setting, then we evaluate the predictions against ground truth outputs
using task-specific evaluation metrics, e.g., F1 score, BLEU, etc. We report 95% Bernoulli confidence
intervals for accuracy metrics. For non-accuracy metrics, e.g., F1 score, we compute a 95% bootstrap
estimate by resampling the validation and test sets with replacement 20 times.

5.2 Main Results

Our first results address RQ1 and appear in Tab. |1} The first observation is that PLUR is able to
match the reported performance across nearly all tasks, showing that the generality of the PLUR

Table 1: Task-specific test metrics, comparing to the reporting papers in comparable settings. All
results reported with 95% confidence intervals. Significant results are bold.

\ Task || PLUR | Original Paper | Metric |
VarMisuseH 82.8% (£0.10) 80.4% Loc.+Repair Acc.
CuBERT-VMR 78.6% (+0.13) 56.9% Loc.+Repair Acc.
Hoppity 26.6% (+0.32) 14.2% Sequence Acc.
funcom || 42/31/25/21 (£0.19) 39/22/15/11 BLEU-1/2/3/4
convattn 52.5 (£0.21) 44.7 F1
code2seq small 48.7 (£0.43) 43.0 F1
code2seq med 54.2 (£0.13) 53.2 F1
code2seq large 62.1 (£0.09) 59.2 F1
ogb-code 35.3 (+£0.54) 32.6 F1
CuBERT-EC 53.0% (40.96) 49.6% Classification Acc.
CuBERT-FD 86.6% (+0.15) 91.0% Classification Acc.
CuBERT-SO 87.7% (+0.18) 87.8% Classification Acc.
CuBERT-VM 75.0% (+0.14) 78.3% Classification Acc.
CuBERT-WB 80.9% (+0.15) 76.6% Classification Acc.
ManySStuBs4J 64.1% (£2.09) — Classification Acc.
Retrieve&Edit 2.5/10.3 (£0.24) 5.8/17.6 Avg/Longest Length

formulation does not come at the cost of accuracy. In fact, the PLUR version outperforms strong
models like those from Hellendoorn et al.| [2020], Dinella et al.|[2020] and |Alon et al.|[2018]]. In
the |Alon et al.| [2018]] setting, it is notable that it provides improvement for all scales of dataset,
even on the “small” dataset, where previously code2seq was shown to have a large advantage over
Transformer models.

To understand this, it is informative to compare modeling choices. For instance, the PLUR approach
is similar to the model from [Hellendoorn et al.| [2020]], but has a different decoder: whereas the
original predicted the locations of bug and repair using independent output heads, the TOCOPO
decoder uses autoregressive connections within the decoder, conditioning on bug locations when
predicting repairs, which likely improves performance. Another interesting result is the strong
performance of the vanilla Transformer encoder on this task, even though there are many informative
edge types in the data. Leveraging this information with graph-based Transformer encoders to
improve even further could be an interesting modeling challenge.

In the code2seq task, we use the same AST path data as in|Alon et al.[[2018]], and both approaches
have an attention-based decoder. The main difference is that code2seq independently encodes each
path, whereas our formulation uses a relation-aware Transformer on a graph representation of the
paths. We suspect that the increased connectivity across paths is favorable, while the encoder is
still able to make use of some relational information in the paths. Compared to Hoppity, the PLUR
formulation is a bit simpler, e.g., not applying graph-edit operations during decoding, and it treats the
output sequence more generically, sharing the same attention-based decoder to generate each pointer
or token in the output script.

On the CuBERT-based tasks, there are some cases where the PLUR results are better and some
where the BERT Transformer implementation (reported in the original paper) is better. We report
comparisons to the CuBERT results that do not use pretraining, so these variations are likely due to
differences in Transformer implementations and hyperparameter searches (CuBERT searched over
thousands of Transformer hyperparameter combinations in contrast to our 12). However, the fact that
PLUR is competitive shows that we are working from a strong Transformer implementation.

The one case where PLUR significantly under-performs results from the original paper is the Retrieve
& Edit task. This is perhaps unsurprising because the PLUR formulation does not use the retrieval
mechanism from the paper, which is shown to produce large improvements in results. However,
the PLUR result is in-line with performance of the Seq2Seq baseline reported in [Hashimoto et al.
[2018]] for the main metrics of average and maximum completion length, although we observed
higher BLEU scores than reported for the Seq2Seq baseline.

In total, these results demonstrate that the default PLUR models produce almost uniformly strong
results, without per-task model customization.

Table 2: (a) Comparing PLUR Encoders: GNN vs. Transformer vs. Relation-aware Transformer
(validation sequence accuracies). (b) Multi-task over the CuBERT tasks (test metrics). (c) Impact
of alternative graph representations on the test metric of the code2seq med task, using GREAT. (d)
Validation sequence accuracy for different output DSL ablations. Validation sequence accuracy
results are within an error interval of 0.4 at 95% confidence. Significant results are bold.

(a) Comparing encoders. (b) Multi-task setting.
[Task A [[GGNN | Transformer | GREAT | Original PLUR
VarMisuseH 84.6% 87.2% 86.7% Task paper Uni-task Multi-task Per Task
CuBERT-VMR || 61.5% 85.6% 85.7% CuBERT-EC 49.6% 53.0% | 62.7% (£0.93) | 64.8% (£0.92)
Hoppity 31.4% 29.1% 31.1% CuBERT-FD 91.0% 86.6% | 80.8% (+0.18) | 84.3% (+0.16)
funcom 12.8% 13.4% 13.3% CuBERT-SO 87.8% 87.7% | 90.3% (£0.16) | 90.7% (£0.16)
convattn 37.3% 37.4% 38.5% CuBERT-VM 78.3% 75.0% | 89.6% (£0.10) | 90.1% (£0.10)
code2seq small 30.0% 23.8% 31.6% CuBERT-WB 76.6% 80.9% | 86.1% (£0.14) | 86.4% (£0.13)
code2seq med 36.9% 35.5% 39.1% CuBERT-VMR 56.9% 78.6% | 79.7% (£0.13) | 81.0% (£0.12)
code2seq large 38.7% 36.6% 39.7%
ogb-code 22.9% 22.7% 24.1%
CuBERT-EC 52.0% 56.2% 56.5%
CuBERT-FD 84.9% 88.8% 88.6%
CuBERT-SO 80.5% 89.5% 88.0%
CuBERT-VM 64.8% 76.3% 74.7%
CuBERT-WB 78.2% 83.2% 81.7%
ManySStuBs4J 65.7% 65.1% 65.6%
Retrieve&Edit 3.8% 4.1% 4.1%
(c) Graph representations. (d) Pointer/Copy ablations.
[Representation [TestF1 | Ty T CBERTEVME
leaves only 51.2(£0.14) Output DSL GREAT [Transformer | GGNN || GREAT | Transformer | GGNN
path lengths 53.8 (£0.16) Full 87.1% 85.4% | 84.6% 85.7% 85.6% | 61.5%
fully collapsed 52.2 (£0.10) No pointer 85.0% 85.1% | 84.0% 83.9% 86.2% | 60.9%
partially collapsed || 54.2 (£0.13) No copy 79.1% 792% | 77.8% 83.5% 83.0% | 58.4%
set of paths 56.4 (+0.12) No copy, no pointer 76.3% 78.8% 78.0% 84.0% 84.5% 61.8%

5.3 Ablations & Model Choices

Next, we address RQ2 and RQ3. To evaluate RQ2, we break down results by model variant (Tab. 2al),
and we report validation full-sequence accuracy. This provides uniformity and is also the criterion
used for model selection, which may reduce some possible confounding of results.

A first interesting comparison is the GGNN encoder against the Transformer encoder. There are some
tasks where the GGNN is superior (code2seq all sizes and Hoppity), some where the Transformer is
superior (VarMisuseH, all CuBERT tasks), and several where they perform similarly. When GGNN
is superior, we interpret this to mean that the graph structure provides a strongly useful signal that the
Transformer is not able to infer implicitly through its attention computations. When the Transformer
is superior, we interpret this to mean that the sequential structure in the problem, long-distance
all-to-all communication, and perhaps overall model capacity are more important than the graph
structure. Second, we can compare the GREAT encoder to both the alternatives. In cases where the
GGNN encoder is superior to the Transformer encoder, GREAT is also superior to the Transformer
encoder. However, the GREAT encoder is much stronger than the GGNN encoder in cases where
Transformer encoder outperforms the GGNN encoder. In cases where there is not useful signal in the
graph representation, we attribute differences between Transformer and GREAT encoders to minor
implementation details. In total, results show that the GREAT encoder provides good performance
across the full range of tasks.

For RQ3, we perform ablation studies that disable the copy mechanism, the use of pointers in the
output scripts, and both. We run these experiments on VarMisuseH and CuBERT-VMR because these
tasks make use of both pointers (to specify the bug location) and the copy mechanism (to generate the
replacement variable name). We further split out results by model type to see if, e.g., Transformers
have less use for a copy mechanism than GGNNs. Results appear in Tab. The first conclusion is
that including pointers and the copy mechanism both lead to improved performance across models
and tasks, with the copy mechanism alone being more useful than the pointer mechanism alone.
There does not appear to be significant model-specific conclusions to be drawn, aside from the fact
that CUBERT-VMR results are poor for GGNN because there is no graph structure to make use of.

5.4 Alternative Graph Representations

In RQ4, we explore the effect of the alternative ways of converting AST paths to graph representations.
We run training sweeps for each dataset variation described in Sec.[.2] Test results appear in Tab.
and more details appear in the Appendix.

There is significant variation in performance as the graph representation changes. As a general trend,
the relative benefit of structure increases as representations become compact, and overall performance
of Transformer encoders increases as graph representations become less compact. “Path lengths”
performs relatively well and is reminiscent of a path-length positional encoding representation [Ziigner
et al.| 2021]]. The results demonstrate how the inductive biases from a custom model can be imported
into PLUR, and how PLUR can be used to explore alternative representations of code.

5.5 Multi-task Learning

Tab. [2b] shows the results of multi-task training. Each cell shows the metric computed on the test
examples of the corresponding task drawn from the model chosen under a different model-selection
strategy. “Original paper* and “Uni-task” show again the best test values from Tab. [for comparison.
“Multi-task™ selects a single checkpoint via our model-selection protocol over the entire set of
validation examples. This emulates the scenario in which we seek a single model for all tasks, and we
select one based on a task-agnostic metric, the validation sequence accuracy. It outperforms 5 of the
6 uni-task models. The benefit is particularly pronounced in CuBERT-VM. 1t is also significant for
the smallest of the tasks, CUBERT-EC, which has very few training examples, and therefore benefits
from exposure to examples from different tasks. “Per task™ chooses one multi-task checkpoint per
task; for each task, it evaluates the validation examples only of that task, and it chooses the multi-task
model with the highest validation sequence accuracy. Here a task picks a multi-task checkpoint that
suits it, resulting in further improvements. This is akin to augmentation or pre-training, eschewing
reduced cost in favor of a stronger per-task model.

6 Conclusion

PLUR provides a powerful and simplifying perspective from which the ML community can study
the unique challenges in ML4Code problems. We have demonstrated that the unified framework
achieves state-of-the-art results on several ML4Code tasks, showing that our carefully chosen general
approach can outperform many task-specific models. PLUR is easily extensible and could grow
in the future to include more tasks and more models that are compatible with the core abstractions.
Experimentally, we have explored and answered several interesting questions about what models
work best, the effect of graph structure design, the importance of copies and pointers, and provided
initial evidence that multi-task training in PLUR is promising.

One limitation is that PLUR is cast within a fairly straightforward framework of supervised learning
with encoder-decoder models. It is less suitable for approaches that go beyond this formulation,
as we see with the Retrieve & Edit task. However, it would be interesting future work to explore
using PLUR as a component in other paradigms. For example, we might use the retrieval method of
Hashimoto et al.[[2018] in conjunction with the graph construction and learning of PLUR. From
a broader impacts perspective, one risk is that the benchmarks may not be representative of the
full diversity of potential use-cases of the technology, and the particular choices may emphasize
use-cases that disproportionately favor a subset of the population. While we believe it to be under-
studied in ML4Code, it would be interesting in future work to study how ML4Code benchmarks
could be oriented to provide more uniform benefits (e.g., perhaps including more emphasis on new
programmers). Finally, we have not yet incorporated pretraining into PLUR. Another direction for
future work is to explore pretraining that can be used generically within PLUR and leveraged across
the full suite of tasks.

7 Acknowledgements

We would like to thank David Bieber for carefully reading our paper and providing valuable feedback
and research guidance. Additionally, we are thankful to researchers in the learning for code effort at
Google Research as well as members of Google Brain Montreal for their comments and advice.

10

References

Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of code.
CoRR, abs/1812.06469, 2018. URL http://arxiv.org/abs/1812.06469.

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale using
language modeling. In 2013 10th Working Conference on Mining Software Repositories (MSR),
pages 207-216, 2013. doi: 10.1109/MSR.2013.6624029.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for extreme
summarization of source code. In International conference on machine learning, pages 2091-2100.
PMLR, 2016.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. In International Conference on Learning Representations,
2018.

Pavol Bielik, Veselin Raychev, and Martin Vechev. PHOG: Probabilistic model for code. In
International Conference on Machine Learning, pages 2933-2942. PMLR, 2016.

Marc Brockschmidt, Miltiadis Allamanis, Alexander Gaunt, and Oleksandr Polozov. Generative code
modeling with graphs. In International Conference on Learning Representations, 2019.

Casey Casalnuovo, Kenji Sagae, and Prem Devanbu. Studying the difference between natural and
programming language corpora. Empirical Software Engineering, 24(4):1823-1868, 2019.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’ 18, page 2552-2562, Red Hook, NY, USA, 2018. Curran Associates Inc.

Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. Open vocabulary learning on source
code with a graph-structured cache. In International Conference on Machine Learning, pages
1475-1485. PMLR, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https
//www.aclweb.org/anthology/N19-1423|

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity: Learning
graph transformations to detect and fix bugs in programs. In International Conference on Learning
Representations (ICLR), 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. CodeBERT: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural summarization.
In International Conference on Learning Representations, 2018.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint arXiv:1603.06393, 2016.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn Drain,
Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. GraphCodeBERT: Pre-training code
representations with data flow. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=jLoC4ez43PZ.

11

http://arxiv.org/abs/1812.06469
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://openreview.net/forum?id=jLoC4ez43PZ

Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and Percy Liang. A retrieve-and-
edit framework for predicting structured outputs. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 10073-10083, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
cd17d3ce3b64£227987cd92cd701cch8-Abstract.htmll

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global
relational models of source code. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=B11nbRNtwr,

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. On the naturalness
of software. Communications of the ACM, 59(5):122-131, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
CodeSearchNet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating
contextual embedding of source code. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 12-18 July 2020, Proceedings of Machine Learning Research.
PMLR, 2020a.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. CuBERT release. https:
//github.com/google-research/google-research/tree/master/cubert, 2020b.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. A redistributable subset of the
eth pyl150 corpus. https://github.com/google-research-datasets/eth_pyl150_open,
2020c.

Rafael-Michael Karampatsis and Charles Sutton. How often do single-statement bugs occur? the
manysstubs4j dataset. In Proceedings of the 17th International Conference on Mining Software
Repositories, pages 573-577, 2020.

Jussi Koskinen. Software maintenance costs. Information Technology Research Institute, ELTIS-
Project University of Jyviskyld, page 16, 2003.

Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. Improved code summarization
via a graph neural network. In Proceedings of the 28th International Conference on Program
Comprehension, pages 184—195, 2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural
networks. In 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/
abs/1511.05493.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B.
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. CodeXGLUE: A machine learning benchmark dataset for code understanding
and generation. CoRR, abs/2102.04664, 2021.

Chris Maddison and Daniel Tarlow. Structured generative models of natural source code. In
International Conference on Machine Learning, pages 649-657. PMLR, 2014.

Rohan Mukherjee, Dipak Chaudhari, Matthew Amodio, Thomas Reps, Swarat Chaudhuri, and Chris
Jermaine. Neural attribute grammars for semantics-guided program generation. arXiv e-prints,
pages arXiv—1705, 2017.

12

https://proceedings.neurips.cc/paper/2018/hash/cd17d3ce3b64f227987cd92cd701cc58-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/cd17d3ce3b64f227987cd92cd701cc58-Abstract.html
https://openreview.net/forum?id=B1lnbRNtwr
https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research/google-research/tree/master/cubert
https://github.com/google-research-datasets/eth_py150_open
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493

Maxwell Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B Tenenbaum, and Armando
Solar-Lezama. Representing partial programs with blended abstract semantics. arXiv preprint
arXiv:2012.12964, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl Blog, 1(8), 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Abigail See, Peter Liu, and Christopher Manning. Get to the point: Summarization with pointer-
generator networks. In Association for Computational Linguistics, 2017. URL https://arxiv,
org/abs/1704.04368.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
arXiv preprint arXiv:1409.3215, 2014.

Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol, Charles
Sutton, and Edward Aftandilian. Learning to fix build errors with Graph2Diff neural networks. In
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops,
pages 19-20, 2020.

Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh. Neural program
repair by jointly learning to localize and repair. CoRR, abs/1904.01720, 2019. URL http:
//arxiv.org/abs/1904.01720.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. arXiv preprint
arXiv:1506.03134, 2015.

Bailin Wang, Richard Shin, Xiaodong Liu, Alex Polozov, and Matthew Richardson. RAT-
SQL: Relation-aware schema encoding and linking for text-to-sql parsers. In ACL 2020,
June 2020. URL https://www.microsoft.com/en-us/research/publication/
rat-sql-relation-aware-schema-encoding-and-linking-for-text-to-sql-parsers/.

Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair from diagnostic
feedback. In International Conference on Machine Learning, pages 10799-10808. PMLR, 2020.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696, 2017.

Daniel Ziigner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Giinnemann.
Language-agnostic representation learning of source code from structure and context. arXiv
preprint arXiv:2103.11318, 2021.

A Architecture

The PLUR software architecture is illustrated in Fig. [3] The Model bubble encompasses model
training and inference, which were covered in Sec.

Ingest reads and parses the raw data in the original dataset, as released by the dataset’s authors. It
may use parsing code available with the dataset, or implement its own parsing logic. It produces
GRAPH2TOCOPO examples (Sec.[3.2) for each of the data splits, as defined by the dataset, or might
introduce a (reproducible) random split instead.

Generate Vocabulary produces separate vocabularies for node labels, node types, edge types, and
output tokens, which can be trimmed down to a target size by frequency, or compressed into a
byte-pair or WordPiece encoding.

13

https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1904.01720
http://arxiv.org/abs/1904.01720
https://www.microsoft.com/en-us/research/publication/rat-sql-relation-aware-schema-encoding-and-linking-for-text-to-sql-parsers/
https://www.microsoft.com/en-us/research/publication/rat-sql-relation-aware-schema-encoding-and-linking-for-text-to-sql-parsers/

\/

Y

C D)
RERY Ingest | |—» Encode
Dataset Graph2ToCoPo I l

Y

Configuration Metadata | Generate
- Vocabulary
A

test.

\
\
: Evaluate
Task Metrics |<g Task Predictions | Model

Figure 3: The software architecture of PLUR. The shaded components are task-specific. Everything
else is common across all tasks.

\

Vocabularies
(node label, node |
type, edge type, Examples

output token)

Encode training, validation, and testing examples (e.g., TensorFlow tf.train.Example records)
using the vocabularies and GRAPH2TOCOPO examples.

After model training, the model can be used to make predictions on a test dataset. The test dataset and
the model predictions are fed to Evaluate Task, which applies task-specific logic to compute metrics
interesting to that task, e.g., accuracies of various kinds, precision and recall, F1 and BLEU scores,
etc. We call these task-specific metrics and use them to compare performance of our models on the
same test datasets. Evaluate Task incorporates common functionality, e.g., to parallelize evaluation
on large datasets, compute confidence scores through test resampling, etc.

While the Ingest and Evaluate Task components are task-specific, all other components are common
across all tasks. Some tasks might require custom Encode functionality; this only applied to 2 of our
16 tasks.

The framework can be parameterized by various configuration properties, €.g., the maximum size of
input graphs and TOCOPO sequences, etc. Such configuration may be used during Ingest to produce
task-specific example transformations (e.g.,to trim an example that is too big for the maximum graph
size), or during encoding to filter and transform examples. A common filtering predicate used by the
encoder is Impossible Example Filtering: it removes examples that have an out-of-vocabulary output
token, or an input pointer to a node that may have been trimmed. Task-specific transformations are
also possible.

Ingest, Encode, and Generate Vocabulary log extensive metadata that can be used for debugging.
An important use of the metadata is to ensure that task-specific metrics are correctly computed. For
example, given a target model size, some raw examples of a task may be filtered out; the metadata
record the total number of raw test examples, so that filtered-out examples can be properly accounted
for when computing performance metrics. Task-specific ingestion logic may produce custom metrics
to enable such proper accounting. For example, some classification tasks report both classification
accuracy and true-positive rate; the latter requires the number of positive examples in the input raw
data.

B The PLUR Tasks

We now describe how we brought into PLUR 16 tasks and datasets, introduced in 9 papers in the
recent literature in program understanding and repair. Each dataset is used in compliance with its
license. The philosophy of our approach was to approximate the structure of data representation in
the original papers.

The goal is not to emulate the original modelling approach precisely; instead, we aim to capture similar
data expressivity, relations, and structure, and see how our GRAPH2TOCOPO model infrastructure
can perform comparably to the original custom architecture. Since the main focus is on evaluating
PLUR’s modeling abstractions, we do, however, aim to use the same training and test examples when
comparing against previous work. For example, we are specifically not trying to improve performance
over previous work by pre-training on a large external data source, and equally, we are not trying to
evaluate the current version of PLUR against methods that employ pre-training on large external data
sources. We view pre-training or not as orthogonal to the question of what an appropriate unifying
architecture could be. In future work, however, it would certainly be interesting to create an “open”
category of PLUR where any extra data is allowed, so long as it does not overlap with any of the test
sets.

ManySStuBs4J [Karampatsis and Sutton), 2020] The original dataset was not published as part of
a task, but collected buggy Java functions, along with the type of bug, and the fixed function.
We created a classification task around this dataset, by finding a code snippet around the
change that fixes the function in the dataset (using a diff utility). We tokenize that relevant
code snippet, and we represent it in PLUR as a sequence of token vertices. The TOCOPO
output is a single token from the set of bug types and the NO_BUG token. The task metric is
classification accuracy. This is a relatively small dataset, which we have found useful for
sanity checks. The original paper did not propose a specific task and there is no external
baseline, so we simply report performance of PLUR methods.

code2seq [Alon et al., 2018|] The task is to predict the function name, given a Java function body.
The original input representation was a set of AST paths between pairs of tokens, as well as
the tokens themselves. There are a number of options for how to convert the set of AST paths
into a graph, and we explored several options (Sec.[4.2). There are three datasets of size
small, medium, and large. The TOCOPO output is a predicted function name, represented
as a sequence of subtokens. The reported metric is the F1 score. We compare against the
proposed method from the code2seq paper, which is the strongest method in the paper.

funcom [LeClair et al., 2020] The task is to predict the method docstring given the method body.
In the original dataset, the docstring and the method are already tokenized. Since the data
examples are not already represented as a graph, but as tokens, we transform them into
a node chain, one node per token, linked together via NEXT_TOKEN edges. The ToCoPoO
output consists of the docstring tokens. The reported metric is the BLEU scores broken down
into BLEU-1/BLEU-2 / BLEU-3 / BLEU-4. We compare against the strongest method
from the paper (attention-based model using AST structure) in the “standard” setting.

VarMisuseH [Hellendoorn et al.,|2020] The task, first introduced by |Vasic et al.| [2019], is to
localize and repair a Python variable-misuse bug [[Allamanis et al.,2018]): the accidental use
of the wrong variable instead of the correct variable in some Python function. Specifically,
the original task predicts the location of the bug (or a special NO_BUG location), and the
repair of the bug, which is expressed as the location of the correct variable that should have
been used instead. The original data examples are already represented as graphs, therefore
we just map the representation of those graphs to the PLUR graph abstraction. For the
ToCoPO output, we generate a special NO_BUG token if there is no variable misuse. If a
bug is detected, we generate one pointer to the location of the buggy variable use, and a
token of the correct variable that repairs the buggy use. We focus on the hardest metric of
the task here: the localization and repair accuracy of the model, defined as the number of
buggy examples for which the model predicted that the example was buggy, predicted the
correct error location, and predicted the correct repair. This dataset and representation was
introduced by [Hellendoorn et al.| [2020]] (two other versions of a task targeting the same kind
of bug appear in the CuBERT tasks below). The paper and public (GitHub) reproduction
packagg'|differ slightly in their experimental configuration; we follow the latter version and
compare against the strongest results from the GitHub repository.

Hoppity [Dinella et al., 2020] The task is to repair bugs in a corpus of buggy ASTs. We focus on the
dataset with a single AST difference, which is the dataset used for experiments in the main
paper. Hoppity admits transformations that may be adding a new AST node, replacing a
node’s type, replacing a node’s label, deleting a node, or performing no transformation. The

"https://github.com/VHellendoorn/ICLR20-Great

15

https://github.com/VHellendoorn/ICLR20-Great

original data examples are already structured as graphs, which we port to the PLUR graph
representation. For the TOCOPO output, we encode the transformation as a sequence of
tokens (each representing the transformation operation, as described above), and the relevant
arguments to that transformation, which may be pointers or other tokens. For add_node,
the arguments are a pointer into the parent node, a pointer to the sibling node, the node type
token, and the node label token; for replace_type, the arguments are a pointer to the node,
and the new node type token; for replace_val, the argument is a pointer to the node and
the new label token; for del_node, the argument is the node pointer only; and for NoOp
(i.e., no bug) there are no arguments. The reported metric is the repair sequence accuracy
(i.e., full match of the repair operations and their arguments). The Hoppity paper argues that
baseline approaches cannot be applied to their full problem and only compares against them
in restricted settings. We tackle the full problem here and compare against the full method
proposed in the paper, showing that PLUR is flexible enough to represent problems that
recent work has considered too complicated for existing methods. Note that the published
dataset required running the authors’ open-source code to reconstruct graphs; we contacted
the authors to request JSON-formatted graphs, which they made available to us. In principle,
we should be able to execute the graph-construction code, which is publicly available, rather
than using this shortcut.

convattn [Allamanis et al.,[2016] The task is to predict the method name given the method body.
In the dataset, we have the method name and method body already tokenized. Since the data
example is not represented as a graph, but represented as tokens, we transform the tokens
into a token chain, as described above for funcom. The TOCOPO output is a sequence of
method-name tokens. The reported metric is the F1 score. We compare against the strongest
performing “copy attention” model from the paper in the Rank 1 setting.

ogb-code [Hu et al., 2021]] The task is to predict the method name given the method body. The
data examples are already represented as graphs, so we just port them to the PLUR graph
abstraction. The PLUR output is the sequence of method-name tokens. The reported metric
is the F1 score. We compare against what was the top leaderboard entry for ogb-code when
we were first running experiments. However, note that the authors of the leaderboard have
recently updated the task; we will update to ogb-code2 on the Github repo accompanying
the paper.

CuBERT [Kanade et al., 2020a] CuBERT introduced five code-classification tasks and one local-
ization and repair task, all on Python code drawn from the ETH Py150 Open dataset Kanade!
et al.|[[2020c]].

Exception Classification (CuBERT-EC) predict the exception type to catch in a
try/except clause, from a set of 20 common standard exception types. The ex-
amples are released as Python code. We use the CuBERT open-sourced code and
WordPiece vocabulary [Kanade et al., [2020b] to tokenize those functions, and create
BERT-like inputs (that is, using BERT’s [CLS] and [SEP] delimiter tokens [Devlin
et al.,2019])). The TOCOPO output is a single token with the classification label from
the public datasets. The reported metric is classification accuracy.

Wrong Operator Classification (CauBERT-WB) predict if a function has swapped a bi-
nary operator (e.g., <, >=, ...) with a different, incorrect operator. Processing and
evaluation is the same as above.

Swapped Operand Classification (CuBERT-SO) predict if a non-commutative, binary
operator’s arguments have been swapped. Processing and evaluation is the same as
above.

Function-Docstring Classification (CuBERT-FD) predict if a documentation string cor-
responds to a function body or not. Processing and evaluation is the same as above.

Variable Misuse Classification (CuBERT-VM) classify a function as containing a vari-
able misuse bug (as described above) or not. Processing and evaluation is the same as
above.

Variable Misuse Localization and Repair (CuBERT-VMR) localize and repair a vari-
able misuse bug, as with VarMisuseH above. The dataset was released pre-tokenized,
so we mapped it directly to a delimited token sequence. The TOCOPO output is always
an input pointer (for the localization result) followed by the correct (subtokenized)
variable that should have been used at the pointed error location. The released dataset

16

also contains a candidate mask (a Boolean mask identifying possible repair candidates,
i.e., all variables defined in the same function), which we expose to the decoder for
prediction masking. For bug-free examples, the localization pointer points to the first
input token, which may never be the location of an error. As with VarMisuseH, the
reported metric is localization and repair accuracy. Note that the input representation
of CuBERT-VMR has slight differences from VarMisuseH: no edges, a different way
to represent bug-free examples, and a different dataset.

Note that each task has train, validation, and test examples drawn from distinct files in
the source ETH Py150 Open corpus [Kanade et al., 2020c], and the corpus has been de-
duplicated [|Allamanis,|2018]] so as not to leak information across dataset splits. We compare
against the Transformer results in the paper that do not use pre-training, for the reasons
discussed at the start of this section. There were no un-pre-trained Transformer performance
numbers reported for the C_BERT-VMR task, so we instead report performance numbers
from a BiLSTM implementation in that paper.

Retrieve & Edit [Hashimoto et al.,|2018] The task is to autocomplete a Python function given the
block comment, function name, and arguments. The block comment, function name, and
arguments are already tokenized in the provided dataset. To transform the input as a graph,
we create three token chains for the block comment, function name, and arguments, as
described above for funcom. All token chains are connected to a root node. The TOCOPO
output is the predicted function body, represented as a sequence of tokens. The reported
metrics are the correctly predicted average and maximum number of successive tokens.
We compare against the best model, which is the “Retrieve+Edit” model with £ = 1 from
the paper. Note that “Retrieve+Edit” model includes a retrieval mechanism that produces
a large improvement in results that the PLUR formulation does not support. But if we
compare against the Seq2Seq baseline reported in the same paper, the PLUR significantly
outperforms it.

B.1 The CuBERT Multi-task Dataset

To study multi-task training, we combined all of the CuBERT tasks and datasets into a new task,
CuBERT-MT. We combined the Ingest components of all six CuBERT tasks into a new one for
CuBERT-MT. Each GRAPH2TOCOPO example produced by each uni-task Ingest component is
transformed to add an extra node at the end, with a special node type TASK, holding the task type as
its label (e.g., CuBERT-VM or CuBERT-FD). We left the TOCOPO output of each uni-task unchanged.

Furthermore, we modified the Encode component for CuBERT-MT to produce not only a unified
training and validation dataset from the union of the corresponding datasets of each uni-task (used
in training), but also to produce separate test datasets, one per task but encoded with the common
vocabulary, so as to enable testing the performance of the joint model on each task’s test data
individually, as well as evaluating predictions according to the task-specific metric of each uni-task.

Finally, because the individual uni-task sizes are highly skewed (about 20K examples for CuBERT-EC
vs. 700K examples for CuBERT-VM), we also produced a rebalanced dataset, CUBERT-MTR, by
resampling examples of smaller tasks to inflate their sizes so as to match the most populus of the
tasks. We treated CABERT-MTR as a hyper-parameter mutation of CuBERT-MT, and included it in
model selection and evaluation in our main results.

Note that because the constituent uni-tasks are drawn from a source corpus whose train/validation/test
splits are de-duplicated across each other [[Kanade et al.l 2020c], it is not possible for a function that
appears in the test dataset for one uni-task to appear in the training dataset for another uni-task, and
therefore it is not possible to cross-contaminate the CuBERT-MT splits by construction.

C Experiments

Training We used 8-core TPUv2 for hardware acceleration. All models were trained for 1e6 steps,
checkpointing and validating every 10000 steps over a maximum of 100 batches. We used the Adam
optimizer without decay. We chose the best checkpoint and hyper-parameter by using the whole
sequence validation accuracy.

17

Table 3: Dataset sizes for each task. “Raw” means as released by the respective authors. “Processed”
means the number of examples seen by the GRAPH2TOCOPO model. We count all raw test examples
not seen by the model (e.g., due to filtering) as failed examples in all per-task metrics. We use
appropriate discounting in the reported results unless the original paper also did not apply such

discounting.

Dataset train_raw_count | train_processed_count | test raw_count | test_processed_count
code2seq-small 691974 691049 57088 57088
code2seq-med 3080262 3049101 419914 419914
code2seq-large 15344512 15095043 417003 417003
convattn 267928 262739 147827 146502
funcom 1937136 1801893 105832 105832
great 1798742 1756341 965380 943359
hoppity 290706 290705 36361 36361
manysstubs4;j 15386 15385 2015 2015
ogb-code 407976 358638 21948 21871
CuBERT-VMR 700708 700708 378440 378440
CuBERT-SO 236246 236246 130972 130972
CuBERT-EC 18480 18480 10348 10348
CuBERT-FD 340846 340846 186698 186698
CuBERT-WB 459400 459400 251804 251804
CuBERT-MTR 4204675 4195338 1336702 1331884
CuBERT-MT 2456388 2447051 1336702 1331884
Retrieve&Edit 76547 33063 11000 10964

Table 4: Training hyperparameters for GREAT.

Parameter Range
learning_rate [3e-5, le-4, 3e-4]
dropout_rate [0.0, 0.1]
batch_size_per_device 4, 16]
num_input_propagation_steps 8
num_output_propagation_steps 8
warmup_steps_fraction 0.0
hidden_dim 512
num_transformer_attention_heads 8
adam_eps le-8
max_gradient_norm 100
training_steps le6
validation_freq 10000

See Tab. [for a list of hyperparameters for GREAT and Tab. [5]for transformers and GGNN respec-

tively.

See Tab. [6] for the best performing hyperparameter settings per task. The best setting is largely
sensitive to the task, however, we observe the following trends in the hyperparameters. For the Cubert
datasets, a learning rate of 3e-05 with a Transformer is preferred. For Code2Seq, GREAT with a
larger learning rate of le-4 is preferred. Dropout of 0.1 seems to be generally preferred. There is no
clear signal for batch size per device.

18

Table 5: Training hyperparameters for Transformer and GREAT.

Parameter Range
learning_rate [1e-5, 3e-5, le-4]
dropout_rate [0.0, 0.1]
batch_size_per_device 4, 16]
num_input_propagation_steps 8
num_output_propagation_steps 8
warmup_steps_fraction 0.0
hidden_dim 512
num_transformer_attention_heads 8
adam_eps le-8
max_gradient_norm 100
training_steps le6
validation_freq 10000

Table 6: Best performing hyperparameter settings.

Dataset Model Learning rate | Dropout | Batch size per device
VarmisuseH Transformer 3.00E-05 0.1 4
CubertVMR GREAT 1.00E-04 0.1 16
Hoppity GGNN 3.00E-05 0.0 4
Funcom Transformer 3.00E-05 0.1 16
ConvAttn GREAT 1.00E-04 0.1 16
Code2Seq-small GREAT 1.00E-04 0.1 4
Code2Seq-medium | GREAT 1.00E-04 0.1 16
Code2Seq-large GREAT 3.00E-04 0.0 16
OGB-Code GREAT 1.00E-04 0.1 16
Cubert-EC GREAT 3.00E-05 0.1 16
Cubert-FD Transformer 3.00E-05 0.1 16
Cubert-SO Transformer 3.00E-05 0.1 16
Cubert-VM Transformer 3.00E-05 0.0 4
Cubert-WB Transformer 3.00E-05 0.0 4
Manysstubs4;j GREAT 1.00E-04 0.0 4
retrieve-and-edit GREAT 1.00E-04 0.1 4

Table 7: Full results on code2seq alternative representations.

[Representation [[Validation Sequence Accuracy | Test F1 |
partially collapsed 39.1% 54.2 (£0.13)
fully collapsed 38.9% 52.2 (£0.10)
path lengths 38.4% 53.8 (£0.16)
set of paths 39.1% 56.4 (£0.12)
leaves only 37.2% 51.2 (£0.14)

19

	Introduction
	Background and Related Work
	A Unifying Framework for Program Understanding and Repair
	Models
	Input-Output Representations
	The PLUR Tasks

	Using the PLUR Framework
	Model Development & Evaluating Cross-Cutting Model Choices
	Task Exploration
	Multi-task Learning

	Experiments
	Experimental Details
	Main Results
	Ablations & Model Choices
	Alternative Graph Representations
	Multi-task Learning

	Conclusion
	Acknowledgements
	Architecture
	The PLUR Tasks
	The CuBERT Multi-task Dataset

	Experiments

