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A Implementation details

We use the MoCo v2 [2] self-supervised model pretrained with 800 epochs on ImageNet-1K dataset
to initialize our model for experiments on all datasets, except CIFAR10/100 and ImageNet-1K, for
which we use the RotNet pretrained model provided by [4] for fair comparison. We train our model for
200 epochs on CIFAR10/100, CUB-200, Stanford-Cars, FGVC-Aircraft, and ImageNet-100 datasets,
and 90 epochs on ImageNet-1K dataset. The initial learning rate is set to 0.1 for all datasets except
ImageNet-1K, and is scheduled to decay by a factor of 10 at the 170th epochs. For ImageNet-1k
dataset, the initial learning rate is set to 0.03, and is scheduled to decay by a factor of 10 at the 30th
and 60th epochs following the common practice. For the consistency regularization term, we set the
hyper-parameters in the ramp-up function following [4] on CIFAR-10/100 and ImageNet-1k. For the
experiments on CUB-200, Stanford-Cars, FGVC-Aircraft, and ImageNet-100, we set λ = 50 and
r = 150.

B Unlabelled data containing both seen and unseen classes

Here we provide the results under the open world semi-supervised setting [1], where the unlabelled
data does not only contain the novel classes, but also the seen classes in the labelled set, which can
be regarded as an extended setting of novel category discovery. In this case, the model needs to
recognize seen classes and discover novel classes simultaneously in the unlabelled data. To enable
our model to handle this scenario, we extend the classification head ηu to have the output with a
dimension of Cl +Cu, with the first Cl-dimension corresponding to the labelled seen classes and the
last Cu-dimension corresponding to the unlabelled new classes. ηu is trained with cross-entropy loss
on the labelled data and binary cross-entropy loss on the unlabelled data. To prevent the classifier
from being biased towards the known classes, we follow the very recent preprint [1] to include two
regularization techniques to train our model. The first one is to perform the `2 normalization on both
the classifier weights and the features, and the second one is to optimize the KL divergence between
the predicted logits outputed by ηu and a uniform distribution. In table 1, we compare our method
with DTC [5], RankStat [4], and ORCA [1] on the ImageNet-100 dataset. Our method significantly
outperforms all others on novel classes, and performs on par with ORCA [1] on the seen classes.

Table 1: Comparison under open world semi supervise setting.
No Split (seen/novel) 50/50 25/75

Classes Seen Novel Seen Novel

(1) DTC [5] 25.6% 20.8% 23.5% 18.1%
(2) RankStat [4] 63.7% 47.9% 52.4% 43.8%
(3) ORCA [1] 89.1% 72.1% 89.4% 67.4%
(4) Ours 87.6% 76.0% 89.5% 71.3%

C Varying k for ranking statistics
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Figure 1: Performance with varying k for global ranking statistics.
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Figure 2: Performance with varying k for local ranking statistics.

In fig. 1 and fig. 2, we report the results with varying k for the soft ranking statistics on ImageNet-100
and Stanford-Cars datasets. Our default choice is 5 for the global one following [4] and 30 for the
local one to take more local parts into consideration. It can be seen, except the extreme case with
very small k (e.g. k = 1), the results are generally stable, further corroborating the robustness of
ranking statistics.

D A single-branch variant of our method with dual ranking statistics

Given that local ranking statistics is more strict than global ranking statistics in pairwise verification,
the positives obtained by local ranking statistics is more reliable while the negatives obtained by
global ranking statistics is more reliable. This motivates us to study the single-branch variant of
our method by simply providing positive and negative pairs using local and global ranking statistics
respectively, in which our mutual learning is no longer applicable. We report the results in the last
row of table 2. We also validate other possible ways of providing positive and negative pairs. It can
be seen, using local and global ranking statistics to provide positives and negatives respectively yields
better performance than all other combinations. However, the performance of this single-branch
variant still notably lags behind our two-branch model (see table 4 in the main paper), due to the
absence of mutual learning.

Table 2: Comparison of using different branches for positive and negative.
Positive source Negative source CUB-200 ImageNet-100

global global 39.5% 62.5%
local local 43.1% 64.2%
global local 38.6% 61.9%

local global 44.3% 64.7%

E Qualitative results

In fig. 3, we visualize the t-SNE [10] projection of the global feature embeddings on the unlabelled
data. It is clear that along with the training the features on unlabelled data become more and more
discriminative for both ImageNet-100 and Stanford-Cars. We can also observe that MoCo v2 [2]
initialization appears to be better for ImageNet-100 dataset than Stanford-Cars. This is reasonable
because the pretraining of MoCo v2 is conducted on ImageNet-1K, which contains ImageNet-100 as
a subset. On Stanford-Cars dataset, though the MoCo v2 initialization does not apppear to be good,
our method can still learn discriminative features after training.

F Comparing ranking statistics with cosine similarity

Here, we present results using ranking statistics and cosine similarity for pseudo label generation in
our two-branch framework. For ranking statistics, we experiment on both the hard version introduced
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IM-100: (a) init (MoCo v2) (b) epoch 40 (c) epoch 120 (d) epoch 200

SCars: (a) init (MoCo v2) (b) epoch 40 (c) epoch 120 (d) epoch 200

Figure 3: Evolution of the t-SNE during the training. Colors of data points denote their ground-
truth labels. The first row shows the t-SNE visualization for ImageNet-100 dataset, and the second
row shows that for Stanford Cars dataset.

Table 3: Comparing ranking statistics (RS) with cosine similarity (CS).
Global Local Mode CUB-200 Stanford-Cars ImageNet-100

CS - hard 38.5 ± 0.6% 52.1 ± 1.1% 61.8 ± 1.3%
- CS hard 42.8 ± 1.0% 52.5 ± 0.8% 61.5 ± 1.0%
CS CS hard 44.8 ± 1.3% 59.1 ± 2.0% 67.4 ± 0.8%

CS - soft 39.1 ± 0.5% 52.3 ± 1.0% 61.7 ± 1.1%
- CS soft 42.9 ± 0.8% 53.2 ± 0.7% 62.2 ± 1.3%
CS CS soft 43.7 ± 2.2% 59.4 ± 1.2% 67.5 ± 1.1%

RS - hard 39.4 ± 1.2% 53.2 ± 1.7% 62.3 ± 1.4%
- RS hard 43.3 ± 0.3% 56.4 ± 1.3% 63.7 ± 1.5%
RS RS hard 47.1 ± 1.3% 60.8 ± 1.7% 68.9 ± 1.2%

RS - soft 39.5 ± 1.7% 53.8 ± 2.0% 62.5 ± 1.2%
- RS soft 43.1 ± 0.9% 56.8 ± 1.7% 64.2 ± 1.6%
RS RS soft 47.8 ± 2.4% 61.9 ± 2.5% 69.4 ± 2.1%

in [4] and the soft version we use in this paper (see Sec. 3.1 in the main paper). We also carry
out experiments using “hard” and “soft” cosine similarity. For the “hard” cosine similarity, we
simply adopt a threshold (0.9 in our experiments) on the score to get binary pseudo labels. While
for the “soft” cosine similarity, we directly take the score as soft pseudo labels. The results are
presented in table 3. For both cosine and ranking statistics, the hard mode and soft mode perform
comparably well, with soft ranking statistics showing slightly better performance than hard ranking
statistics. While in all cases, ranking statistics performs better than cosine similarity, demonstrating
the robustness of ranking statistics. We choose to use soft ranking statistics because we believe the
continuous similarity better reflect the actually similarity of objects than the binary score. This is
important for the pairs with a similarity score around 0.5, for which the binary score is not very
reliable.

G Effects of an additional supervised finetuning stage

By default, the training of our model consists of two stages. The first stage is self-supervised
pretraining, and the second stage is joint training for novel category discovery on labelled and
unlabelled data. RankStat [4] also adopts an additional supervised finetuning stage before joint
training. We validate the effectiveness of such an additional supervised finetuning stage for our
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model. Specifically, after the self-supervised pretraining stage, we freeze the first three macro block
of ResNet [6], and finetune the last macro block with cross-entropy loss on the labelled categories,
before the joint training. Results are presented in table 4. It can be seen that this additional finetuning
stage does not bring obvious gains for our model, further demonstrating the effectiveness of our
design.

Table 4: Comparison of adding the additional supervised finetuning stage.
Method CIFAR-10 CIFAR-100 CUB-200 Stanford-Cars ImageNet-1K

RankStat [4] 90.4±0.5% 73.2±2.1% 39.5 ± 1.7% 53.8 ± 2.0% 82.5%
Ours w/o sup. 91.6±0.6% 75.3±2.3% 47.8 ± 2.4% 61.9 ± 2.5% 88.9%
Ours w/ sup. 90.8±0.7% 75.9±2.2% 48.2 ± 2.1% 61.7 ± 2.1% 88.4%

H Loss for mutual knowledge distillation

In section 3.2, we adopt the symmetric Kullback-Leibler Divergence (sKLD) as the loss for mutual
knowledge distillation between the two branches. Another widely applied loss for mutual learning is
the Jensen-Shannon Divergence(JSD) loss. In table 5 we compare our model by training with these
two different losses. Both losses are equally valid for our model.

Table 5: Different losses for mutual learning.
Method CIFAR-10 CIFAR-100 CUB-200 Stanford-Cars ImageNet-1K

Ours w/ sKLD 91.6±0.6% 75.3±2.3% 47.8 ± 2.4% 61.9 ± 2.5% 88.9%
Ours w/ JSD 91.4±0.4% 75.6±2.5% 47.9 ± 2.6% 61.7 ± 2.4% 88.8%

I Limitations and potential negative societal impacts

Although our method can achieve state-of-the-art performance on public datasets, the performance still
notably lags behind fully supervised models. Moreover, real-world data is much more complicated
than the curated data used in our experiments. Therefore, under safety-critical situations, such as
autonomous driving and medical image analysis, our method is not expected to provide reliable
enough inference, especially when the unlabelled data is largely different from the labelled data or
contains unpredictable noises. Hence, careful validation on the specific application scenario should
be carried out, before the deployment on any real-world environment.

J License of used datasets

All the datasets used in this paper are permitted for research use. CIFAR-10 and CIFAR-100
datasets [8] are released under the MIT license, allowing use for research purposes. The terms
of access of the ImageNet dataset [3] allow the use for non-commercial research and educational
purposes. Similar to ImageNet, the Stanford Cars [7] allows the use for research purposes. The
FGVC aircraft [9] dataset was made available exclusively for non-commercial research purposes by
the authors. The CUB-200 [11] dataset also allows research use.
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[1] Kaidi Cao, Maria Brbić, and Jure Leskovec. Open-world semi-supervised learning. In arXiv

preprint arXiv:2102.03526, 2021.

[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

5



[4] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisserman.
Automatically discovering and learning new visual categories with ranking statistics. In ICLR,
2020.

[5] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories
via deep transfer clustering. In ICCV, 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[7] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), 2013.

[8] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report, 2009.

[9] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[10] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 2008.

[11] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. Caltech-
UCSD Birds 200. Computation & Neural Systems Technical Report, 2010.

6


	Implementation details
	Unlabelled data containing both seen and unseen classes
	Varying k for ranking statistics
	A single-branch variant of our method with dual ranking statistics
	Qualitative results
	Comparing ranking statistics with cosine similarity
	Effects of an additional supervised finetuning stage
	Loss for mutual knowledge distillation
	Limitations and potential negative societal impacts
	License of used datasets

