
Roadmap. In Section A, we present our main algorithms. In Section B, we provide some prelim-
inaries. In Section C, we provide sparsity analysis. We show convergence analysis in Section D. In
Section E, we show how to combine the sparsity, convergence, running time all together. In Sec-
tion F, we show correlation between sparsity and spectral gap of Hessian in neural tangent kernel.
In Section G, we discuss how to generalize our result to quantum setting.

A Complete Algorithms

In this section, we present three algorithms (Alg. 4, Alg. 5 and Alg. 6) which are the complete
version of Alg. 1, Alg. 2 and Alg. 3.

Algorithm 4 Half Space Report Data Structure
1: data structure HALFSPACEREPORT
2: procedures:
3: INIT(S, n, d) . Initialize the data structure with a set S of n points in Rd

4: QUERY(a, b) . a, b ∈ Rd. Output the set {x ∈ S : sgn(〈a, x〉 − b) ≥ 0}
5: ADD(x) . Add a point x ∈ Rd to S
6: DELETE(x) . Delete the point x ∈ Rd from S
7: end data structure

Algorithm 5 Training Neural Network via building a data structure of weights.

1: procedure TRAININGWITHPREPROCESSWEIGHTS({xi}i∈[n], {yi}i∈[n],n,m,d) . Theorem 6.1
2: /*Initialization step*/
3: Sample W (0) and a according to Definition 3.2
4: b← √0.4 logm.
5: /*A dynamic data-structure*/
6: HALFSPACEREPORT HSR . Algorithm 1, Part 1 of Corollary 3.6
7: HSR.INIT({wr(0)}r∈[m],m, d) . It takes Tinit(m, d) time
8: /*Iterative step*/
9: for t = 0→ T do

10: /*Forward computation step*/
11: for i = 1→ n do
12: Si,fire ← HSR.QUERY(xi, b) . It takes Tquery(m, d, ki,t) time
13: u(t)i ← 1√

m

∑
r∈Si,fire ar · σb(wr(t)>xi) . It takes O(d · ki,t) time

14: end for
15: /*Backward computation step*/
16: P ← 0n×m . P ∈ Rn×m

17: for i = 1→ n do
18: for r ∈ Si,fire do
19: Pi,r ← 1√

m
ar · σ′b(wr(t)>xi)

20: end for
21: end for
22: M ← X diag(y − u(t)) . M ∈ Rd×n, it takes O(n · d) time
23: ∆W ← M︸︷︷︸

d×n

P︸︷︷︸
n×m

. ∆W ∈ Rd×m, it takes O(d · nnz(P )) time, nnz(P ) = O(nm4/5)

24: W (t+ 1)←W (t)− η ·∆W .
25: /*Update data structure*/
26: Let Q ⊂ [m] where for each r ∈ Q, the ∆W∗,r is not all zeros . |Q| ≤ O(nm4/5)
27: for r ∈ Q do
28: HSR.DELETE(wr(t))
29: HSR.INSERT(wr(t+ 1))
30: end for
31: end for
32: return W .W ∈ Rd×m

33: end procedure
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Algorithm 6 Training Neural Network via building a data-structure of the input points.

1: procedure TRAININGWITHPROCESSDATA({xi}i∈[n], {yi}i∈[n],n,m,d) . Theorem 6.2
2: /*Initialization step*/
3: Sample W (0) and a according to Definition 3.2
4: b← √0.4 logm.
5: /*A static data-structure*/
6: HALFSPACEREPORT HSR . Algorithm 1, Part 2 of Corollary 3.6
7: HSR.INIT({xi}i∈[n], n, d) . It takes Tinit(n, d) time
8: /*Initialize S̃r,fire and Si,fire */
9: . It takes

∑m
r=1 Tquery(n, d, k̃r,t) = O(m logn+m1/2n) time

10: S̃r,fire ← ∅ for r ∈ [m]. . S̃r,fire is the set of samples, for which neuron r fires
11: Si,fire ← ∅ for i ∈ [n]. . Si,fire is the set of neurons, which fire for xi
12: for r = 1→ m do
13: S̃r,fire ← HSR.QUERY(wr(0), b)

14: for i ∈ S̃r,fire do
15: Si,fire.ADD(r)
16: end for
17: end for
18: /*Iterative step*/
19: for t = 1→ T do
20: /*Forward computation step*/
21: for i = 1→ n do
22: u(t)i ← 1√

m

∑
r∈Si,fire ar · σb(wr(t)>xi) . It takes O(d · ki,t) time

23: end for
24: /*Backward computation step*/
25: P ← 0n×m . P ∈ Rn×m

26: for i = 1→ n do
27: for r ∈ Si,fire do
28: Pi,r ← 1√

m
ar · σ′b(wr(t)>xi)

29: end for
30: end for
31: M ← X diag(y − u(t)) . M ∈ Rd×n, it takes O(n · d) time
32: ∆W ← M︸︷︷︸

d×n

P︸︷︷︸
n×m

. ∆W ∈ Rd×m, it takes O(d · nnz(P )) time, nnz(P ) = O(nm4/5)

33: W (t+ 1)←W (t)− η ·∆W .
34: /*Update S̃r,fire and Si,fire step*/
35: . It takes O(

∑n
i=1 ki,t +

∑
r∈S[n],fire

Tquery(n, d, k̃r,t+1)) = O(n · logn ·m4/5)

36: S[n],fire ← ∪i∈[n]Si,fire

37: for r ∈ S[n],fire do
38: for i ∈ S̃r,fire do . Removing old fired neuron indices. It takes O(k̃r,t) time
39: Si,fire.DEL(r)
40: end for
41: S̃r,fire ← HSR.QUERY(wr(t+ 1), b) . It takes Tquery(n, d, k̃r,t+1) time
42: for i ∈ S̃r,fire do . Adding new fired neuron indices. It takes O(k̃r,t+1) time
43: Si,fire.ADD(r)
44: end for
45: end for
46: end for
47: return W .W ∈ Rd×m

48: end procedure

B Preliminaries

Notations For an integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector x, we use
‖x‖2 to denote the entry-wise `2 norm of a vector. We use E[] to denote the expectation and Pr[]
to denote the probability. We use M> to denote the transpose of M . We define matrix Frobenius
norm as ‖M‖F = (

∑
i,jM

2
i,j)

1/2. We use ‖M‖ to denote the operator norm of M . For d × m
weight matrix W , we define ‖W‖∞,2 := maxr∈[m] ‖wr‖2. We use x>y to denote the inner product
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between vectors x and y. We use Id to denote d-dimensional identity matrix. We use N (µ, σ2)
to denote Gaussian distribution with mean µ and variance σ2. We use λmin(M) and λmax(M) to
denote the minimum and the maximum eigenvalue of the matrix M , respectively.

B.1 Probabilities

Lemma B.1 (Bernstein inequality [Ber24]). Assume Z1, · · · , Zn are n i.i.d. random variables.
∀i ∈ [n], E[Zi] = 0 and |Zi| ≤M almost surely. Let Z =

∑n
i=1 Zi. Then,

Pr [Z > t] ≤ exp

(
− t2/2∑n

j=1 E[Z2
j ] +Mt/3

)
,∀t > 0.

Claim B.2 (Theorem 3.1 in [LS01]). Let b > 0 and r > 0. Then,

exp(−b2/2) Pr
x∼N (0,1)

[|x| ≤ r] ≤ Pr
x∼N (0,1)

[|x− b| ≤ r] ≤ Pr
x∼N (0,1)

[|x| ≤ r].

Lemma B.3 (Anti-concentration of Gaussian distribution). Let Z ∼ N (0, σ2). Then, for t > 0,

Pr[|Z| ≤ t] ≤ 2t√
2πσ

.

Theorem B.4 (Theorem 5.1.1 in [Tro15]). Let X1, . . . , Xm ∈ Rn×n be m independent random
Hermitian matrices. Assume that 0 � Xi � L · I for some L > 0 and for all i ∈ [m]. Let
X :=

∑m
i=1Xi. Then, for ε ∈ (0, 1], we have

Pr[λmin(X) ≤ ελmin(E[X])] ≤ n · exp(−(1− ε)2λmin(E[X])/(2L)).

B.2 Half-space reporting data structures

The time complexity of HSR data structure is:
Theorem B.5 (Agarwal, Eppstein and Matousek [AEM92]). Let d be a fixed constant. Let t be a
parameter between n and nbd/2c. There is a dynamic data structure for half-space reporting that
uses Od,ε(t1+ε) space and pre-processing time, Od,ε( n

t1/bd/2c log n + k) time per query where k is
the output size and ε > 0 is any fixed constant, and Od,ε(t1+ε/n) amortized update time.

As a direct corollary, we have
Corollary B.6 (HSR data-structure time complexity [AEM92]). Given a set of n points in Rd, the
half-space reporting problem can be solved with the following performances:

• Part 1.Tinit(n, d) = Od(n log n), Tquery(n, d, k) = Od,ε(n
1−1/bd/2c+ε + k), amortized

Tupdate = Od,ε(log2(n)).

• Part 2.Tinit(n, d) = Od,ε(n
bd/2c+ε), Tquery(n, d, k) = Od,ε(log(n) + k), amortized

Tupdate = Od,ε(n
bd/2c−1+ε).

B.3 Basic algebras

Claim B.7 ([Sch11]). Let M1,M2 ∈ Rn×n be two PSD matrices. Let M1 ◦ M2 denote the
Hadamard product of M1 and M2. Then,

λmin(M1 ◦M2) ≥ (min
i∈[n]

M2i,i) · λmin(M1),

λmax(M1 ◦M2) ≤ (max
i∈[n]

M2i,i) · λmax(M1).

C Sparsity Analysis

C.1 Bounding difference between continuous kernel and discrete kernel

In [DZPS19, SY19], they proved the following lemma for b = 0. Here, we provide a more general
statement for any b ≥ 0.
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Lemma C.1. For any shift parameter b ≥ 0, we define continuous version of shifted NTK Hcts and
discrete version of shifted NTK Hdis as:

Hcts
i,j := E

w∼N (0,I)

[
x>i xj1w>xi≥b,w>xj≥b

]
,

Hdis
i,j :=

1

m

m∑

r=1

[
x>i xj1w>

r xi≥b,w>
r xj≥b

]
.

We define λ := λmin(Hcts).

Let m = Ω(λ−1n log(n/ρ)) be number of samples of Hdis, then

Pr
[
λmin(Hdis) ≥ 3

4
λ
]
≥ 1− ρ.

Proof. We will use the matrix Chernoff bound (Theorem B.4) to provide a lower bound on the least
eigenvalue of discrete version of shifted NTK Hdis.

Let Hr := 1
mX̃(wr)X̃(wr)

>, where X̃(wr) ∈ Rd×n is defined as follows:

X̃(wr) =
[
1w>

r xi≥b · x1 · · · 1w>
r xn≥b · xn

]
.

Hence, Hr � 0. We need to upper-bound ‖Hr‖. Naively, we have

‖Hr‖ ≤ ‖Hr‖F ≤
n

m
,

since for each entry at (i, j) ∈ [n]× [n],

(Hr)i,j =
1

m
x>i xj1w>

r xi≥b,w>
r xj≥b ≤

1

m
x>i xj ≤

1

m
.

Then, Hdis =
∑m
r=1Hr, and E[Hdis] = Hcts. And we assume that λmin(Hcts) = λ.

Hence, by matrix Chernoff bound (Theorem B.4) and choosing choose m = Ω(λ−1n · log(n/ρ)),
we can show

Pr

[
λmin(Hdis) ≤ 3

4
λ

]
≤ n · exp(− 1

16
λ/(2n/m))

= n · exp(− λm
32n

)

≤ ρ,
Thus, we finish the proof.

C.2 Handling Hessian if perturbing weight

We present a tool which is inspired by a list of previous work [DZPS19, SY19].
Lemma C.2 (perturbed w for shifted NTK). Let b > 0 and R ≤ 1/b. Let c > 0 and c′ > 0 denote
two fxied constants. We define function H that is mapping Rm×d to Rn×n as follows:

the (i, j)-th entry of H(W ) is
1

m
x>i xj

m∑

r=1

1w>
r xi≥b,w>

r xj≥b.

Let W̃ ∈ Rd×m be m vectors that are sampled from N (0, Id). Consider W ∈ Rd×m that satisfy,
‖W̃ −W‖∞,2 ≤ R, it has

• Part 1, ‖H(W̃ )−H(W )‖F ≤ n ·min{c · exp(−b2/2), 3R} holds with probability at least
1− n2 · exp(−m ·min{c′ · exp(−b2/2), R/10}).

• Part 2, λmin(H(W )) ≥ 3
4λ− n ·min{c · exp(−b2/2), 3R} holds with probability at least

1− n2 · exp(−m ·min{c′ · exp(−b2/2), R/10})− ρ.
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Proof. Consider

‖H(W )−H(W̃ )‖2F =
∑

i∈[n]

∑

j∈[n]

(H(W̃ )i,j −H(W )i,j)
2

≤ 1

m2

∑

i∈[n]

∑

j∈[n]


∑

r∈[m]

1w̃>
r xi≥b,w̃>

r xj≥b − 1w>
r xi≥b,w>

r xj≥b




2

=
1

m2

∑

i∈[n]

∑

j∈[n]

( ∑

r∈[m]

sr,i,j,b

)2

,

where the first step follows from definition of Frobenius norm, the last third step follows from by
defining

sr,i,j,b := 1w̃>
r xi≥b,w̃>

r xj≥b − 1w>
r xi≥b,w>

r xj≥b.

For simplicity, we use sr to sr,i,j,b (note that we fixed (i, j) and b).

Define Ai,r to be the event that

Ai,r = {∃w ∈ Rd : ‖w − wr‖2 ≤ R,1w>xi≥b 6= 1w>
r xi≥b}.

Note that event Ai,r happens iff |w>r xi − b| ≤ R happens.

Prior work [DZPS19, SY19] only one way to bound Pr[Ai,r]. We present two ways of arguing the
upper bound on Pr[Ai,r]. One is anti-concentration, and the other is concentration.

By anticoncentration, (Lemma B.3),

Pr[Ai,r] ≤
2R√
2π
≤ R.

By concentration,

Pr[Ai,r] ≤ exp(−(b−R)2/2) ≤ c1 · exp(−b2/2).

where the last step follows from R < 1/b and c1 ≥ exp(1−R2/2) is a constant.

Hence,

Pr[Ai,r] ≤ min{R, c1 exp(−b2/2)}.
If the event ¬Ai,r happens and the event ¬Aj,r happens, then we have

∣∣1w̃>
r xi≥b,w̃>

r xj≥b − 1w>
r xi≥b,w>

r xj≥b
∣∣ = 0.

If the event Ai,r happens or the event Aj,r happens, then we obtain
∣∣1w̃>

r xi≥b,w̃>
r xj≥b − 1w>

r xi≥b,w>
r xj≥b

∣∣ ≤ 1.

Case 1: c1 exp(−b2/2) < R. So we have

E
w̃r

[sr] ≤ Pr[Ai,r] + Pr[Aj,r]

≤ c1 · exp(−b2/2)

Now, we calculate the variance

E
w̃r

[(
sr − E

w̃r
[sr]

)2
]

= E
w̃r

[s2
r]− E

w̃r
[sr]

2

≤ E
w̃r

[s2
r]

≤ E
w̃r

[(
1Ai,r∨Aj,r

)2]

≤ c1 · exp(−b2/2).
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Note that |sr| ≤ 1 for all r.

Define s = 1
m

∑m
r=1 sr. Thus, we are able to use Lemma B.1,

Pr
[
m · s ≥ m · c1 exp(−b2/2) +mt

]
≤ Pr

[
m∑

r=1

(sr − E[sr]) ≥ mt
]

≤ exp

(
− m2t2/2

m · c1 exp(−b2/2) +mt/3

)
, ∀t ≥ 0.

Define s = 1
m

∑m
r=1 sr. Thus, it gives

Pr
[
s ≥ c2 · exp(−b2/2)

]
≤ exp(−c3 ·m exp(−b2/2)),

where c2 := 2c1, c3 := 3
8c1 are some constants.

Case 2: exp(−b2/2) > R. Then, we have

E
w̃r

[sr] ≤ 2R, E
w̃r

[(
sr − E

w̃r
[sr]

)2
]
≤ 2R.

Define s = 1
m

∑m
r=1 sr. By Lemma B.1,

Pr [s ≥ 3R] ≤ exp (−mR/10) .

Combining two cases:

Thus, we obtain

Pr
[
‖H(W̃ )−H(W )‖F ≤ n ·min{c2 exp(−b2/2), 3R}

]

≥ 1− n2 · exp(−m ·min{c3 exp(−b2/2), R/10}).

For the second part, by Lemma C.2, Pr[λmin(H(W̃ )) ≥ 0.75 · λ] ≥ 1− ρ. Hence,

λmin(H(W )) ≥ λmin(H(W̃ ))− ‖H(W̃ )−H(W )‖
≥ λmin(H(W̃ ))− ‖H(W̃ )−H(W )‖F
≥ 0.75 · λ− n ·min{c2 · exp(−b2/2), 3R},

which happens with probability 1− n2 · exp(−m ·min{c3 · exp(−b2/2), R/10})− ρ by the union
bound.

C.3 Total movement of weights

Definition C.3 (Hessian matrix at time t). For t ≥ 0, let H(t) be an n × n matrix with (i, j)-th
entry:

H(t)i,j :=
1

m
x>i xj

m∑

r=1

1〈wr(t),xi〉≥b1〈wr(t),xj〉≥b

We follow the standard notation Dcts in Lemma 3.5 in [SY19].
Definition C.4 (Dcts). Let y ∈ Rn be the vector of the training data labels. Let err(0) ∈ Rn denote
the error of prediction of the neural network function (Definition 3.4). Define the actual moving
distance of weight Dcts to be

Dcts := λ−1 ·m−1/2 · √n · ‖err(0)‖2.

We state a tool from previous work [DZPS19, SY19] (more specifically, Lemma 3.4 in [DZPS19],
Lemma 3.6 in [SY19]). Since adding the shift parameter b to NTK doesn’t affect the proof of the
following lemma, thus we don’t provide a proof and refer the readers to prior work.
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Lemma C.5 ([DZPS19, SY19]). The condition Dcts < R implies λmin(H(t)) ≥ λ/2, ∀t ≥ 0. Let
err(t) be defined as Definition 3.4. Further,

1. ‖W (t)−W (0)‖∞,2 ≤ Dcts,

2. ‖err(t)‖22 ≤ exp(−λt) · ‖err(0)‖22.

C.4 Bounded gradient

The proof of Lemma 3.6 in [SY19] implicitly implies the following basic property of gradient.
Claim C.6 (Bounded gradient). Let err(s) be defined as Definition 3.4. For any 0 ≤ s ≤ t, We have

∥∥∥∥
∂L(W (s))

∂wr(s)

∥∥∥∥
2

≤
√
n√
m
‖err(s)‖2

∥∥∥∥
d

ds
wr(s)

∥∥∥∥
2

≤
√
n√
m
‖err(s)‖2

Proof. For the first part,
∥∥∥∂L(W (s))

∂wr(s)

∥∥∥
2

=
∥∥∥

n∑

i=1

erri(s)
1√
m
arxi · 1wr(s)>xi≥b

∥∥∥
2

by Eq. (4)

≤ 1√
m

n∑

i=1

|erri(s)| by Eq. (2)

≤
√
n√
m
‖err(s)‖2.

For second part, we use ODE to prove it.

C.5 Upper bound on the movement of weights per iteration

The following Claim is quite standard in the literature, we omitt the details.
Claim C.7 (Corollary 4.1 in [DZPS19], Lemma 3.8 in [SY19]). Let err(i) be defined as Defini-
tion 3.4. If ∀i ∈ [t], ‖err(i)‖22 ≤ (1− ηλ/2)i · ‖err(0)‖22, then

‖W (t+ 1)−Wr(0)‖∞,2 ≤ 4λ−1m−1/2 · √n · ‖err(0)‖2 := D.

C.6 Bounding the number of fired neuron per iteration

In this section, we will show that for t = 0, 1, . . . , T , the number of fire neurons ki,t = |Si,fire(t)| is
small with high probability.

We define the set of neurons that are flipping at time t:
Definition C.8 (flip set). For each i ∈ [n], for each time t ∈ [T ] let Si,flip(t) ⊂ [m] denote the set
of neurons that are never flipped during the entire training process,

Si,flip(t) := {r ∈ [m] : sgn(〈wr(t), xi〉 − b) 6= sgn(〈wr(t− 1), xi〉 − b)}.

Over all the iterations of training algorithm, there are some neurons that never flip states. We provide
a mathematical formulation of that set,
Definition C.9 (noflip set). For each i ∈ [n], let Si ⊂ [m] denote the set of neurons that are never
flipped during the entire training process,

Si := {r ∈ [m] : ∀t ∈ [T ] sgn(〈wr(t), xi〉 − b) = sgn(〈wr(0), xi〉 − b)}. (6)

In Lemma 3.8, we already show that ki,0 = O(m ·exp(−b2/2)) for all i ∈ [n] with high probability.
We can show that it also holds for t > 0.

22



Lemma C.10 (Bounding the number of fired neuron per iteration). Let b ≥ 0 be a parameter,
and let σb(x) = max{x, b} be the activation function. For each i ∈ [n], t ∈ [T ], ki,t is the
number of activated neurons at the t-th iteration. For 0 < t ≤ T , with probability at least 1 − n ·
exp

(
−Ω(m) ·min{R, exp(−b2/2)}

)
, ki,t is at most O(m exp(−b2/2)) for all i ∈ [n].

Proof. We prove this lemma by induction.

The base case of t = 0 is shown by Lemma 3.8 that ki,0 = O(m · exp(−b2/2)) for all i ∈ [n] with
probability at least 1− n exp(−Ω(m · exp(−b2/2))).

Assume that the statement holds for 0, . . . , t− 1. By Claim C.7, we know ∀k < t,

‖W (k + 1)−W (0)‖∞,2 < R.

Consider the t-th iteration. For each i ∈ [n], consider the set of activated neurons Si,fire. We
note that for the neurons in Si, with high probability these neurons will not be activated in the t-th
iteration if they are not activated in the (t− 1)-th iteration. By Claim C.11, for r ∈ [m],

Pr[r /∈ Si] ≤ min
{
R,O(exp(−b2/2))

}
.

On the one hand, if R < O(exp(−b2/2)), then E[|Si|] ≤ mR. By Lemma B.1,

Pr
[
|Si| > t

]
≤ exp

(
− t2/2

mR+ t/3

)
.

If we take t := mR, then we have

Pr
[
|Si| > mR

]
≤ exp (−3mR/8) .

On the other hand, if O(exp(−b2/2)) < R, then E[|Si|] ≤ O(m exp(−b2/2)). By Lemma B.1, we
have that

Pr
[
|Si| > t

]
≤ exp

(
− t2/2

O(m exp(−b2/2)) + t/3

)
.

If we take t := m exp(−b2/2), we have that

Pr
[
|Si| > m exp(−b2/2)

]
≤ exp(−Ω(m exp(−b2/2))).

Then, we know that in addition to the fire neurons in Si,noflip, there are at most m ·
min{R, exp(−b2/2)} neurons are activated in t-th iteration with high probability.

By a union bound for i ∈ [n], we obtain with probability

≥ 1− n · exp(−Ω(m) ·min{R, exp(−b2/2)}),
the number of activated neurons for xi at the t-th iteration of the algorithm is

ki,t = |Si,fire(t)| ≤ ki,0 +mmin{R, exp(−b2/2)} ≤ O(m exp(−b2/2)),

where the last step follows from ki,0 = O(m exp(−b2/2)) by Lemma 3.8.

The Lemma is then proved for all t = 0, . . . , T .

Claim C.11 (Bound on noflip probability). Let R ≤ 1/b. For i ∈ [n], let Si be the set defined by
Eq. (6).
Part 1. For r ∈ [m], r /∈ Si if and only if |〈wr(0), xi〉 − b| < R.
Part 2. If wr(0) ∼ N (0, Id), then

Pr[r /∈ Si] ≤ min{R,O(exp(−b2/2))} ∀r ∈ [m].

Proof. Part 1. We first note that r /∈ Si ⊂ [m] is equivalent to the event that

∃w ∈ Rd, s.t.1〈wr(0),xi〉≥b 6= 1〈w,xi〉≥b ∧ ‖w − wr(0)‖2 < R.

Assume that ‖w − wr(0)‖2 = R. Then, we can write w = wr(0) + R · v with ‖v‖2 = 1 and
〈w, xi〉 = 〈wr(0), xi〉+R · 〈v, xi〉.
Now, suppose there exists a w such that 1〈wr(0),xi〉≥b 6= 1〈w,xi〉≥b.
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• If 〈wr(0), xi〉 > b, then there exists a vector v ∈ Rd such thatR · 〈v, xi〉 < b−〈wr(0), xi〉,
• If 〈wr(0), xi〉 < b, then there exists a vector v ∈ Rd such thatR · 〈v, xi〉 > b−〈wr(0), xi〉.

Since ‖xi‖2 = 1 and 〈v, xi〉 ∈ [−1, 1], we can see that the above conditions hold if and only if

b− 〈wr(0), xi〉 > −R, and
b− 〈wr(0), xi〉 < +R.

In other words, r /∈ Si if and only if |〈wr(0), xi〉 − b| < R.

Part 2.

We have

Pr[r /∈ Si] = Pr
z∼N (0,1)

[|z − b| < R] by 〈wr, xi〉 ∼ N (0, 1)

≤ Pr
z∼N (0,1)

[|z| < R] by symmetric property of Gaussian distribution

≤ 2R√
2π

by anti-concentration inequality of Gaussian (Lemma B.3)

≤ R.

On the other hand, we also know

Pr[r /∈ Si] ≤ Pr
z∼N (0,1)

[z ≥ b−R] ≤ exp(−(b−R)2/2) ≤ O(exp(−b2/2)),

where the last step follows from R < 1/b.

D Convergence Analysis

D.1 Upper bound the initialization

The following Claim provides an upper bound for initialization. Prior work only shows it for b = 0,
we generalize it to b ≥ 0. The modification to the proof of previous Claim 3.10 in [SY19] is quite
straightforward, thus we omit the details here.
Claim D.1 (Upper bound the initialization, shited NTK version of Claim 3.10 in [SY19]). Let b ≥ 0
denote the NTK shifted parameter. Let parameter ρ ∈ (0, 1) denote the failure probability. Then

Pr[‖err(0)‖22 = O(n(1 + b2) log2(n/ρ))] ≥ 1− ρ.

D.2 Bounding progress per iteration

In previous work, [SY19] defineH andH⊥ only for b = 0. In this section, we generalize it to b ≥ 0.
Let us define two shifted matrices H and H⊥

H(k)i,j :=
1

m

m∑

r=1

〈xi, xj〉1〈wr(k),xi〉≥b,〈wr(k),xj〉≥b, (7)

H(k)⊥i,j :=
1

m

∑

r∈Si

〈xi, xj〉1〈wr(k),xi〉≥b,〈wr(k),xj〉≥b. (8)

We define

v1,i :=
1√
m

∑

r∈Si
ar(σb(wr(k + 1)>xi)− σb(wr(k)>xi))

v2,i :=
1√
m

∑

r∈Si

ar(σb(wr(k + 1)>xi)− σb(wr(k)>xi)) (9)

Following the same proof as Claim 3.9 [SY19], we can show that the following Claim. The major
difference between our claim and Claim 3.9 in [SY19] is, they only proved it for the case b = 0. We
generalize it to b ≥ 0. The proof is several basic algebra computations, we omit the details here.
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Claim D.2 (Shifted NTK version of Claim 3.9 in [SY19]). Let err(k) = y − u(k) be defined as
Definition 3.4.

‖err(k + 1)‖22 = ‖err(k)‖22 +B1 +B2 +B3 +B4,

where

B1 := − 2η · err(k)> ·H(k) · err(k),

B2 := + 2η · err(k)> ·H(k)⊥ · err(k),

B3 := − 2err(k)>v2,

B4 := + ‖u(k + 1)− u(k)‖22.

The nontrivial parts in our analysis is how to bound B1, B2, B3 and B4 for the shifted cases (We
will provide a proof later). Once we can bound all these terms, we can show the following result for
one iteration of the algorithm:
Lemma D.3 (Shifted NTK version of Page 13 in [SY19]). We have

‖err(k + 1)‖22 ≤ ‖err(k)‖22 · (1− ηλ+ 4ηn ·min{R, exp(−b2/2)}+ η2n2))

holds with probability at least

1− 2n2 · exp(−Ω(m) ·min{R, exp(−b2/2)})− ρ.

Proof. We are able to provide the following upper bound for ‖err(k + 1)‖22:

‖err(k + 1)‖22
= ‖err(k)‖22 +B1 +B2 +B3 +B4 by Claim D.2

≤ ‖err(k)‖22(1− ηλ+ 4ηn ·min{R, exp(−b2/2)}+ η2n2) by Claim D.5, D.6, D.7 and D.8

D.3 Upper bound on the norm of dual Hessian

The proof of the following fact is similar to Fact C.1 in [SY19]. We generalize the b = 0 to b ≥ 0.
The same bound will hold as Fact C.1 in [SY19] if we replace 1wr(k)>xi≥0 by 1wr(k)>xi≥b. Thus,
we omit the details here.
Fact D.4 (Shifted NTK version of Fact C.1 in [SY19]). Let b ≥ 0. Let shifted matrix H(k)⊥ be
defined as Eq. (8). For all k ≥ 0, we have

‖H(k)⊥‖F ≤
n

m2

n∑

i=1

|Si|2.

D.4 Bounding the gradient improvement term

Claim D.5 (Bounding the gradient improvement term). Let H(k) be shifted matrix (see Eq. (7)).
Assume b ≥ 0. Denote ρ0 = n2 · exp(−m · min{c′ · exp(−b2/2), R/10}) + ρ. We define B1 :=
−2ηerr(k)>H(k)err(k). Assuming either of the following condition,

• R ≤ λ
12n ,

• b ≥
√

2 · log(4cn/λ).

Then, we have

Pr[B1 ≤ −ηλ · ‖err(k)‖22] ≥ 1− ρ0.

Proof. By Lemma C.2, there exists constants c, c′ > 0 such that

λmin(H(W )) ≥ 3

4
λ− n ·min{c · exp(−b2/2), 3R}
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with probability at least 1− ρ0.

If we have R ≤ λ
12n or b ≥

√
2 · log(4cn/λ), then

λmin(H(W )) ≥ 1

2
λ.

Finally, we have

err(k)> ·H(k) · err(k) ≥ ‖err(k)‖22 · λ/2.

D.5 Bounding the blowup by the dual Hessian term

Claim D.6 (Bounding the blowup by the dual Hessian term). Let shifted matrix H(k)⊥ be defined
as Eq. (8). Let ρ0 = n exp(−Ω(m) ·min{R, exp(−b2/2)}). Let b ≥ 0 be shifted NTK parameter.
We define B2 := 2η · err(k)> ·H(k)⊥ · err(k). Then

Pr[B2 ≤ 2ηn ·min{R, exp(−b2/2)} · ‖err(k)‖22] ≥ 1− ρ0.

Proof. By property of spectral norm,

B2 ≤ 2η‖err(k)‖22‖H(k)⊥‖.

Using Fact D.4, we have ‖H(k)⊥‖F ≤ n
m2

∑n
i=1 |Si|2.

By Lemma C.10, ∀i ∈ {1, 2, · · · , n}, it has

Pr
[
|Si| ≤ m ·min{R, exp(−b2/2)}

]
≥ 1− ρ0. (10)

Hence, with probability at least 1− ρ0

‖H(k)⊥‖2F ≤
n

m2
· n ·m2 ·min{R2, exp(−b2)} = n2 ·min{R2, exp(−b2)}.

Putting all together, we have

‖H(k)⊥‖ ≤ ‖H(k)⊥‖F ≤ n ·min{R, exp(−b2/2)}

with probability at least 1− ρ0.

D.6 Bounding the blowup by the flip-neurons term

Claim D.7 (Bounding the blowup by flipping neurons term). Let ρ0 = n exp(−Ω(m) ·
min{R, exp(−b2/2)}). We define B3 := −2err(k)>v2. Let b ≥ 0 be shifted NTK parameter.
Then we have

Pr[B3 ≤ 2ηn ·min{R, exp(−b2/2)} · ‖err(k)‖22] ≥ 1− ρ0.

Proof. Using Cauchy-Schwarz inequality, we have B3 ≤ 2‖err(k)‖2 · ‖v2‖2.
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Then we focus on ‖v2‖2,

‖v2‖22 ≤
n∑

i=1


 η√

m

∑

r∈Si

∣∣∣∣(
∂L(W (k))

∂wr(k)
)>xi

∣∣∣∣




2

by Eq. (9)

=
η2

m

n∑

i=1

(
m∑

r=1

1r∈Si

∣∣∣∣(
∂L(W (k))

∂wr(k)
)>xi

∣∣∣∣

)2

≤ η2

m
· max
r∈[m]

∣∣∣∣
∂L(W (k))

∂wr(k)

∣∣∣∣
2

·
n∑

i=1

(
m∑

r=1

1r∈Si

)2

≤ η2

m
· (
√
n√
m
‖err(k)‖2)2 ·

n∑

i=1

(
m∑

r=1

1r∈Si

)2

by Claim C.6

≤ η2

m
· (
√
n√
m
‖err(k)‖2)2 ·

n∑

i=1

m2 ·min{R2, exp(−b2)} by Eq. (10)

= η2n2 ·min{R2, exp(−b2)} · ‖err(k)‖22,

D.7 Bounding the blowup by the prediction movement term

The proof of the following Claim is quite standard and simple in literature, see Claim 3.14 in [SY19].
We omit the details here.
Claim D.8 (Bounding the blowup by the prediction movement term).

B4 ≤ η2n2 · ‖err(k)‖22.

D.8 Putting it all together

The goal of this section to combine all the convergence analysis together.
Lemma D.9 (Convergence). Let η = λ/(4n2), R = λ/(12n), let b ∈ [0, n], and

m ≥ Ω(λ−4n4b2 log2(n/ρ)),

we have

Pr
[
‖err(t)‖22 ≤ (1− ηλ/2)t · ‖err(0)‖22

]
≥ 1− 2ρ.

Proof. We know with probability ≥ 1− 2n2 · exp(−Ω(m) ·min{R, exp(−b2/2)})− ρ,

‖err(t+ 1)‖22 ≤ ‖err(t)‖22 · (1− ηλ+ 4ηn ·min{R, exp(−b2/2)}+ η2n2)),

and we want to show that

1− ηλ+ 4ηn ·min{R, exp(−b2/2)}+ η2n2 ≤ 1− ηλ/2, and (11)

2n2 · exp(−Ω(m) ·min{R, exp(−b2/2)}) ≤ ρ. (12)

Claim C.7 requires the following relationship between D and R,

D =
4
√
n‖err(0)‖2√
mλ

< R

By Claim D.1, we can upper bound the prediction error at the initialization,

‖err(0)‖22 = O(nb2 log2(n/ρ)),

Combining the above two equations gives

R > Ω(λ−1nm−1/2b log(n/ρ)). (13)
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Claim D.5 (where 0 < c < e is a constant) requires an upper bound on R,4

R ≤ λ

12n
. (14)

Combing the lower bound and upper bound of R, it implies the lower bound on m in our Lemma
statement.

And Lemma C.1 also requires that

m = Ω(λ−1n log(n/ρ)). (15)

which is dominated by the lower bound on m in our lemma statement, thus we can ignore it.

Lemma C.1 and Claim C.11 require that

R < 1/b. (16)

which is equivalent to

b < 12n/λ

However, by Theorem F.1, it will always hold for any b > 0.

Note that Eq. (11) can be rewritten as

4ηn ·min{R, exp(−b2/2)}+ η2n2 ≤ ηλ/2.
where it follows from taking η := λ/(4n2) and R = λ/(12n).

Therefore, we can take the choice of the parameters m, b,R and Eqs. (11), (12) imply

Pr[‖err(t+ 1)‖22 ≤ (1− ηλ/2) · ‖err(t)‖22] ≥ 1− 2ρ.

E Combine

Corollary E.1 (Sublinear cost per iteration). Let n denote the number of points. Let d denote the
dimension of points. Let ρ ∈ (0, 1/10) denote the failure probability. Let δ be the separability of
data points. For any parameter α ∈ (0, 1], we choose b =

√
0.5(1− α) logm, if

m = Ω((δ−4n10 log4(n/ρ))1/α)

then the sparsity is

O(m
3+α
4 ).

Furthermore,

• If we preprocess the initial weights of the neural network, then we choose α = 1− 1/Θ(d)
to get the desired running time.

• If we preprocess the training data points, then we choose α to be an arbitrarily small
constant to get the desired running time.

Proof. From Theorem F.1, we know

λ ≥ exp(−b2/2) · δ

100n2

which is equivalent to

λ−1 ≤ exp(b2/2) · 100n2

δ
.

4Due to the relationship between b and λ, we are not allowed to choose b in an arbitrary function of λ. Thus,
we should only expect to use R to fix the problem.
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For convergence, we need

m = Ω(λ−4n4b2 log2(n/ρ))

Since we know the upper bound of λ−1, thus we need to choose

m = Ω(exp(4 · b2/2) · δ−4 · n10b2 log2(n/ρ))

From sparsity, we have

O(m · exp(−b2/2))

Let us choose b =
√

0.5(1− α) logm, for any α ∈ (0, 1].

For the lower bound on m, we obtain

m ≥ (δ−4n10 log4(n/ρ))1/α

For the sparsity, we obtain

m ·m−(1−α)/4 = m
3+α
4

Theorem E.2 (Main result, formal of Theorem 6.1 and 6.2). Given n data points in d-dimensional
space. Running gradient descent algorithm on a two-layer ReLU (over-parameterized) neural net-
work withm neurons in the hidden layers is able to minimize the training loss to zero, let Tinit denote
the preprocessing time and Citer denote the cost per iteration of gradient descent algorithm.

• If we preprocess the initial weights of the neural network (Algorithm 2), then

Tinit = Od(m logm), Citer = Õ(m1−Θ(1/d)nd).

• If we preprocess the training data points (Algorithm 3), then

Tinit = O(nd), Citer = Õ(m3/4+o(1)nd).

F Bounds for the Spectral Gap with Data Separation

Theorem F.1 (Formal version of Proposition 5.1). Let x1, . . . , xn be points in Rd with unit Eu-
clidean norm and w ∼ N (0, Id). Form the matrix X ∈ Rn×d = [x1 . . . xn]>. Suppose there exists
δ ∈ (0,

√
2) such that

min
i 6=j∈[n]

{‖xi − xj‖2, ‖xi + xj‖2} ≥ δ.

Let b ≥ 0. Recall the continuous Hessian matrix Hcts is defined by

Hcts
i,j := E

w∼N (0,I)

[
x>i xj1w>xi≥b,w>xj≥b

]
∀(i, j) ∈ [n]× [n].

Let λ := λmin(Hcts). Then, we have

exp(−b2/2) ≥ λ ≥ exp(−b2/2) · δ

100n2
. (17)

Proof. Part 1: Lower bound.

Define the covariance of the vector 1Xw>b ∈ Rn as

E
w∼N (0,Id)

[
(1Xw>b)(1Xw>b)

>] .

Then, Hcts can be written as

Hcts = E
w∼N (0,Id)

[
(1Xw>b)(1Xw>b)

>] ◦XX>,
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where A ◦B denotes the Hadamard product between A and B.

By Claim B.7, and since ‖xi‖2 = 1 for all i ∈ [n], we only need to show:

E
w∼N (0,Id)

[
(1Xw>b)(1Xw>b)

>] � exp(−b2/2) · δ

100n2
· In.

Fix a unit length vector a ∈ Rn. Suppose there exist constants c1, c2 such that

Pr
[∣∣a>1Xw>b

∣∣ ≥ c1‖a‖∞
]
≥ c2δ

n
. (18)

This would imply that

E
[(
a>1Xw>b

)2] ≥ E
[∣∣a>1Xw>b

∣∣]2

≥ c21‖a‖2∞(
c2δ

n
)2

≥ c21c2
δ

n2
,

where the first step follows from Jensen’s inequality, the second step follows from Markov’s in-
equality, the last step follows from ‖a‖2 = 1.

Since this is true for all a, we find Eq. (17) with c21c2 = 1
100 by choosing c1 = 1/2, c2 = 1/25 as

described later.

Hence, our goal is proving Eq. (18). Without loss of generality, assume |a1| = ‖a‖∞ and construct
an orthonormal basisQ ∈ Rd×d in Rd where the first column is equal to x1 ∈ Rd andQ = [x1 Q] ∈
Rd×d. Note that g = Q>w ∼ N (0, Id) and we have

w = Qg = g1x1 +Qg,

where g =

[
g1

g

]
∈ Rd and the first step follows from QQ> = Id.

For 0 ≤ γ ≤ 1/2, Gaussian small ball guarantees

Pr[|g1| ≤ γ] ≥ 7γ

10
.

Then, by Theorem 3.1 in [LS01] (Claim B.2), we have

Pr[|g1 − b| ≤ γ] ≥ exp(−b2/2) · 7γ

10
.

Next, we argue that zi := 〈Qg, xi〉 is small for all i 6= 1. For a fixed i ≥ 2, observe that

zi ∼ N (0, 1− 〈x1, xi〉2).

Let τi,1 := 〈xi, x1〉.
Note that δ-separation implies

1− |〈x1, xi〉| =
1

2
min{‖x1 − xi‖22, ‖x1 + xi‖22} ≥

δ2

2

Hence |τi,1| ≤ 1− δ2/2.

Then, from Gaussian anti-concentration bound (Lemma B.3) and variance bound on zi, we have

Pr[|zi| ≤ |τi,1|γ] ≤
√

2

π

|τi,1|γ√
1− τ2

i,1

≤ 2γ

δ
√
π

≤ 2γ

δ
,
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which implies that

Pr[|zi − (1− τi,1)b| ≤ |τi,1| · γ] ≤ Pr[|zi| ≤ γ] ≤ 2γ

δ
.

Hence, by union bound,

Pr[∀i ∈ {2, · · · , n} : |zi − (1− τi,1)b| ≤ |τi,1| · γ] ≥ 1− n2γ

δ

Define E to be the following event:

E :=
{
|g1 − b| ≤ γ and |zi − (1− τi,1)b| ≤ |τi,1| · γ, ∀i ∈ {2, · · · , n}

}
.

Since g1 ∈ R is independent of g, we have

Pr[E ] = Pr[|g1 − b| ≤ γ] · Pr[∀i ∈ {2, · · · , n} : |zi − (1− τi,1)b| ≤ |τi,1| · γ]

≥ exp(−b2/2) · 7γ

10
· (1− 2nγ/δ)

≥ exp(−b2/2) · 7δ

80n
.

where the last step follows from choosing γ := δ
4n ∈ [0, 1/2].

To proceed, define

f(g) := 〈a,1Xw>b〉

= a1 · 1g1>b +
n∑

i=2

(ai · 1x>
i x1·g1+x>

i Qg>b
)

= a1 · 1g1>b +

n∑

i=2

(ai · 1τi,1·g1+x>
i Qg>b

).

where the third step follows from τi,1 = x>i x1.

On the event E , by Claim F.2, we have that 1τi,1·g1+zi>b = 1zi>(1−τi,1)b.

Hence, conditioned on E ,

f(g) = a11g1>b + rest(g),

where

rest(g) :=

n∑

i=2

ai · 1x>
i Qg>(1−τi,1)b.

Furthermore, conditioned on E , g1, g are independent as zi’s are function of g alone. Hence, E can
be split into two equally likely events that are symmetric with respect to g1 i.e. g1 ≥ b and g1 < b.

Consequently,

Pr
[
|f(g)| ≥ max{|a11g1>b + rest(g)|, |a11g1<b + rest(g)|}

∣∣∣ E
]
≥ 1/2 (19)

Now, using max{|a|, |b|} ≥ |a− b|/2, we find

Pr[|f(g)| ≥ 0.5|a1| · |1g1>b − 1g1<b| | E ]

= Pr[|f(g)| ≥ 0.5|a1| | E ]

= Pr[|f(g)| ≥ 0.5‖a‖∞ | E ]

≥ 1/2,

where |a1| = ‖a‖∞.
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This yields

Pr[|f(g)| ≥ ‖a‖∞/2] ≥ Pr[E ]/2 ≥ exp(−b2/2) · 7δ

160n
.

Part 2: Upper bound.
λ = λmin(Hcts)

= min
x∈Rd:‖x‖2=1

x>Hctsx

≤ e>1 Hctse1

= (Hcts)1,1

= E
w

[
x>1 x11w>x1≥b,

]

= Pr
w

[w>x1 ≥ b]

≤ exp(−b2/2),

where e1 := [1 0 · · · 0]
>, and the sixth step follows from ‖x1‖2 = 1, the last step follows

from the concentration of Gaussian distribution. In Line 5 and 6 of the above proof, w is sampled
from N (0, Id).

Claim F.2. Suppose |g1 − b| ≤ γ.

• If τi,1 > 0, then |zi − (1− τi,1)b| > +τi,1γ implies that 1τi,1·g1+zi>b = 1zi>(1−τi,1)b.

• If τi,1 < 0, then |zi − (1− τi,1)b| > −τi,1γ implies that 1τi,1·g1+zi>b = 1zi>(1−τi,1)b.

That is, if |zi − (1− τi,1)b| > |τi,1|γ, then we have 1τi,1·g1+zi>b = 1zi>(1−τi,1)b.

Proof. Case 1. We can assume τi,1 > 0. By assumption, we know that g1 ∈ [b− γ, b+ γ].

Consider the forward direction first.

If τi,1g1 + zi > b, then

zi > b− τi,1(b+ γ) = (1− τi,1)b− τi,1γ.
According to the range of zi, it implies zi > (1− τi,1)b.

Then, consider the backward direction.

If zi > (1− τi,1)b, then by the range of zi, we have zi > (1− τi,1)b+ τi,1γ.

Hence,

τi,1g1 + zi > τi,1(b− γ) + (1− τi,1)b+ τi,1γ = b.

Case 2. The τi,1 < 0 case can be proved in a similar way.

G Quantum Algorithm for Training Neural Network

In this section, we provide a quantum-classical hybrid approach to train neural networks with truly
sub-quadratic time per iteration. The main observation is that the classical HSR data structure can
be replaced with the Grover’s search algorithm in quantum.

We first state our main result in below, showing the running time of our quantum training algorithm:
Corollary G.1 (Main theorem). Given n data points in d-dimensional space. Running gradient
descent algorithm on a two-layer, m-with, over-parameterized, and ReLU neural network will min-
imize the training loss to zero, let Citer denote the cost per iteration of gradient descent algorithm.
Then, we have

Citer = Õ(m9/10nd).

by applying Grover’s search algorithm for the neurons (Algorithm 7) or the input data points (Algo-
rithm 8).
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Remark G.2. We remark that previous works ([KLP19, AHKZ20]) on training classical neural net-
works use the quantum linear algebra approach, which achieves quantum speedup in the linear al-
gebra operations in the training process. For example, [KLP19] used the block encoding technique
to speedup the matrix multiplication in training convolutional neural network (CNN). [AHKZ20]
used the quantum inner-product estimation to reduce each neuron’s computational cost. One draw-
back of this approach is that the quantum linear algebra computation incurs some non-negligible
errors. Hence, extra efforts of error analysis are needed to guarantee that the intermediate errors
will not affect the convergence of their algorithms.

Compared with the previous works, the only quantum component of our algorithm is Grover’s
search. So, we do not need to worry about the quantum algorithm’s error in the training pro-
cess. And we are able to use our fast training framework to exploit a sparse structure, which makes
the Grover’s search algorithm run very fast, and further leads to a truly sub-quadratic training
algorithm.

Remark G.3. We also remark the difference between two algorithms in this quantum section the
first algorithm runs Grover’s search for each data point to find the activated neurons, while the
second one runs Grover’s search for each neuron to find the data points that make it activated. The
advantage of Algorithm 8 is it uses less quantum resources, since its search space is of size O(n)
and the first algorithm’s search space is of size O(m).

Algorithm 7 Quantum-Classical Hybrid Training Neural Network, Version 1

1: procedure ORACLEPREP(i ∈ [n], t ∈ [T ])
2: Prepare the quantum query oracle Oi,t such that . Each oracle call takes O(d) time

Oi,t : |r〉 |0〉 7→
{
|r〉 |1〉 if wr(t)>xi > b,

|r〉 |0〉 otherwise.

3: end procedure
4: procedure QTRAININGALGORITHMI({xi}i∈[n], {yi}i∈[n], n,m, d) . Corollary G.1
5: Sample w(0) and a according to def. 3.2
6: b← √0.4 logm.
7: for t = 0→ T do
8: /*Quantum part*/
9: for i = 1→ n do

10: Oi,t ← ORACLEPREP(i, t)
11: Use Grover’s search with oracle Oi,t to find the set Si,fire ⊂ [m]

12: . It takes Õ(
√
m · ki,t · d) time

13: end for
14: /*Classical part*/
15: for i = 1→ n do
16: u(t)i ← 1√

m

∑
r∈Si,fire arσb(wr(t)>xi) . It takes O(d · ki,t) time

17: end for
18: for i = 1→ n do
19: for r ∈ Si,fire do
20: Pi,r ← 1√

m
arσ

′
b(wr(t)>xi)

21: end for
22: end for
23: M ← X diag(y − u(t)) . M ∈ Rd×n, it takes O(n · d) time
24: ∆W ←MP . ∆W ∈ Rd×m, it takes O(d · nnz(P )) time
25: W (t+ 1)←W (t)− η ·∆W .
26: end for
27: return W
28: end procedure

We first state a famous result about the quadratic quantum speedup for the unstructured search
problem using Grover’s search algorithm.

Theorem G.4 (Grover’s search algorithm [Gro96, BHMT02]). Given access to the evaluation or-
acle for an unknown function f : [n] → {0, 1} such that |f−1(1)| = k for some unknown number
k ≤ n, we can find all i’s in f−1(1) in Õ(

√
nk)-time quantumly.
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Algorithm 8 Quantum-Classical Hybrid Training Neural Network, Version 2.

1: procedure QTRAININGALGORITHMII({xi}i∈[n], {yi}i∈[n],n,m,d) . Corollary G.1
2: Sample w(0) and a according to def. 3.2
3: b← √0.4 logm.
4: /*Initialize S̃r,fire and Si,fire */ . It takes

∑m
r=1 Õ((nk̃r,t)

1/2d) ≤ O(m9/10nd) time in
total.

5: S̃r,fire ← ∅ for r ∈ [m].
6: Si,fire ← ∅ for i ∈ [n].
7: for r = 1→ m do
8: S̃r,fire ← use Grover’s serach to find all i ∈ [n] s.t. σb(wr(1)>xi) 6= 0.
9: for i ∈ S̃r,fire do

10: Si,fire.ADD(r)
11: end for
12: end for
13: /*Iterative step*/
14: for t = 0→ T do
15: for i = 1→ n do
16: u(t)i ← 1√

m

∑
r∈Si,fire ar · σb(wr(t)>xi) . It takes O(d · ki,t) time

17: end for
18: P ← 0n×m . P ∈ Rn×m
19: for i = 1→ n do
20: for r ∈ Si,fire do
21: Pi,r ← 1√

m
ar · σ′b(wr(t)>xi)

22: end for
23: end for
24: M ← X diag(y − u(t)) . M ∈ Rd×n, it takes O(n · d) time
25: ∆W ←MP . ∆W ∈ Rd×m, it takes O(m4/5nd) time
26: W (t+ 1)←W (t)− η ·∆W .
27: /*Update S̃r,fire and Si,fire step*/ . It takes Õ(m9/10nd) time in total
28: S[n],fire ← ∪i∈[n]Si,fire

29: for r ∈ S[n],fire do
30: for i ∈ S̃r,fire do . It takes O(k̃r,t) time
31: Si,fire.DEL(r)
32: end for
33: S̃r,fire ← use Grover’s search to find all i ∈ [n] s.t. σb(wr(t+ 1)>xi) 6= 0.
34: for i ∈ S̃r,fire do . It takes O(k̃r,t+1) time
35: Si,fire.ADD(r)
36: end for
37: end for
38: end for
39: return W . W ∈ Rd×m
40: end procedure

Lemma G.5 (Running time). For t = 0, 1, . . . , T , the time complexity of the t-th iteration in Algo-
rithm 7 is

Õ
(
nd
√
m ·max

i∈[n]

√
ki,t

)
,

where ki,t = |Si,fire(t)|.

Proof. We first consider the quantum part of the algorithm, which is dominated by the for-loop
at Line 9. For each i ∈ [n], we need to find the set Si,fire(t) by Grover’s search, which takes
Õ(
√
mki,t · Toracle) time. In our case, each oracle call takes O(d) time. Hence, the quantum part’s
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running time is

Õ
( n∑

i=1

√
mki,t · d

)
= Õ

(
nd
√
m ·max

i∈[n]

√
ki,t

)
.

Then, consider the classical part of the algorithm. Since we already get the sets Si,fire, the for-loop
at Line 15 takesO(ktd) time, and the for-loop at Line 18 takesO(kt) time, where kt =

∑n
i=1 ki,t ≤

n · maxi∈[n] ki,t. Then, at Line 24, we compute the matrix product X diag(y − u(t))P . It’s easy
to see that M = X diag(y − u(t)) can be computed in time O(nd). Since P is a sparse matrix,
MP can be computed in O(d · nnz(P )) = O(dkt) time. Namely, we maintain a data structure for
all the non-zero entries of P . Then calculate each row of MP in time O(nnz(P )). Hence, the total
running time of the classical part is O(nd ·maxi∈[n] ki,t).

Since ki,t ≤ m for all i ∈ [n], the running time per iteration of Algorithm 7 is Õ(nd
√
m ·

maxi∈[n]

√
ki,t), which completes the proof of the lemma.

The following lemma proves the running time of Algorithm 8.
Lemma G.6. For t = 0, 1, . . . , T , the time complexity of the t-th iteration in Algorithm 8 is

Õ
(√

nd ·
m∑

r=1

√
k̃r,t

)
,

where k̃r,t = |S̃r,fire| at time t.

Proof. For the quantum part, the difference is at Line 8, where we use Grover’s search to find the
data points such that the r-th neuron is activated. By Theorem G.4, it takes Õ((nk̃r,0)1/2)-time
quantumly. And at Line 33, we re-compute S̃r,fire, which takes Õ((nk̃r,t+1)1/2)-time quantumly.
Thus, the quantum running time of Algorithm 8 is Õ(

∑
r∈[m](nk̃r,t)

1/2) per iteration.

The classical part is quite similar to Algorithm 6, which takes O(nd ·maxi∈[n] ki,t)-time per itera-
tion.

Therefore, the cost per iteration is Õ(
∑
r∈[m](nk̃r,t)

1/2), and the lemma is then proved.

Combining Lemma G.5 and Lemma G.6 proves the main result of this section:

Proof of Corollary G.1. In Section E, we prove that ki,t = m4/5 with high probability for all i ∈ [n]
if we take b =

√
0.4 logm. Hence, by Lemma G.5, each iteration in Algorithm 7 takes

Õ
(
nd
√
m ·max

i∈[n]

√
ki,t

)
= Õ

(
ndm9/10

)

time in quantum. On the other hand, by Lemma G.6, each iteration in Algorithm 8 takes quantum
time

Õ
(√

nd
∑

r∈[m]

√
k̃r,t

)
≤ Õ

(√
nd
√
m
∑

r∈[m]

k̃r,t

)
(Cauchy-Schwartz inequality.)

= Õ
(√

nd
√
m
( ∑

i∈[n]

ki,t
)1/2)

= Õ
(
ndm9/10

)
,

where the second step is by
∑
r∈[m] k̃r,t =

∑
i∈[n] ki,t, which completes the proof of the corollary.
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