
Appendix

The appendix is organized as follows:

• Appendix A: In this section, we prove IS functions are XOS.

• Appendix B: In this section, we formally prove our main results in Section 3.

• Appendix C: In this section, we formally prove our main results in Section 4.

• Appendix D: In this section, we introduce a milder efficiency requirement IO and study its
compatibility with EF1.

• Appendix E: In this section, we discuss our experiments in more details.

As we will discuss the approximation algorithms and the existences of EF1/PO/IO schedules in
different settings, we introduce the following notations to simplify the description of different settings.

Regarding agents’ utilities, FISP contains three cases, from the most special to the most general:

• Unweighted: ui(jk) = 1 for all ai ∈ A, jk ∈ J , i.e., agents have unary utility for jobs.

• Identical: ui(jk) = ur(jk) for all ai, ar ∈ A, jk ∈ J , i.e., all agents have the same utility
for the same job.

• Non-identical: ui(jk) > 0 without any restrictions.

Regarding jobs, there are three cases:

• Unit: pi = 1, for all ji ∈ J , i.e., all jobs have unit processing time.

• Rigid: ri + pi − 1 = di, for all ji ∈ J , i.e., the jobs need to occupy the entire time intervals
between their release times and deadlines.

• Flexible: ri + pi − 1 6 di, for all ji ∈ J .

Note that unit jobs may not be rigid and rigid jobs may not be unit either. In the remainder of the
appendix, we use notation FISP with 〈utility type, job type〉 to denote a certain case of the general
FISP, e.g., FISP with 〈unweighted, unit〉 represents the case where the processing time of each job is
1 and each agent has unweighted utility function.

A Missing Materials in Section 2

A set function f : 2V → R defined on V is called fractionally subadditive (XOS) if there is a finite
set of additive functions { f1, · · · , fw } such that f(S) = max16i6m fi(S) for any S ⊆ V .
Lemma 5. IS functions are XOS.

Proof. Let u be an IS function defined on job set J = { j1, · · · , jn } with individual utility (v1 =
u(j1), · · · , vn = u(jn)). To show u is XOS, it suffices to define a finite set of additive functions on
J . For each feasible job set T ⊆ J , define additive function fT such that fT (ji) = vi if ji ∈ T and
fT (ji) = 0 otherwise. Therefore, for any S ⊆ T ,

u(S) = max
T⊆S:T is feasible

∑
ji∈T

vi = max
T⊆S:T is feasible

fT (T) = max
T⊆S:T is feasible

fT (S) = max
T is feasible

fT (S),

where the last equality is because any subset of a feasible job set is also feasible. Thus u is XOS.

B Missing Materials for MMS Scheduling in Section 3

B.1 Proof of Lemma 1

Proof. Let I = (J ,A,uA) be an arbitrary instance of FISP with J = { j1, · · · , jm } and |A| =
m. To show that MMSi(J \ { jk } ,m − 1) > MMSi(J ,m) holds for any jk ∈ J , ai ∈ A, we
consider an arbitrary agent ai. Let X = (X1,X2, · · · ,Xm) be a feasible schedule for ai, i.e.,

15

minXr∈X ui(Xr) = MMSi. Consider an arbitrary job jk, assume that jk ∈ Xl. Then remove job set
Xl from MMSi schedule. This generates a new schedule, denoted by X′ = {X ′1,X ′2, · · · ,X ′m−1 }.
It is easy to see that X′ is a feasible schedule to the instance withm−1 agents and the job set J\{ Jk }.
This implies that MMSi(J \ { jk } ,m − 1) > minX′r∈X′ ui(X

′
r). Note that minX′r∈X′ ui(X

′
r) >

MMSi(J ,m). Therefore, we have
MMSi(J \ { jk } ,m− 1) > min

X′r∈X′
ui(X

′
r) > MMSi(J ,m).

In the case where jk /∈
⋃
r∈[m]Xr, we remove an arbitrary job set from X and the above analysis

still works.

B.2 An Example for Matching-BagFilling and Matching-BagFilling+

It is obvious that our analysis is tight when all jobs have tiny values such that whenever an agent
obtains a bag her value is exactly or slightly greater than 1

3MMSi. In the following, we present
an instance such that even without the preprocessing procedure and the last agent takes away
all remaining jobs, everyone obtains exactly 1

3MMSi + ε. Accordingly, the instance proves that
“Matching-BagFilling+ does not have better theoretical performance than Matching-BagFilling” as
claimed in Section 5.

Consider the following instance with |A| = m agents where m is a sufficiently large even number.

The job set J can be classified into the following categories:

• J1 = { j11 , j12 , · · · , j1m }: There are m rigid jobs in J1. Every job in J1 has the same job
interval [1, 2]. For every job in J1, am has the same utility gain 1

3 + 1
m . For every job in J1,

all agents in A \ { am } have the same utility gain 2
3 + 1

m ;

• J2 = { j21 , j22 , · · · , j2m−1 }: There are m− 1 rigid jobs in J2. Every job in J2 has the same
job interval [3, m2 + 2]. For every job in J2, all agents in A have the same utility gain 1

3 ;

• J3 = { j31 , j32 , · · · , j3m−1 }: There are m unit jobs in J3. Every job in J3 has the same job
interval [3,m+ 2]. For every job in J3, all agents in A have the same utility gain 1

3m ;
• J4 =

⋃
r∈[m] J

r
4 : There are m group rigid jobs in J4. Each group Jr4 , r ∈ [m], contains m

rigid jobs. Assume that Jr4 = { j4r1, j4r2, · · · , j4rm } ,∀r ∈ [m− 1]. A job j4ri ∈ Jr4 , i ∈ [m]
has the job interval [m+ 3 + i,m+ 4 + i]. Assume that Jm4 = { j4m1, j4m2, · · · , j4mm }. A
job j4mi ∈ Jm3 has the job interval [m + 4 + i,m + 5 + i]. In total, there are m2 jobs in
J4. For every job in J4, am has the same utility gain 1

3m . For every job in J4, all agents in
A \ { am } have the same utility gain 0.

Let us focus on am first. The upper bound of MMSm is:
1

m
·
(

(
1

3
+

1

m
) ·m+

m− 1

3
+

1

3m
·m+

1

3m
·m2

)
= 1 +

1

m
.

We consider the schedule X = (X1, · · · ,Xm), where Xi = { j1i , j2i } ∪ J i4,∀i ∈ [m − 1] and
Xm = { j1m } ∪ J3 ∪ Jm4 (See Figure 2). It is not hard to see that X is a feasible schedule and
mini∈[m] um(Xi) = um(Xm) = 1 + 1

m . Therefore, X is a feasible schedule that obtains the value
1 + 1

m which is also the upper bound of MMSm. Thus, MMSm = 1 + 1
m . Hence, once am values

the bag greater than or equal to 1
3 + 1

3m , am will take the bag away.

Now, we consider an arbitrary agent ai ∈ A \ { am }. Since all agents in A \ { am } have utility gain
0 for all jobs in J4, we can ignore the job set J4. Therefore, the upper bound of MMSi,∀i ∈ [m− 1]
is:

1

m

(
(
2

3
+

1

m
) ·m+ (

m− 1

3
) + (

1

3m
) ·m

)
= 1 +

1

m
.

We consider the schedule X′ = (X ′1, · · · ,X ′m), where X ′i = { j1i , j2i } ,∀i ∈ [m − 1] and X ′m =
{ j1m }∪J3. It is not hard to see that X′ is a feasible schedule and ui(X ′k) = ui(X

′
r) = 1+ 1

m ,∀k, r ∈
[m],∀i ∈ [m− 1]. Therefore, X′ is a feasible schedule that obtains the value 1 + 1

m which is also
an upper bound of MMSi,∀i ∈ [m− 1]. Thus, MMSi = 1 + 1

m ,∀i ∈ [m− 1]. Hence, once agent
ai,∀i ∈ [m− 1], values the bag greater than or equal to 1

3 + 1
3m , ai will take the bag away.

16

X1

X2

X3

Xm

1

3
+

1

m

1

3

1

3m

︸ ︷︷ ︸

J1

J2
J4

J3

1

3m

1

3m

︷ ︸︸ ︷
m jobs

m

Xm−1

1

3m

1

3m

1

3m

1

3m

1

3m

1

3m

1

3m

1

3m

J
1

4

J
2

4

J
3

4

J
m−1

4

J
m

4
1

3m

Figure 2: Illustration for the tight instance for Algorithm 3. The above schedule is X which is also
the MMS schedule for agent am. The red jobs are the remaining jobs at the end of the (m− 1)-th
round of Algorithm 3 with the specified job sequence described in the "The specified job sequence"
paragraph.

The specified job sequence Now, we consider the following job sequence. In the first round,
Algorithm 3 adds J4

1 \ { j41(m−1), j
4
1m } to the bag, and then adds j31 , j4m1 to the bag, and then adds

j21 to the bag, i.e., BAG = { j411, j412, · · · , j41(m−2) } ∪ { j
3
1 , j4m1 } ∪ { j21 }. It is not hard to see that

BAG is a feasible job set and all agents in A \ { am } value the bag exactly 1
3 + 1

3m . Without loss
of generality, we assume that a1 takes the bag away at the end of the first round. In the l-th round,
2 6 l 6 m− 1, Algorithm 3 first adds J4

l \ { j4l(m−1), j
4
lm }, and then adds j3l , j4ml, and then adds j2l

to the bag. Without loss of generality, we assume that al takes the bag away at the end of the l-th
round, where 2 6 l 6 m− 1. Note that, at the end of the (m− 1)-th round, all agents in A \ { am }
obtain the utility gain exactly 1

3 + 1
3m .

It is not hard to see that, at the end of the (m− 1)-th round,

J ′ = J1 ∪ { j3m } ∪ { j4mm } ∪ { j41(m−1), j
4
1m } ∪ { j42(m−1), j

4
2m } ∪ · · · { j4(m−1)(m−1), j

4
(m−1)m } .

See the red jobs in Figure 2. Thus, um(J ′) = (1
3 + 1

m) + 1
3m + 3

3m = 1
3 + 7

3m .

Therefore, everyone obtains exactly 1
3MMSi + ε at the end of Algorithm 3. Moreover, it is not hard

to see that if we run round-robin procedure at the end of Algorithm 3, the utility gains of all agents in
A \ { am } will be increased but the utility gain of am is not able to be further improved. Thus, the
above instance implies that “Matching-BagFilling+ does not have better theoretical performance than
Matching-BagFilling”.

B.3 Proof of Lemma 4

Note that the algorithm only ensures that agent ai with γi 6 MMSi can obtain a bag but not everyone.
This is natural as if for some aj 6= ai and γj is super large compared with MMSj , aj will never stop
the algorithm and get a bag.

Recall that we can assume that there is no large job in the instance, i.e., ui(jk) 6 β
β+2 · γi, where

0 6 β 6 1. Observe that if agent ai gets assigned a bag, then her true utility satisfies:

ui(Xi) =
∑
jl∈Xi

ui(jl) = u′i(Xi) >
β

β + 2
γi.

The above inequality also holds no matter whether γi 6 MMSi or not. Similar as the proof of
Lemma 3, the core is to prove that ai can be guaranteed to obtain a bag as long as γi 6 MMSi. We
consider the R-th round of the outer while loop of Algorithm 4 (line 2-5) in which the value of γi is
decreased below MMSi. In the R-th round of Algorithm 4 (line 2-5), we assume that the order of the
agents that break the while loop of Algorithm 2 (line 4-10) is { a1, · · · , ai−1, ai, · · · }. It suffices to

17

prove that at the beginning of the i-th while loop of Algorithm 2 (line 4-10), there are sufficiently
many remaining jobs in J ′ for the agent ai, i.e.,

u′i(J
′) >

β

β + 2
· γi,∀ai ∈ A′.

Similar as the proof of Lemma 3, we prove the following stronger claim. Given the following claim
and the β-approximation of u′i, we have u′i(X

′
k ∩ J ′) >

β
β+2 · γi Therefore Lemma 4 holds.

Claim 2. For any ai ∈ A′ with γi 6 MMSi, let X′ = {X ′1, · · · ,X ′m } be a feasible MMS schedule
for ai. Then, there exists k ∈ [m] such that ui(X ′k ∩ J ′) > 1

β+2 · γi, where γi 6 MMSi.

Proof. We consider an arbitrary agent ai. Since X′ = (X ′1,X ′2, · · · ,X ′m) is a feasible MMS
schedule for ai, we have ui(X ′k) > MMSi > γi,∀k ∈ [m] and therefore

m∑
k=1

ui(X
′
k) > m ·MMSi > m · γi. (3)

Same as the proof of Lemma 3, the key idea of the proof is to show that agent ai values the bundles
that are taken by the agents before ai less than β+1

β+2 · γi, i.e.,

ui(Xr) <
β + 1

β + 2
· γi,∀r ∈ [i− 1]. (4)

We consider an arbitrary bundle that is taken by agent ar, r ∈ [i− 1] and assume that job jr is the
last job added to the Bag. Since ai did not break the while loop, we have u′i(Xr \ { jr }) < β

β+2 · γi.
This implies that ui(Xr \ { jr }) 6 1

β+2 · γi. Since all jobs are small, i.e., ui(jr) 6 β
β+2 · γi, we have

ui(Xr) = ui(Xr \ { jr }) + ui(jr) <
β + 1

β + 2
· γi.

Therefore, Equation (4) holds. To help understand the following proof, an example is shown in
Figure 3. Every rectangle in Figure 3 represents a job in J . The area of every rectangle jl in Figure 3
represents the value of ui(jl). The non-white rectangles represent the jobs that are assigned to some
agents in { a1, · · · , ai−1 }. According to Equation (4), the total area of non-white rectangles in
Figure 3 is at most (β+1)(i−1)

β+2 γi, i.e.,
∑i−1
r=1 ui(Xr) <

(β+1)(i−1)
β+2 γi. According to Equation (3), the

total area of rectangles in Figure 3 is at least mγi. Therefore, the total area of white rectangles in
{X ′1, · · · ,X ′m } is at least mγi − (β+1)(i−1)

β+2 γi, i.e.,

m∑
r=1

ui(X
′
r \

⋃
l∈[i−1]

Xl) > mγi −
(β + 1)(i− 1)

β + 2
γi >

m+ β + 1

β + 2
γi, (5)

where the last inequality is due to i 6 m.

According to Equation (5), the total area of white rectangles is at least m+β+1
β+2 γi. There must exist an

r ∈ [m] such that ui(X ′r ∩ J ′) >
m+β+1
m(β+2)γi. Therefore, Claim 2 holds.

C Missing Materials for EF1 and PO Scheduling in Section 4

C.1 The Impossible Result for Theorem 3

In this subsection, we prove the first part of Theorem 3 (See Lemma 6).
Lemma 6. EF1 and PO are not compatible for FISP with 〈unweighted, rigid〉, i.e., no algorithm can
return a feasible schedule that is simultaneously EF1 and PO for all FISP with 〈unweighted, rigid〉
instances.

Proof. To prove Lemma 6, we show that any PO schedule must not be an EF1 schedule for the
instance in Figure 4. We consider an arbitrary PO schedule, denoted by X = (X1, · · · ,Xm) and let
X0 = J \

⋃
i∈[m]Xi. We claim that X must satisfy the following two properties:

18

X ′

0

X ′

1

X ′

2

X ′

3

X ′

4

X ′

m

MMSi ui(X
′

r
), r ∈ [m]

Agents ui(jl)

1

jl ∈ X2

jl ∈ X3

jl ∈ J ′

Figure 3: Illustration of Claim 2. The schedule is the feasible schedule X′ which implies that job
set X ′r is a feasible for all r ∈ [m]. Every rectangle represents a job. The width of rectangle jl is
the value of ui(jl) while the height is 1. The area of rectangle jl is also the value of ui(jl). The
four agents a1, a2, a3, a4 ∈ { a1, · · · , ai−1 }. The non-white rectangles represent the jobs that are
assigned in some agents in { a1, · · · , ai−1 } in schedule X, e.g., the gray, blue, green, pink rectangles
are the jobs that are assigned to a1, a2, a3, a4, respectively. Recall that X is the schedule returned by
Algorithm 2. The white rectangles are the jobs in J ′. In Claim 2, we show that there exist a r ∈ [m]
such that total area of white rectangles in X ′r is at least 1

β+2γi.

1. ∃i ∈ [m] such that Xi = J1;

2. X0 = ∅.

We first prove that there exists an i ∈ [m] such that Xi = J1. Suppose, towards to the contradiction,
that there is no i ∈ [m] such that Xi = J1. Note that there must exist i ∈ [m] such that Xi ∩ J1 6= ∅
otherwise X is not a PO schedule. Now we consider the job set Xl such that Xl ∩ J1 6= ∅. In the
case where no job set except Xl in X contains jobs in J1, we can construct another feasible schedule
X′ = X ∪ { J1 } \Xl. It is easy to see that ui(X ′i) > ui(Xi) for all ai ∈ A and ul(J1) > ul(Xl)
for agent al. This implies that X is not a PO schedule. In the case where there exist another one
or two subsets Xr,Xp ∈ X such that Xr,Xp ∩ J1 6= ∅. Since there are only three jobs in J1,
there are at most three job sets in X that contains some job in J1. Without loss of generality, we
assume that both Xr and Xp exist. Since every job in J2 overlaps with every job in J1, we have
Xl,Xr,Xp ∩ J2 = ∅. Therefore, |Xl| = |Xr| = |Xp| = 1. Since there are m − 1 long jobs and
every job set in X \ (Xl ∪Xr ∪Xp) contains only one job in J2, X0 contains two jobs from J2. Now
we can construct another feasible schedule X′ = (X ′1, · · · ,X ′m) in following way: move all jobs in
Xr ∪Xp to Xl; assign one of two jobs in X0 to Xr and another one to Xp; keep the remaining job
sets same as the corresponding one in X. It is easy to see that ui(X ′i) > ui(Xi) for all ai ∈ A and
ul(X

′
l) = ul(J1) > ul(Xl). This implies that X is not a PO schedule.

Therefore, we can assume that there must exist an i ∈ [m] such that Xi = J1. Without loss
of generality, we assume that X1 = J1. Now we show that the second property holds. Since
|J2| = m − 1, X0 6= ∅ implies that there must exist a job set Xl ∈ X such that Xl = ∅. This
would imply that X is not a PO schedule. Since X holds the above two properties, we assume that
every remaining agent in A \ { a1 } will receive exactly one job in J2. Without loss of generality,
we assume that Xi = { ji+2 }. Therefore, we have X = (X1, · · · ,Xm), where X1 = J1,X2 =
{ j4 } , · · · ,Xm = { jm+2 }. Since ui(X1 \ { j }) = 2 > ui(Xi) = 1, ∀ai ∈ A \ { a1 } ,∀j ∈ X1,
X is not an EF1 schedule.

19

1 2 3

j1 j2 j3

j4

jm+2

m− 1

4 5 time line

Figure 4: Instance for Lemma 6. There are |A| = m agents and |J | = m+ 2 jobs with m > 2. Job
set J can be partitioned as J1 ∪ J2, where J1 = { j1, j2, j3 } and J2 = { j4, j5, · · · , jm+2 }. Each
job J1 has unit processing time and each job J2 has processing time 5. All jobs are rigid such that
ji ∈ J1 needs to occupy the entire time slot 2i− 1, where i ∈ { 1, 2, 3 }. And j ∈ J2 occupies the
entire time period from 1 to 5.

C.2 The Algorithm for Theorem 3

In this subsection, we mainly show Theorem 5, which is the second part of Theorem 3. Before
give the proof of Theorem 5, we first give the definition of the condensed instance which is used to
improve the running time.

Given an arbitrary instance of FISP with 〈identical, unit〉, denoted by I , for each job ji ∈ J , let Ti be
the set of time slots included in the job interval of ji, i.e., Ti = { ri, ri + 1, · · · , di }. Let T be the set
of condensed time slots (Definition 4). We construct another instance, denoted by I ′, by condensing
Ti, i.e., for every job in J , Ti = Ti ∩ T . We show that these two instances are equivalent (Lemma 7).
Let J ′ be the set of jobs in the instance I ′.
Definition 4. Let T be the condensed time slots set.

T =
⋃

16l6n

{ dl − n+ 1, dl − n+ 2, · · · , dl }

where dl is the deadline of job jl.

To prove Lemma 8, it suffices to prove the following lemma.

Lemma 7. Let Ĵ ⊆ J be an arbitrary subset of jobs in the instance I . Let Ĵ ′ ⊆ J ′ be the
corresponding jobs in the instance I ′. Then, Ĵ is a feasible job set if and only if Ĵ ′ is a feasible job
set.

Proof. (⇐) This direction is straightforward.

(⇒) To prove this direction, we define a job block as a maximal set of consecutive jobs such that they
are scheduled after each other. Since Ĵ is a feasible job set, there is a feasible schedule for all jobs in
Ĵ . We start from the first job jl ∈ Ĵ which is scheduled in time slot tl such that tl /∈ T , we show that
we can always shift this job block to the right. Time slot tl /∈ T implies that tr is in a distance more
that n from any elements in deadline set D =

⋃
jq∈J { dq }. We can shift the job block jl to the right.

An example is shown in Figure 5. We show that we can always shift jl to the right until:

• Either job jl is scheduled in a time slot in T .

• Or the job block starting from jl reaches another scheduled job and form a bigger job block.

If job jl is scheduled in a time slot in T , then the lemma follows. If the job block starting from jl
reaches another scheduled job and form a bigger job block, we keep shifting the bigger job block to
the right unit jl is scheduled in a time slot t′l ∈ T . Note that no job would miss its deadline, since the
distance between t′l and any deadline in D exceeds n which implies that there is enough time slots to
schedule all jobs in the current job block.

Lemma 8. For an arbitrary instance of FISP with 〈identical, unit〉, if there is a polynomial-time
algorithm that returns an EF1 and PO schedule for all condensed instances, there also exists one for
non-condensed instances.

20

jr

tr ∈ T

jl

tl /∈ T

≥ n

jo

push right

ds ∈ D

jh jf

time line

Figure 5: Illustration of Lemma 7. Initially, job jl is scheduled in the time slot tr which is not in T .
The job block starting from jl only includes two jobs: jl and jo. We can always shift job jl to the
right until jl is scheduled in a time slot in T . Or the leftmost time slot in T is occupied by a certain
job jr. The job block starting from jr contains three jobs: jr, jh and jf . We can still shift the merged
job block, which contains jl, jo, jr, jh, jf , to the right, since the distance between time slot tr and
any deadline in D exceeds n.

Theorem 5. Given an arbitrary instance of FISP with 〈identical, unit〉, Algorithm 5 returns a
schedule that is simultaneously EF1 and PO in polynomial time.

t1

t2

t3

j2

j3

j4

(a) : G(J ∪ T,E) (b) : B ⊆ E

j5

j1

t1

t2

t3

j2

j3

j4

j5

j1

j6 j6

Figure 6: An example of the bipartite graphG(J ∪T ,E) and a corresponding maximumm-matching,
where J = { j1, · · · , j6 } ,A = { a1, a2 } ,T = { t1, t2, t3 }. Assume all jobs have identical utility
to the agents. The job intervals are T1 = T2 = T3 = T5 = T6 = { t1, t2 }, and T4 = { t1, t2, t3 }. A
possible maximum weighted m-matchingM∗ is shown one the right, according to which the jobs are
partitioned as J1 = { j1, j2 } , J2 = { j3, j6 } , J3 = { j4 }. Then, X0 = J \ (J1 ∪ J2 ∪ J3) = { j5 }.

Arbitrarily fix a maximum weighted m-matchingM∗. For any t ∈ T , let Jt be the set of jobs which
are matched with time slot t, i.e., Jt = { j ∈ J | (j, t) ∈M∗ } . Note that the Jt’s are mutually
disjoint. Therefore we can refer t as the type of jobs in Jt. An example can be found in Figure 6 (a).
The key idea of Algorithm 5 is to first use the above procedure to find the job set with the maximum
total weight that can be processed and classify jobs into different types, and then greedily assign
each type of jobs to the agents. The jobs that are not matched byM∗, i.e., J \ (

⋃
t∈T Jt), are kept

unallocated and will be assigned to charity.

Let X = (X1, · · · ,Xm) be the schedule returned by Algorithm 5 and let X0 = J \
⋃
i∈[m]Xi. Note

that although the agents have identical utilities, we sometimes use ui for agent ai ∈ A to make the
comparison clear.
Lemma 9. For any ai, ak ∈ A, ui(Xi) > ui(Xk \ { jl }) for some jl ∈ Xk.

Proof. We prove the lemma by induction. Let Xp
i be the set of jobs assigned to agent ai after the

p-th round of Algorithm 5, and Xp = (Xp
1 , · · · ,Xp

m).

Base Case. When p = 1, each agent gets at most one job as |Jt| 6 m for all t ∈ T , and thus X1 is
EF1.

Induction Hypothesis. For any p > 1, after the p-th round of Algorithm 5, suppose Lemma 9 holds,
i.e., for any ai, ak ∈ A, there exists a job, denoted by jh, in Xp

i such that uk(Xp
k) > uk(Xp

i \ { jh }).
Now we consider the (p + 1)-th round. Arbitrarily fix two agents ai, ak ∈ A and without loss of
generality assume ui(X

p
i) > uk(Xp

k). In the following we prove that after this round, ai and ak
continue not to envy each other for more than one item. Note that, in the (p+ 1)-th round, ak chooses
a job from Jp+1 before ai.

21

Suppose that jk̂ is assigned to ak while jî is assigned to ai in the (p+ 1)-th round. Therefore, we
have Xp+1

k = Xp
k ∪ { jk̂ } and Xp+1

i = Xp
i ∪ { jî }. Since |Jp+1| 6 m, { jk̂ } and { jî } may be

empty, in which case, we assume that u(jk̂) = u(jî) = 0. Since ak chooses the job before ai and all
jobs in Jp+1 are sorted in non-increasing order, u(jk̂) > u(jî) always holds no matter whether { jk̂ }
is empty or not.

Regarding agent ai, as ui(X
p
i) > uk(Xp

k), we have

ui(X
p+1
i) > ui(X

p
i) > ui(X

p
k) = ui(X

p+1
k \ { jk̂ }).

Regarding agent ak, because uk(jk̂) > uk(jî) and ui(X
p
i) > ui(X

p
k \ { jh }) (induction hypothesis),

uk(Xp+1
k) = uk(Xp

k) + uk(jk̂) > uk(Xp
i \ { jh }) + uk(jî) = uk(Xp+1

i \ { jh }).

Thus, after the (p+ 1)-th round, ai and ak continue not to envy each other for more than one item.
By induction, Lemma 9 holds.

Proof of Theorem 5. Since schedule X returned by Algorithm 5 maximizes social welfare∑
ai∈A ui(Xi), X must be PO. According to Lemma 9, X is EF1. For time complexity, we have

already discussed that computing a maximum m-matching can be done in polynomial time. Further,
as allocating jobs by types only needs to sort jobs or agents, which can also be done in polynomial
time, we finished the proof.

We note that Algorithm 5 fails to return an EF1 and PO schedule if the agents’ utilities are not
identical. Actually, the existence of EF1 and PO schedule for this case is left open in Biswas and
Barman [2018]; Dror et al. [2020]; Wu et al. [2021] even when the scheduling constraints degenerate
to cardinality constraints.
Remark 1. We noted that the proof of Lemma 9 only uses the ranking of jobs’ weight. Therefore,
Algorithm 5 is able to return to a feasible schedule that is simultaneously EF1 and PO in the setting
where agents value jobs in the same order but the concrete jobs’ weight are not known by the
algorithm.

C.3 1/4-EF1 and PO for general FISP instances

Before giving the proof, we first introduce the formal definition of MaxNSW-schedule which will be
used to prove Theorem 4.
Definition 5 (MaxNSW Schedule). A feasible schedule X = (X1, · · · ,Xm) is called MaxNSW
schedule if and only if

X ∈ arg max
X′∈F

m∏
i=1

ui(X
′
i)

where F is the set of all feasible schedules and X′ = (X ′1, · · · ,X ′m).

Note that in the standard definition of Nash social welfare maximizing schedule, X was supposed to

be a member of arg maxX′∈F

(∏m
i=1 ui(X

′
i)

) 1
m

. Here, we ignore the power of 1
m to simplify the

formula.

In this section, we mainly prove Theorem 6 which is the first part of Theorem 4. The proof of
Theorem 6 is essentially the same with corresponding one in Wu et al. [2021], and we include the
proof for completeness.
Theorem 6. Given an arbitrary instance of general FISP, any schedule that maximizes the Nash
social welfare is a 1/4-EF1 and PO schedule.

Proof. Given an arbitrary instance of general FISP, let X = (X1, · · · ,Xm) be the MaxNSW schedule
and let X0 = J \

⋃
i∈[m]Xi. Since any MaxNSW schedule must be a PO schedule, we only prove

that X is a 1/4-EF1 schedule i.e., ∀i, k ∈ [m],ui(Xi) > 1
4ui(Xk \ { jp }),∃jp ∈ Xk. Suppose, on

the contrary, that there exists i, k ∈ [m] such that ui(Xi) <
1
4ui(Xk \ { jp }),∀jp ∈ Xk.

22

Now, we sort all jobs in Xk in non-increasing order according to the value of uk(jp), jp ∈ Xk.
Assume that Xk = { j1, j2, · · · } after sorting. Without loss of generality, we assume that |Xk| is an
odd number; otherwise, we add a dummy job jo to Xk such that ui(jo),∀i ∈ [m]. Now we partition
Xk \ { j1 } into two subsets X1

k ,X2
k , where X1

k = { j2, j4, j6, · · · } and X2
k = { j3, j5, j7, · · · }.

Note that Xk = { j1 } ∪ {X1
k } ∪ {X2

k }. Note that uk(X1
k) > uk(X2

k) and uk(X2
k ∪ { j1 }) >

uk(X1
k) since all jobs in Xk are sorted in non-increasing order. Since uk(X1

k) > uk(X2
k), we have

uk(j1) + uk(X1
k) > uk(X2

k). Therefore, we have

uk(Xd
k ∪ { j1 }) >

1

2
uk(Xk),∀d ∈ { 1, 2 } . (6)

Since ui(Xi) <
1
4ui(Xk \ { jp }), ∀jp ∈ Xk, we have ui(Xi) <

1
4ui(X

1
k ∪ X2

k). Since Xk is a
feasible job set, we have ui(X1

k ∪ X2
k) = ui(X

1
k) + ui(X

2
k) which implies that either ui(X1

k) >
1
2ui(X

1
k ∪X2

k) or ui(X1
k) > 1

2ui(X
1
k ∪X2

k). Therefore, we have

ui(Xi) <
1

4
ui(X

1
k ∪X2

k) 6
1

2
ui(X

d
k),∃d ∈ { 1, 2 } . (7)

Now we construct a new schedule, denoted by X′ = (X ′1, · · · ,X ′m), where X ′r = Xr,∀r ∈
[m], r 6= i, k. Let X ′0 = J \

⋃
i∈[m]X

′
i. We discard all jobs in Xi, i.e., X ′0 = X0 ∪ Xi. If

ui(X
1
k) > 1

2ui(X
1
k ∪ X2

k), let X ′i = X1
k and X ′k = X2

k ∪ { j1 }; otherwise, let X ′i = X2
k and

X ′k = X1
k ∪ { j1 }. It is easy to see that X′ is a feasible schedule. Note thar all job sets in X′

except X ′0,X ′i,X
′
k are the same as the corresponding job sets in X. Observe that if we can prove

that ui(X ′i)uk(X ′k) > ui(Xi)uk(Xk), then X is not a MaxNSW schedule which will contradict our
assumption. In the case where ui(X1

k) > 1
2ui(X

1
k ∪ X2

k), we have X ′i = X1
k . By Equation (6),

we have uk(X ′k) = uk(X2
k ∪ { j1 }) > 1

2uk(Xk). By Equation (7), we have ui(X ′i) = ui(X
1
k) >

2ui(Xi). In the case where ui(X1
k) < 1

2ui(X
1
k ∪X2

k), we have X ′i = X2
k . By Equation (6), we have

uk(X ′k) = uk(X1
k ∪ { j1 }) > 1

2uk(Xk). By Equation (7), we have ui(X ′i) = ui(X
2
k) > 2ui(Xi).

By combining above two cases, we have ui(Xi)ui(Xk) < ui(X
′
i)uk(X ′k).

In the following, we show that our proof in Theorem 6 is tight.
Lemma 10. Given an arbitrary instance of general FISP, a MaxNSW schedule can only guarantee
1/4-EF1 and PO.

Proof. To prove Lemma 10, it is sufficient to give an instance such that MaxNSW schedule is exactly
1/4-EF1 schedule and PO. In this instance, all jobs in job set J are rigid and J can be partitioned into
two sets JL and JS . There is only one job in JL which is very long and has weight 1. There are 4

ε

jobs in JS each of which has unit length and weight ε. Note that 4
ε is assumed to be an even integer

number. All jobs in JS are disjoint and the job in JL intersects with all jobs in JS . The agent set A
contains only two agents, i.e., |A| = 2. The instance can be found in Figure 7.

j1

j2 j3 j4 jn

1

ǫ ǫ ǫ ǫ

JL

JS

Figure 7: Tight example of MaxNSW schedule for general FISP.

Note that the total weight of jobs in JS is 4. Let X = (X1,X2) be the schedule, where X1 =
JL,X2 = JS . let X′ = (X ′1,X ′2), where X ′1 = { j2, · · · , j 2

ε+1 } ,X ′2 = JS \ X ′1, i.e., JS is
partitioned into two subsets with equal size. Note that X ′0 = JL. It is not hard to see that X′ is
a MaxNSW schedule. And we have u1(X1)u2(X2) = 4, u1(X ′1)u2(X ′2) = 4. Therefore, X is a
MaxNSW schedule. Note that u1(X2 \ { jp }) = 4−ε

ε · ε = 4− ε,∀jp ∈ X2. Therefore, we have

lim
ε→0

1

4
u1(X2 \ { jp }) = 1 = u1(X1),∀jp ∈ X1.

This implies that X is a 1/4-EF1 schedule.

23

C.4 1/2-EF1 and PO for FISP with 〈non-identical, unit〉 instances

In this section, we mainly prove Theorem 7 which is the second part of Theorem 4.

Theorem 7. Given an arbitrary instance of FISP with 〈non-identical, unit〉, a MaxNSW schedule is
a 1/2-EF1 and PO schedule.

Proof. We show that a feasible schedule X = (X1, · · · ,Xm) that maximizes Nash social welfare
is simultaneously 1/2-EF1 and PO. Since any MaxNSW schedule must be a PO schedule, we only
prove that X is a 1/2-EF1 schedule Hence, we only show that X is an 1/2-EF1 schedule, i.e.,
∀i, k ∈ [m],ui(Xi) > 1

2 · ui(Xk \ { j }),∃j ∈ Xk.

We prove by contradiction and assume that there exists i, k ∈ [m] such that ui(Xi) <
1
2 · ui(Xk \

{ j }), ∀j ∈ Xk. Then, we have

ui(Xi) + ui(j) < ui(Xk)− ui(Xi),∀j ∈ Xk. (8)

Since Xi,Xk are feasible job set, there is a maximum weighted matching in G(Xi ∪T ,Ei),G(Xk ∪
T ,Ek) with size |Xi|, |Xk|, respectively. Let Mi,Mk be the maximum weighted matching in
G(Xi ∪ T ,Ei),G(Xk ∪ T ,Ek), respectively. An example can be found in Figure 8.

〈ji
1
, ti

1
〉

〈ji
2
, ti

2
〉

ti
3

〈ji
3
, ti

4
〉

tk
1

〈jk
1
, tk

2
〉

〈jk
2
, tk

3
〉

〈jk
3
, tk

4
〉

ai ak

Mi Mk

Figure 8: Illustration for Mi,Mk. In the above example, we have Xi = { ji1, ji2, ji3 }, Xk =
{ jk1 , jk2 , jk3 } and T = { t1, t2, t3, t4 }. We have matching Mi = { 〈ji1, ti1〉, 〈ji2, ti2〉, 〈ji3, ti4〉 } and
Mk = { 〈jk1 , tk2〉, 〈jk2 , tk3〉, 〈jk3 , tk4〉 }. Moreover, we have Mi(J) = Xi,Mi(T) = { t1, t2, t4 } and
Mk(J) = Xk,Mk(T) = { t2, t3, t4 }.

For every time slot tl ∈ Mi(T) ∪Mk(T), we find the pair 〈ji, til〉 ∈ Mi, 〈jk, tkl 〉 ∈ Mk. Note that
there may exist some time slot tl such that tl is only matched in Mi or Mk, e.g., time slot t1, t3 in the
example shown in Figure 8. In this case, we add a dummy pair toMk orMi, e.g., in the example shown
in Figure 8, Mi = Mi ∪ { 〈jo, ti3〉 } ,Mk = Mk ∪ { 〈jo, tk1〉 } and let ui(jo) = uk(jo) = 0,∀i ∈ [m].
For every time slot tl ∈Mi(T) ∪Mk(T), we find the pair 〈ji, til〉 ∈Mi, (jk, tkl) ∈Mk and define
the big pair [〈ji, til〉, 〈jk, tkl 〉] as (ji, jk) for convenience. For each pair (ji, jk), we define |(ji, jk)|
as its value, where

|(ji, jk)| = ui(j
k)− ui(ji)

uk(jk)− uk(ji)
.

Note that there may exist two pairs: 〈ji, til〉 ∈Mi, 〈jk, tkl 〉 ∈Mk such that ui(jk)− ui(ji) = 0 and
uk(jk)− uk(ji) = 0. In this case, we have

|(ji, jk)| =
{

0, if ui(j
k)− ui(ji) = 0,uk(jk)− uk(ji) 6= 0;

∞, if ui(j
k)− ui(ji) 6= 0,uk(jk)− uk(ji) = 0.

Let P+,P− be the set of all (ji, jk) such that ui(jk) − ui(j
i) > 0 and ui(j

k) − ui(j
i) 6 0,

respectively. We consider an arbitrary pair (ji+, jk+) in P+, i.e., ui(jk+) − ui(ji+) > 0. Note that
uk(jk+) − uk(ji+0) holds; otherwise, we can construct a new feasible schedule by swapping job
ji+ and jk+ will have larger Nash Social Welfare. This would imply that X does not maximize the
Nash Social Welfare. Let X+

i ,X+
k be the set of jobs in Xi,Xk that are covered by some pair in

24

P+, respectively, i.e., X+
i = { ji ∈ Xi | ∃(ji, jk) ∈ P+ } and X+

k = { jk ∈ Xk | ∃(ji, jk) ∈ P+ }.
Notations X−i ,X−k are defined in similar ways. Note that

ui(Xk)− ui(Xi) =

(
ui(X

+
k)− ui(X+

i)

)
+

(
ui(X

−
k)− ui(X−i)

)
.

Since ui(X−k)− ui(X−i) 6 0, we have

ui(Xk)− ui(Xi) 6 ui(X
+
k)− ui(X+

i). (9)

Then, we have:

ui(X
+
k)− ui(X+

i)

uk(X+
k)

>
ui(X

+
k)− ui(X+

i)

uk(Xk)
>
ui(Xk)− ui(Xi)

uk(Xk)
, (10)

where the first inequality is due to ui(X+
k)−ui(X+

i) > 0 and uk(Xk) > uk(X+
k), the last inequality

is due to Equation (9). Now, we define (gi, gk) as:

(gi, gk) = arg max
(ji,jk)∈P+

{
|(ji, jk)|

}
.

Note that P+ 6= ∅, i.e., there must exist a pair (ji+, jk+) such that ui(jk+) − ui(ji+) > 0 because
of ui(Xk) > ui(Xi). Since every pair (ji, jk) in P+ has property ui(j

k) − ui(j
i) > 0 and

uk(jk)− ui(ji) > 0, we have:

ui(g
k)− ui(gi)

uk(gk)− uk(gi)
>

ui(X
+
k)− ui(X+

i)

uk(X+
k)− uk(X+

i)
>
ui(X

+
k)− ui(X+

i)

uk(X+
k)

, (11)

where the last inequality is due to ui(X
+
k) − ui(X

+
i) > 0 and uk(X+

i) > 0. By combining
Equation (10) and Equation (11), we have

ui(g
k)− ui(gi)

uk(gk)− uk(gi)
>
ui(Xk)− ui(Xi)

uk(Xk)
>
ui(Xi) + ui(g

k)

uk(Xk)
, (12)

where the last inequality is due to Equation (8).

Since ui(gk)− ui(gi) > 0 and (uk(gk)− uk(gi) > 0, we have:(
ui(g

k)− ui(gi)
)
· uk(Xk) >

(
uk(gk)− uk(gi)

)
·
(
ui(Xi) + ui(g

k)

)
. (13)

Holding Equation (13) on our hand, we are ready to prove that X does not maximize the Nash social
welfare. Now, we construct another feasible schedule, denoted by X′ = (X ′1, · · · ,X ′m). We construct
X′ by swapping the job gi with gk, i.e., X ′o = Xo,∀o ∈ [m] and o 6= i, k, X ′i = Xi ∪ { gk } \ { gi }
and X ′k = Xk ∪ { gi } \ { gk }. Note that all job sets in X′ except X ′i,X

′
k are the same as the

corresponding job sets in X. Observe that if we can show that ui(X ′i)uk(X ′k) > ui(Xi)uk(Xk),
then it implies that X does not maximize the Nash social welfare. Note that

ui(X
′
i) = ui(Xi) + ui(g

k)− ui(gi);
uk(X ′k) = uk(Xk) + uk(gi)− uk(gk).

We define Γ as follows for convenience:

Γ =

(
ui(g

k)− ui(gi)
)
· uk(Xk)−

(
uk(gk)− uk(gi)

)
·
(
ui(Xi) + ui(g

k)

)
,

where Γ > 0 because of Equation (13). Then, we have

ui(X
′
i)uk(X ′k)− ui(Xi)uk(Xk) = Γ +

(
uk(gk)− uk(gi)

)
· ui(gi).

Since uk(gk) − uk(gi) > 0 and Γ > 0, we have ui(X ′i)uk(X ′k) − ui(Xi)uk(Xk) > 0. Hence X
does not maximize the Nash social welfare which contradicts our assumption. Therefore, ∀i, k ∈
[m],ui(Xi) > 1

2 · (Xk \ { j }),∃j ∈ Xk.

25

In the following, we show that our proof of Theorem 7 is tight.

Lemma 11. The schedule which maximizes the Nash social welfare can only guarantee 1/2-EF1 and
PO for FISP with 〈non-identical,unit〉.

Proof. To prove Lemma 11, we give an instance for which a schedule that maximizes the Nash social
welfare is an 1/2-EF1 schedule.

We consider the job set J = { j1, · · · , jn, jn+1, · · · , j2n } which contains 2n jobs. All jobs have the
same release time 1 and deadline n. Moreover, all jobs have unit processing time. The agent set
A = { a1, a2 } contains two agents. The utilities matrix is as follows:

j1 j2 · · · jn jn+1 · · · j2n
a1 2 2 · · · 2 1 · · · 1
a2 1 1 · · · 1 0 · · · 0

To find the schedule that maximizes the Nash social welfare, we consider an arbitrary schedule
X = (X1,X2) and assume that X0 = J \ (X1 ∪ X2). We define J1 = { j1, · · · , jn } and J2 =
{ jn+1, · · · , j2n }. Observe thatX0 = ∅ otherwise X does not maximize the value of u1(X1)·u2(X2).
We assume that x jobs in J1 are assigned to a1 and y jobs in J2 are assigned to a2, where 0 6 x, y 6 n.
Then, we have

f(x, y) = u1(X1) · u2(X2) = (2x+ y) · (n− x).

To find the maximum value of f(x, y) under the constraints 0 6 x, y 6 n, we compute partial
derivative.

∂f(x,y)
∂x = 2n− 4x− y = 0

∂f(x,y)
∂y = n− x = 0

The solution to the above two equations is (n,−2n). Since the point (n,−2n) /∈
{ (x, y) | 0 6 x, y 6 n }, the maximum value will be taken at a certain vertex. We can find
that the maximum value will be taken at the point (x, y) = (0,n) by computing the value of
f(0, 0), f(0,n), f(n, 0), f(n,n).

Hence, we found the schedule X = (X1,X2) maximizes the Nash social welfare, where X1 =
J2,X2 = J1. Then, we have u1(X1) = 2n and u1(X1 \ { j }) = 2(n− 1), ∀j ∈ X1. Then, we have

lim
n→+∞

u1(X1)

u1(X1 \ { j })
=

n

2(n− 1)
=

1

2
.

D EF1 and IO Scheduling

Lemma 6 shows that PO is very demanding since even if agents have unweighted utilities, EF1 and
PO are not compatible. Accordingly, in this section, we will consider the following weaker efficiency
criterion – Individual Optimality.

Definition 6 (α-IO schedule). A feasible schedule X = (X1, · · · ,Xm) with X0 = J \
⋃
i∈[m]Xi is

called α-approximate individual optimal (α-IO) if ui(Xi) > α · ui(X0 ∪Xi) for all ai ∈ A, where
α ∈ (0, 1] and when α = 1, X is called IO schedule.

As we will see, although EF1 and IO are still not compatible for weighted utilities, they are when
agents have unweighted utilities.

D.1 An Impossibility Result

We first show that EF1 and IO are not compatible even for FISP with 〈identical, rigid〉, i.e., given
an arbitrary instance of FISP with 〈identical, rigid〉, there is no algorithm can always find a feasible
schedule that is simultaneously EF1 and IO (Lemma 12).

26

Lemma 12. EF1 and IO are not compatible even for FISP with 〈identical, rigid〉.

Proof. To prove Lemma 12, it suffices to consider the instance in Figure 9, and prove the following
two claims.

Claim 3. For any IO schedule X = (X1, · · · ,Xm), X0 = J \
⋃
i∈[m]Xi = ∅.

We prove this claim by contradiction. IfX0∩J1 6= ∅, as |J2| = m−1, there will be at least one agent,
without loss of generality say a1, for whom X1 ∩ J2 = ∅. Note that by the design of the instance,
X1 ∪ (X0 ∩ J1) is feasible, and thus by allocating X0 ∩ J1 to a1, a1’s utility strictly increases.

If X0 ∩ J2 6= ∅, as |J2| = m− 1, there will be at least two agents, without loss of generality say a1
and a2, for whom X1 ∩ J2 = ∅ and X2 ∩ J2 = ∅. Furthermore, as |J1| = 4 one of them gets at most
two jobs in J1. Again without loss of generality assume this is agent a1. Accordingly, u1(X1) 6 4
and by exchanging X1 with one job in X0 ∩ J2, a1’s utility strictly increases.

Claim 4. For any EF1 schedule X = (X1, · · · ,Xm), X0 = J \
⋃
i∈[m]Xi 6= ∅.

We note that the only possible and feasible schedule X such that X0 = ∅ is that some agent, say
a1, gets entire J1 and every other agent gets one job in J2. Then to prove this claim, it suffices to
prove X cannot be EF1. It is not hard to check that under X, for any agent ai with i > 2 and any job
j ∈ X1,

ui(Xi) = 6− ε < ui(X1 \ {j}) = 6.

That is all ai envies a1 for more than one item.

Combing the above two claims, we complete the proof of Lemma 12.

2 2 2 2

6− ǫ

j1 j2 j3 j4

j5

6− ǫj6

m− 1

jm+3 6− ǫ

1 2 3 4 5 6 7
time line

Figure 9: Instance for Lemma 12. There are |A| = m agents and |J | = m+ 3 jobs with m > 2. Job
set J can be partitioned as J1 ∪ J2 with J1 = { j1, j2, j3, j4 } and J2 = { j5, · · · , jm+3 }. Each job
in J1 has unit processing time with weight 2 and each job in J2 has processing time 7 with weight
6 − ε. All jobs are rigid such that ji ∈ J1 needs to occupy the entire time slot 2i − 1, and j ∈ J2
occupies the entire time period from 1 to 7.

D.2 A Polynomial-time Algorithm for FISP with 〈unweighted, rigid〉

In the following, we design a polynomial-time algorithm to compute a schedule that is EF1 and IO
for any instance of FISP with 〈unweighted, rigid〉.
Theorem 8. Given an arbitrary instance of FISP with 〈unweighted, rigid〉, Algorithm 6 returns a
feasible schedule that is simultaneously EF1 and IO in polynomial time.

Let X = (X1, · · · ,Xm) be the schedule returned by Algorithm 6 and let X0 = J \
⋃
i∈[m]Xi.

Suppose that all agents receive a job at every round of first L rounds of Algorithm 6, i.e., in the
(L+ 1)-th round, ∃i ∈ [m] such that ai receives nothing. Note that L 6 n, where n is the number of
jobs. Let jli, 1 6 i 6 m, 1 6 l 6 L, be the job assigned to agent ai in the l-th round of Algorithm 6.
Let rli, d

l
i be the release time and deadline of job jli . Let X l

i be the job set that is assigned to agent ai
after the l-th round of Algorithm 6.

Lemma 13. dl1 6 dl2 6 · · · 6 dlm,∀l ∈ [L].

27

Algorithm 6. Earliest Deadline First + Round-Robin

Input: Agent set A and job set J .
Output: EF1 schedule X = (X1, · · · ,Xm)

1: Sort all jobs by their deadline in non-decreasing order.
2: X1 = X2 = · · · = Xm = ∅.
3: i = 1, k = 1. // The index.
4: for all jk ∈ J do
5: if Xi ∪ { jk } is a feasible job set then
6: Xi = Xi ∪ { jk }.
7: J = J \ { jk }.
8: i = (i+ 1) mod m.
9: else

10: i = i mod m.
11: end if
12: end for
13: X0 = J \

⋃
i∈[m]Xi.

Proof. We consider two agents ai, ak such that 1 6 i < k 6 m. Note that jli, j
l
k must exist since, in

the first L rounds, all agents receive a job. We prove by induction.

Base case and induction hypothesis. In the base case where l = 1, it is strainghtforward to see
that d1i 6 d1k, otherwise j1k will be assigned to agent ai in the first round of Algorithm 6. Now, we
have induction hypothesis dli 6 dlk.

We need to prove dl+1
i 6 dl+1

k . We prove by contradiction and assume that dl+1
i > dl+1

k . Since
agent ai chooses jl+1

i instead of jl+1
k in the (l + 1)-th round, we know that X l

i ∪ { j
l+1
k } is a not

feasible job set which implies that rl+1
k 6 dli. By induction hypothesis, we have rl+1

k 6 dli 6 dlk.
This implies that X l

k ∪ { j
l+1
k } is not a feasible job set. This contradicts our assumption. Thus,

dl+1
i 6 dl+1

k .

Lemma 14. dlm 6 dl+1
1 ,∀l ∈ [L− 1]. Moreover, dLm 6 dL+1

1 if jL+1
1 exists.

Proof. Let ai, ak be two agents such that 1 6 i < k 6 m. We assume that jL+1
1 exists and prove

that the lemma holds for all l ∈ [L]. We prove by contradiction.

In the base case where l = 1, it is not hard to see that dlm 6 d21; otherwise am will choose j21 in the
first round. Now, we have induction hypothesis dl−1m 6 dl1.

Suppose, towards to a contradiction, that there exist l ∈ [L] such that dlm > dl+1
1 . In the l-th round,

agent am selects jlm instead of jl+1
1 because X l−1

m ∪ { jl+1
1 } is not a feasible job set; otherwise am

will select jl+1
1 . Since X l−1

m ∪ { jl+1
1 } is not a feasible job set, we have rl+1

1 6 dl−1m . By induction
hypothesis, we have dl−1m 6 dl1. Therefore, we have rl+1

1 6 dl1 which implies that X l
1 ∪ { jl+1

1 } is
not a feasible job set. This contradicts our assumption.

Lemma 15. |Xi| − |Xk| ∈ {−1, 0, 1 } ,∀i, k ∈ [m].

Proof. We consider the (L+ 1)-th round of Algorithm 6 in which ∃f ∈ [m] such that af receives
nothing in this round. Let JLf be the set of remaining jobs in J after af chooses in the (L + 1)-th
round. We consider the agent ak such that 1 6 f 6 k < m. Since af receives nothing, we have rj 6
dLf ,∀j ∈ JLf . According to Lemma 13, we have dLf 6 dLk . Then, we have rj 6 dLf 6 dLk ,∀j ∈ JLf
which implies that agent ak also receives nothing in this round. Therefore, am must receive nothing
in the (L+ 1)-th round because there exist an agent that does not receive job in the (L+ 1)-th round.
Let JLm be the remaining jobs in J before am chooses in the (L + 1)-th round. Since am receives
nothing in the (L + 1)-th round, we have rj 6 dLm,∀j ∈ JLm. According to Lemma 14, we have
dLm 6 dL+1

1 if jL+1
1 exists. Therefore, we have rj 6 dL+1

1 ,∀j ∈ JLm. Thus, a1 will receive nothing
in the (L+ 2)-th round. Now, we consider an arbitrary agent ah, 1 6 h 6 m, it is strainghtforward

28

to see that if ah receives nothing in (L+ 1)-th round, then ah will receive nothing in any L′-th round,
where L + 1 < L′. Note that, in the (L + 1)-th round, there may exist many agents that receive
nothing. Without loss of generality, we assume that af is the agent with the smallest index who
receives nothing in the (L+ 1)-th round. Therefore, we have

|Xi| =
{
L, ∀f 6 i 6 m;

L+ 1, ∀1 6 i < f .

Thus, we have |Xi| − |Xk| ∈ {−1, 0, 1 } ,∀i, k ∈ [m].

Lemma 16. ui(Xi) > ui(X0 ∪Xi),∀i ∈ [m].

We will use the optimal argument for classical interval scheduling to prove Lemma 16. We restate the
problem and optimal argument for completeness.

In classical interval scheduling, we are given a set of intervals I = { I1, I2, · · · , In }. Each interval
is associated with a release time and a deadline. A set of intervals I ′ is called a compatible set if and
only if, for every two intervals Ik, Ih ∈ I ′, Ik, Ih do not intersect. The goad is to find the compatible
set with the maximum size. This problem can be easily solved by Earlier Deadline First (EDF)
Kleinberg and Tardos [2006].

Proof. We consider an arbitrary agent ai. We prove by constructing an instance of classical interval
scheduling problem. Let I = X0 ∪Xi. Let ALGE be the interval set selected by EDF algorithm.
Observe that if we can prove that ALGE = Xi, then it implies that ui(Xi) > ui(X0 ∪ Xi) since
ALGE is the optimal solution. Suppose that ALGE = { j′1, j′2, · · · , j′h } and assume that the interval
is added to ALGE by EDF algorithm in this order. Suppose that Xi = { j1, j2, · · · , jk } and assume
that the job is added to Xi by Algorithm 6 in this order. Note that |Xi| 6 |ALGE| since ALGE is the
compatible set with the maximum size.

We prove by comparison. Assume that ALGE and Xi become different from the R-th element, i.e.,
jl = j′l ,∀l ∈ [R − 1] and jR 6= j′R. This implies that j′R instead of jR is the job with the smallest
deadline in X0 ∪Xi \ { j1, · · · , jR−1 } to make { j1, · · · , jR−1 } ∪ { j′R } be compatible. Note that
both { j1, · · · , jR−1 } ∪ { j′R } and { j1, · · · , jR−1 } ∪ { jR } are feasible. Since j′R is left to charity,
there is no agent takes it away. Therefore, Algorithm 6 will assign j′R instead of jR to ai. Hence, we
proved Xi ⊆ ALGE. It is easy to see that there is no interval j′u ∈ ALGE such that j′u /∈ Xi which
implies that Xi = ALGE.

Now, we are ready to prove Theorem 8.

Proof of Theorem 8. According to Lemma 15, we know that the feasible schedule X returned by
Algorithm 6 is an EF1 schedule. According to Lemma 16, X is also an IO schedule. Hence,
Algorithm 6 returns a feasible schedule that is simultaneously EF1 and IO.

Now, we prove the running time. Line 1 requires running time O(n log n), where n is the number of
jobs. Line 4-13 requires running time O(n). Hence, the running time of Algorithm 6 can be bounded
by O(n log n).

Now, we show an instance that Algorithm 6 returns a schedule that is not PO schedule. See Figure 10.
By applying Algorithm 6 to the instance in Figure 10, let X be the returned schedule. Then, we
have X = (X1,X2), where X1 = { j1, j4 } ,X2 = { j2, j5 } and X0 = { j3, j6 }. But a possible PO
schedule is X′ = (X ′1,X ′2), where X ′1 = { j1, j4, j5 } ,X ′2 = { j2, j6 } and X ′0 = { j3 }.

D.3 A polynomial time algorithm for FISP with 〈unweighted, flexible〉

Note that Algorithm 6 can be modified to run on instances of FISP with 〈unweighted, flexible〉. But
this modified algorithm fails to return an IO schedule. This is not surprising as it has been proved
in Garey and Johnson [1979] that even with a single machine, finding an IO schedule is NP-hard.
Fortunately, the modified algorithm still runs in polynomial time and always returns a schedule that is
EF1 and 1/2-IO.

Before giving the round-robin algorithm, we first re-state the following classical scheduling problem.

29

j1

j2

j3

j4

j6

j5

1 2 3 4 5 6 7 8 9 10 11

time line

12

Figure 10: Instance for which Algorithm 6 fails to return a PO schedule. In the above instance, we have
J = { j1, j2, j3, j4, j5, j6 } ,A = { a1, a2 }. The job windows are T1 = { 1, 2 } ,T2 = { 3, 4 } ,T3 =
{ 2, 3, 4, 5, 6 } ,T4 = { 6, 7, 8 } ,T5 = { 10, 11 } ,T6 = { 8, 9, 10, 11, 12 }, respectively.

Scheduling to find the maximum compatible job set We are given a job set J which contains n
jobs, i.e., J = { j1, j2, · · · , jn }, with each job regraded as a tuple, i.e., ji = (ri, pi, di), i ∈ [n], 1 6
pi 6 di − ri + 1, where ri, pi, di are the release time, processing time and deadline, respectively.
There is one machine which is used to process jobs. A subset J ′ of jobs is called compatible job set
if and only if all jobs in J ′ can be finished without preemption before their deadlines. The objective
is to find a compatible job set with the maximum size.

The above scheduling problem is the optimization version of the scheduling problem SEQUENCING
WITH RELEASE TIMES AND DEADLINES, which is strongly NP-complete Garey and Johnson
[1979]. In Bar-Noy et al. [2001], they give an (m+1)m

(m+1)m−mm -approximation algorithm for m identical
machines case. In particular, the approximation ratio is 2 when m = 1. We restate the greedy
algorithm for completeness (Algorithm 7).

Algorithm 7. 2-approximation for scheduling problem on single machine.

1: ALGC = ∅.
2: J∗ = J .
3: D = 0.
4: while J∗ 6= ∅ do
5: J∗ = ∅. // reset J∗.
6: for every job j ∈ J do
7: if dj 6 max{D, rj}+ pj then
8: J∗ = J∗ ∪ { j }.
9: end if

10: end for
11: j∗ = arg min

j∈J∗
{max{D, rj}+ pj}.

12: Schedule job j∗ at time slot max{D, rj}.
13: D = max{D, rj∗}+ pj∗ .
14: ALGC = ALGC ∪ { j∗ }.
15: end while

Theorem 9. A schedule that is simultaneously EF1 and 1/2-IO exists and can be found in polynomial
time for all instance of FISP 〈unweighted, flexible〉.

Now, we are ready to give the algorithm (Algorithm 8) for instance of FISP 〈unweighted, flexible〉.
Let X = (X1, · · · ,Xm) be the schedule returned by Algorithm 8 and X0 = J \

⋃
i∈[m]Xi. We first

show that X is an 1/2-IO schedule and then prove that X is an EF1 schedule.
Lemma 17. ui(Xi) > 1

2 · ui(Xi ∪X0),∀ai ∈ A.

Proof. We consider an arbitrary agent ai ∈ A and the job set Xi ∪X0. Let ALGC be the set of jobs
selected fromX0∪Xi by Algorithm 7. Let OPTC be the set of jobs selected by the optimal algorithm.
Since Algorithm 7 is a 2-approximation algorithm, we have |ALGC| > 1

2 · |OPTC|. Observe that if
we can prove that ALGC = Xi, then we have ui(Xi) > 1

2 · ui(Xi ∪X0) since ALGC has the size at
least half of the optimal solution. Let ALGC = { j1, j2, · · · , jk } and assume that the jobs are added
to the solution by Algorithm 7 in this order. Let Xi = { j′1, j′2, · · · , j′r } and assume that the jobs

30

Algorithm 8. Round-Robin for FISP 〈unweighted, flexible〉
Input: Agent set A and job set J .
Output: EF1 schedule X = (X1, · · · ,Xm).

1: X1 = · · · = Xm = ∅.
2: J∗1 = · · · = J∗m = J .
3: D1 = · · · = Dm = 0.
4: i = 1. // The index.
5: while there is a J∗i 6= ∅ do
6: for all ai ∈ A do
7: J∗i = ∅. // reset J∗i .
8: for every job j ∈ J do
9: if dj 6 max{Di, rj}+ pj then

10: J∗i = J∗i ∪ { j }.
11: end if
12: end for
13: j∗i = arg min

j∈J∗i
{max{Di, rj}+ pj}.

14: Xi = Xi ∪ { j∗i }.
15: Schedule job j∗i at max{Di, rj}.
16: Di = max{Di, rj∗i }+ pj∗i .
17: J = J \ { j∗i }.
18: end for
19: end while
20: X0 = J \

⋃
i∈[m]Xi.

are added to Xi by Algorithm 8 in this order. We prove by comparison. Assume that ALGC and Xi

become different from the R-th element, i.e., jl = j′l ,∀l ∈ [R − 1] and jR 6= j′R. Assume that the
completion time of jR−1 is DR−1. Then, we have

j′R 6= jR = arg min
j∈J∗R

{max{DR−1, rj}+ pj},

where J∗R ⊆ Jr = X0 ∪Xi \ { j1, · · · , jR } is a set of jobs which can be feasibly scheduled after
jR, i.e.,

J∗R = { j ∈ Jr | max{DR−1, rj}+ pj 6 dj } .

Note that j′R ∈ J∗R. Since j′R instead of jR is assigned to agent ai in a certain round, we know
that jR must be assigned to a certain agent before agent ai chooses, i.e., jR ∈ Xk,∃k ∈ [m]. This
contradicts our assumption since jR ∈ X0.

Let J li be the job set J∗i for agent ai ∈ A in the l-th round, where 1 6 i 6 m and 1 6 l 6 L.
Suppose that in first L-th rounds of Algorithm 8, J∗i 6= ∅,∀i ∈ [m], i.e., in the (L + 1)-th round,
∃i ∈ [m] such that J∗i = ∅. Let Dl

i be the parameter Di in Algorithm 8 for agent ai ∈ A at the end
of the l-th round, where 1 6 i 6 m and 1 6 l 6 L.
Lemma 18. Dl

1 6 Dl
2 6 · · · 6 Dl

m,∀l ∈ [L]. Moreover, we have Dl
m 6 Dl+1

1 ,∀l ∈ [L− 1], and
DL
m 6 DL+1

1 if JL+1
1 6= ∅.

Proof. We first prove Dl
1 6 Dl

2 6 · · · 6 Dl
m,∀l ∈ [L]. Let ak, ah ∈ A be two agents, where

1 6 k < h 6 n. We only need to prove Dl
k 6 Dl

h,∀l ∈ [L]. We prove by induction. In the base case
where l = 1, D1

k 6 D1
h obviously holds since agent ak chooses the job before ah. Now, we have

induction hypothesis Dl
k 6 Dl

h and we need to prove Dl+1
k 6 Dl+1

h . We prove by contradiction
and assume that Dl+1

k > Dl+1
h . Let jl+1

k , jl+1
h be the jobs that are selected by agent ak, ah in the

(l + 1)-round of Algorithm 8, respectively. Hence, we have

Dl+1
k = max{Dl

k, rjl+1
k
}+ pjl+1

k
,

Dl+1
h = max{Dl

h, rjl+1
h
}+ pjl+1

h
.

31

By induction hypothesis Dl
k 6 Dl

h, we have

max{Dl
k, rjl+1

h
}+ pjl+1

h
6 max{Dl

h, rjl+1
h
}+ pjl+1

h
6 djl+1

h
.

This implies that jl+1
h ∈ J l+1

k . Since

max{Dl
k, rjl+1

h
}+ pjl+1

h
6 Dl+1

h < Dl+1
k ,

we have
max{Dl

k, rjl+1
h
}+ pjl+1

h
< max{Dl

k, rjl+1
k
}+ pjl+1

k
.

This implies that jl+1
h instead of jl+1

k will be chosen by agent ak in the (l+1)-th round of Algorithm 8.
This contradicts our assumption.

We assume that JL+1
1 6= ∅ and prove that Dl

m 6 Dl+1
1 ,∀l ∈ [L]. We prove Dl

m 6 Dl+1
1 holds

for any 1 6 l 6 L. Note that D0
r = 0,∀r ∈ [m]. We prove by induction. In the base case where

l = 1, if D1
m > D2

1 , am will choose j21 instead of j1m in the first round. Now, we have induction
hypothesis Dl

m 6 Dl+1
1 and we need to prove that Dl+1

m 6 Dl+2
1 holds. We prove by contradiction

and assume that Dl+1
m > Dl+2

1 . Let jl+1
m , jl+2

1 be the jobs that are selected by agent am, a1 in the
(l + 1), (l + 2)-th round of Algorithm 8, respectively. Note that in the case where l = L− 1, there
always exists a job jl+2

m since { jL+1
m } 6= ∅. Hence, we have

Dl+1
m = max{Dl

m, rjl+1
m
}+ pjl+1

m
,

Dl+2
1 = max{Dl+1

1 , rjl+2
1
}+ pjl+2

1
.

By induction hypothesis Dl
m 6 Dl+1

1 , we have

max{Dl
m, rjl+2

1
}+ pjl+2

1
6 max{Dl+1

1 , rjl+2
1
}+ pjl+2

1
6 djl+2

1
.

This implies that jl+2
1 ∈ J l+1

m . Since

max{Dl
m, rjl+2

1
}+ pjl+2

1
6 Dl+2

1 < Dl+1
m ,

we have
max{Dl

m, rjl+2
1
}+ pjl+2

1
< max{Dl

m, rjl+1
m
}+ pjl+1

m
.

This implies that jl+2
1 instead of jl+1

m will be chosen by agent am in the (l+1)-th round of Algorithm 8.
This contradicts our assumption.

Lemma 19. J l1 ⊇ J l2 ⊇ · · · ⊇ J lm,∀l ∈ [L+ 1]. Moreover, we have J lm ⊇ J l+1
1 , l ∈ [L].

Proof. We first prove that J l1 ⊇ J l2 ⊇ · · · ⊇ J lm,∀l ∈ [L]. Let ak, ah ∈ A be two agents, where
1 6 k < h 6 n. We only need to prove J lk ⊇ J lh. To prove J lh ⊆ J lk, we consider an arbitrary job
j ∈ J lh and show that j ∈ J lk. Note that J lk, J lh 6= ∅,∀l ∈ [L]. Let J ks ,J hs be the set of jobs that
are already assigned to the agents before agent ak and ah select, respectively. Note that J ks ⊆ J hs .
According to Algorithm 8, we have

J lk = { j ∈ (J \ J ks) | dj 6 max{Dl−1
k , rj}+ pj } ,

J lh = { j ∈ (J \ J hs) | dj 6 max{Dl−1
h , rj}+ pj } .

Since J ks ⊆ J hs , we have J \ J ks ⊇ J \ J hs . Now we consider an arbitrary job j ∈ J lh and show
that j is also a member of J lk. Since j ∈ (J \ J hs) and J \ J ks ⊇ J \ J hs , we have j ∈ (J \ J ks).
Since j ∈ J lh, we have

dj 6 max{Dl−1
h , rj}+ pj .

According to Lemma 18, Dl−1
h > Dl−1

k , we have

dj 6 max{Dl−1
k , rj}+ pj ,

which implies that j ∈ J lk. Now we consider the case where l = L+ 1. Note that in the (L+ 1)-th
round of Algorithm 8, ∃i ∈ [m] such that JL+1

i = ∅. Now we prove that JL+1
k ⊇ JL+1

h . If

32

JL+1
h = ∅, then we are done. Hence, we assume that JL+1

h 6= ∅. By a similar argument, a job
j ∈ JL+1

h has the property dj 6 max{DL
h , rj}+ pj . Then we have dj 6 max{DL

k , rj}+ pj holds
since DL

k 6 DL
h . Then we have j ∈ JL+1

k .

Now, we prove that J lm ⊇ J l+1
1 ,∀l ∈ [L]. Note that it is possible that JL+1

1 = ∅. In this case
JLm ⊇ JL+1

1 trivially holds. Hence, we assume that JL+1
1 6= ∅. To prove J lm ⊇ J l+1

1 , we consider an
arbitrary job j ∈ J l+1

1 and show that j ∈ J lm. Let Jms ,J 1
s be the set of jobs that are already assigned

to the agents before agent am and a1 select in the l, (l + 1)-th round of Algorithm 8, respectively.
Note that Jms ⊆ J 1

s . According to Algorithm 8, we have

J lm = { j ∈ (J \ Jms) | dj 6 max{Dl−1
m , rj}+ pj } ,

J l+1
1 = { j ∈ (J \ J 1

s) | dj 6 max{Dl
1, rj}+ pj } .

Since Jms ⊆ J 1
s , we have J \ Jms ⊇ J \ J 1

s . Now we consider an arbitrary job j ∈ J l+1
1 and show

that j ∈ J lm. Since j ∈ J l+1
1 , we have

dj 6 max{Dl
1, rj}+ pj .

According to Lemma 18, we have Dl−1
m 6 Dl

1. Then, we have

max{Dl
1, rj}+ pj > max{Dl−1

m , rj}+ pj .

Hence, we have dj 6 max{Dl−1
m , rj}+ pj which implies that j ∈ J lm.

Lemma 20. |Xi| − |Xk| ∈ {−1, 0, 1 } ,∀i, k ∈ [m].

Proof. We consider the (L+ 1)-th round of Algorithm 8 in which there exists an agent ai ∈ A such
that ai does not choose any jobs for the first time. Note that there may exist many agents that do
not choose any job for the first time in (L+ 1)-th round. We assume that af is the first agent that
chooses nothing in the (L+1)-th round. Since af chooses nothing, we have JL+1

f = ∅. According to
Lemma 19, we have JL+1

i = ∅,∀f 6 i 6 n. Moreover, we have JL
′

i = ∅,∀i ∈ [m] and L+ 1 < L′.
Therefore, we have

|Xi| =
{
L, ∀f 6 i 6 m;

L+ 1, ∀1 6 i < f .

This implies that Lemma 20 holds.

Now we are ready to prove Theorem 9.

Proof of Theorem 9. According to Lemma 20 and Lemma 17, we know that Algorithm 8 will return
a feasible schedule that is simultaneously EF1 and 1/2-IO.

Now we bound the running time. According to Lemma 20 and Lemma 17, we know that line 5-20
will be run at most d nme times, where n is the number of jobs and m is the number of agents. In each
while loop, line 6-18 will be run at most m times. In each for loop, line 8-12 will be run at most n
times and the running time of line 13 can be bounded by O(n). Hence, we have the running time of
Algorithm 8 O(d nme ·m · (n

2 + n)) = O(mn3).

E Missing Discussions in Experiments in Section 5

We now empirically test the performance of Algorithm 4 when jobs are rigid, comparing it against a
simple Round-Robin algorithm. In this simple Round-Robin algorithm, all jobs are sorted by their
deadlines in non-decreasing order. Then every agent picks a job in round-robin manner. Finally, every
agent computes the compatible intervals with the maximum weight and all the remaining jobs will be
assigned to charity. The formal description can be found in Algorithm 9 with J ′ = J and A′ = A.
For the experiments, we have implemented both Algorithm 4 and the above round-robin algorithm.

We run our experiments on three job sets with different sizes: 100 (Figure 1 (a)), 500 (Figure 1 (b))
and 1000 (Figure 1 (c)). The release time and deadline of each job is uniformly randomly sampled
from the interval [0,50]. For each job set, we further set up three subgroups according to the agents’

33

Algorithm 9. Round-Robin (RR)

Input: Agent set A′ and job set J ′.
Output: EF1 schedule X = (X1, · · · ,X|A′|)

1: Sort all jobs by their deadline in non-decreasing order.
2: X1 = X2 = · · · = X|A′| = ∅.
3: i = 1, k = 1. // The index.
4: for all jk ∈ J ′ do
5: for all ai ∈ A′ do
6: if k mod |A′| = i then
7: Xi = Xi ∪ { jk }.
8: end if
9: end for

10: end for
11: i = 1. // Reset the index
12: for all Xi do
13: Let X ′i ⊆ Xi be the compatible job set with the maximum weight for agent ai.
14: Xi = X ′i .
15: end for
16: X0 = J \

⋃
i∈[|A′|]Xi.

utility of every job: (i) the utility gain is sampled uniformly randomly from [1,20]; (ii) the utility gain
follows Poisson Distribution with means 50; (iii) the utility gain follows Normal Distribution with
means 25 and variance 10. For each subgroup, we further set up three subsubgroups according to the
size of agent set: 5, 10 and 15.

In total, our experiment contains 3 × 3 × 3 groups. For each group, we run Algorithm 4 and
Round-Robin algorithm on 1000 different instances. Noted that Algorithm 4 does not have a good
performance when the number of jobs is much larger than the number of agents, e.g., the groups with
5 agents (U.1, P.1, N.1) in Figure 1. The reason Algorithm 4 performances unsatisfactorily is that
Algorithm 4 stops at the threshold while there are a lot of remaining jobs. To fix this problem, we add
the Round-Robin procedure at the end of Algorithm 4, i.e., if there exist some unallocated jobs at the
end of Algorithm 4, we run Round-Robin algorithm on the remaining job set. Finally, every agent
computes the maximum compatible job set from the union of the job set returned by Algorithm 4
and Round-Robin algorithm. The formal description can be found in Algorithm 10. Let BAG+ be
the updated version of Algorithm 4 and BAG be the original one. With the help of the Round-Robin
procedure, the performance of Algorithm 4 is better than the Round-Robin algorithm in all groups.

Algorithm 10. Matching-BagFilling + Round-Robin (BAG+)

Input: Agent set A and job set J .
Output: EF1 schedule X = (X1, · · · ,Xm)

1: Run Algorithm 4.
2: Let X = (X1, · · · ,Xm) be the schedule returned by Algorithm 4.
3: Let X0 = J \

⋃
i∈[m]Xi.

4: if X0 6= ∅ then
5: Run Algorithm 9 with job set X0 and agent set A.
6: Let X′ = (X ′1, · · · ,X ′m) be the schedule returned by Algorithm 9.
7: end if
8: i = 1. // The index.
9: for all Xi do

10: Let X ′′i ⊆ (Xi ∪X ′i) be the compatible job set with the maximum weight for agent ai.
11: Xi = X ′′i .
12: end for
13: X0 = J \

⋃
i∈[m]Xi.

According to Figure 1, it is not hard to see that Algorithm 4 is not able to achieve a good performance
when the number of jobs is much larger than the number of agents. When the size of the job set is

34

U.1 U.2 U.3 P.1 P.2 P.3 N.1 N.2 N.3

0.8

1.0

1.2

1.4

1.6

|J|=100
BAG+/RR
BAG/RR

(a) Groups with |J | = 100.

U.1 U.2 U.3 P.1 P.2 P.3 N.1 N.2 N.3

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
|J|=500

BAG+/RR
BAG/RR

(b) Groups with |J | = 500.

U.1 U.2 U.3 P.1 P.2 P.3 N.1 N.2 N.3
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
|J|=1000

BAG+/RR
BAG/RR

(c) Groups with |J | = 1000.

Figure 1: The results of the evaluation of Algorithm 4, Algorithm 10 and Algorithm 9 on different
settings. Every subfigure represents the groups with same job set size. Every notation in x-axis
represents a setting. Notations "U.", "P.", "N.", represent the utility gain follows the Uniform, Poisson,
Normal Distribution, respectively. Notations "1", "2", "3", represent the number of agents is 5, 10,
15, respectively. The top and bottom point of every solid red interval represent the maximum and
minimum value of BAG+/RR among all the agents, where BAG+/RR is the ratio of total gain that the
agents receive when we run BAG+ and RR algorithm. The top and bottom point of every dot-dashed
green interval represent the maximum and minimum value of BAG/RR among all the agents, where
BAG/RR is the ratio of total gain that the agents receive when we run BAG and RR algorithm.

100, Algorithm 4 performs worse than Round-Robin only in the setting where the agent set is 5 (see
Figure 1 (a), only U.1, P.1, N.1’s green interval is behind 1.0). When we increase the number of jobs
to 500, the situation that Algorithm 4 is worse than Round-Robin begins to appear at |A| = 10 (see
Figure 1 (b), part of green interval of U.2 begins to appear behind 1.0). When we further increase the
number of jobs to 1000, Algorithm 4 performs better than Round-Robin only in the setting where
there are 15 agents (see Figure 1 (c), only U.3, P.3, N.3’s green interval is above 1.0).

The reason is that Algorithm 4 stops at the case where every agent gets the threshold but there are
a lot of remaining jobs. We can fix this issue by adding an extra round-robin procedure to allocate
the remaining jobs, and thus yield BAG+ algorithm. According to Figure 1, we can find that the
performance of BAG+ is better than Round-Robin in all settings as all red intervals are above 1.0.
Thus, BAG+ algorithm can achieve a good performance in practices and guarantee the approximation
in the worst case.

35

	Missing Materials in sec:preliminaries
	Missing Materials for MMS Scheduling in sec:mms
	Proof of lem:mms:preprocess
	An Example for Matching-BagFilling and Matching-BagFilling+
	Proof of lem:mms:bag:gamma

	Missing Materials for EF1 and PO Scheduling in sec:EF1vsPO
	The Impossible Result for thm:ef1:alg
	The Algorithm for thm:ef1:alg
	1/4-EF1 and PO for general FISP instances
	1/2-EF1 and PO for FISP with "426830A non-identical, unit"526930B instances

	EF1 and IO Scheduling
	An Impossibility Result
	A Polynomial-time Algorithm for FISP with "426830A unweighted, rigid"526930B
	A polynomial time algorithm for FISP with "426830A unweighted, flexible"526930B

	Missing Discussions in Experiments in sec:experiment

