
Appendix

Table of Contents
A Proof of Proposition 1 17

B Proof of Theorem 1 18

C Proof of Theorem 2 20

D Proof of Theorem 3 22

E Connection between Large-Margin Softmax and LAST 23

F Additional Discussions and Results 24
F.1 Experiments of Teaching Logistic Regression Learner on Gaussian Data 24
F.2 Experiments of Teaching Logistic Regression Learner on Half-moon Data 24
F.3 Experiments of Teaching MLP Learner on MNIST 24
F.4 Qualitative Results of LAST for Logistic Regression Learners 25
F.5 Omniscient Parameterized Teaching of Logistic Regression Learners 25
F.6 Omniscient Parameterized Teaching of MLP Learners 25
F.7 Effects of Different Action Spaces for LAST with Policy Gradient 26
F.8 Black-box Parameterized Teaching of Logistic Regression Learners 26

G Experimental Details 27

16

A Proof of Proposition 1

Proof. This proposition is quite intuitive. For the first iteration, the SGD uses the following update:

w1
s = w0 − η

∂`(xi1 , yi1 |w)

∂w
(8)

which gives the following distance to w∗:∥∥w1
s −w∗

∥∥2
=

∥∥∥∥w0 − η
∂`(xi1 , ỹi1 |w)

∂w
−w∗

∥∥∥∥2

=
∥∥w0 −w∗

∥∥2
+ T12(xi1 , ỹi1 |w0)

(9)

where it,∀t is uniformly sampled index and we define T12(xi1 , ỹi1 |w0) = η2T1(xi1 , ỹi1 |w0) −
2ηT2(xi1 , ỹi1 |w0). With the same randomly sampled teaching data point {xi1 , ỹi1}, the greedy
LAST teacher yields the following distance to w∗:∥∥w1

l −w∗
∥∥2

=

∥∥∥∥w0 − η
∂`(xi1 , yi1 |w)

∂w
−w∗

∥∥∥∥2

=
∥∥w0 −w∗

∥∥2
+ min

y′i1

T12(x, y′i1 |w
0).

(10)

where yi1 = arg miny′ T12(x, y′i1 |w
0). Therefore, we have that

∥∥w1
l −w∗

∥∥ ≤ ∥∥w1
s −w∗

∥∥ for any
i1, which leads to Ei1{

∥∥w1
l −w∗

∥∥} ≤ Ei1{
∥∥w1

s −w∗
∥∥}. We consider the second iteration for

SGD:
Ei1,i2{

∥∥w2
s −w∗

∥∥2} = Ei1,i2{G(xi2 , y
′
i2 |w

1
s)}

≥ Ei1,i2{G(xi2 , y
′
i2 |w

1
l)}

= Ei1,i2{
∥∥w2

l −w∗
∥∥2}

(11)

which yields Ei1,i2{
∥∥w2

l −w∗
∥∥2} ≤ Ei1,i2{

∥∥w2
s −w∗

∥∥2}. For the third iteration, we have for
SGD that

Ei1,i2,i3{
∥∥w3

s −w∗
∥∥2} = Ei1,i2,i3{G(xi2 , y

′
i2 |w

2
s)}

≥ Ei1,i2,i3{G(xi2 , y
′
i2 |w

2
l)}

= Ei1,i2,i3{
∥∥w3

l −w∗
∥∥2}.

(12)

Eventually, we will have that E{
∥∥wT

l −w∗
∥∥2} ≤ E{

∥∥wT
s −w∗

∥∥2} at the T -th iteration, which
means that greedy LAST converges no slower than SGD.

17

B Proof of Theorem 1

From the (t+ 1)-th gradient update with the greedy LAST teacher (for xi, yi is the synthesized label
and ỹi is the ground truth label), we have that∥∥wt+1 −w∗

∥∥2
=
∥∥wt − ηt∇wt`(xit , yit |wt)−w∗

∥∥2

=
∥∥wt − ηtg(yit)∇wt`(xit , ỹit |wt)−w∗

∥∥2

=
∥∥wt −w∗

∥∥2 − 2ηtg(yit)〈∇wt`(xit , ỹit |wt),wt −w∗〉

+ η2
t (g(yit))

2
∥∥∇wt`(xit , ỹit |wt)

∥∥2

(13)

where it denotes a randomly sampled index from the pool in the t-th iteration. It can be simplified as
(by denoting ∇wt`(xit , ỹit |wt) as ∇`it(wt)):∥∥wt+1 −w∗

∥∥2
=
∥∥wt −w∗

∥∥2 − 2ηtg(yit)〈∇`it(wt),wt −w∗〉+ η2
t (g(yit))

2
∥∥∇`it(wt)

∥∥2
.

(14)
Because we know that the synthesized label yit is the solution to the following minimization:

yit = arg min
y′it

{
η2
t (g(y′it))

2
∥∥∇wt`(xit , ỹit |wt)

∥∥2 − 2ηtg(y′it)〈∇wt`(xit , ỹit |w
t),wt −w∗〉

}
,

(15)
then we plug a new y′′it which satisfies g(y′′it) = c1 ‖wt −w∗‖ to Eq. (14) and have the following
inequality:∥∥wt+1 −w∗

∥∥2 ≤
∥∥wt −w∗

∥∥2 − 2ηtg(y′′it)〈∇`it(w
t),wt −w∗〉+ η2

t (g(y′′it))
2
∥∥∇`it(wt)

∥∥2

=
∥∥wt −w∗

∥∥2 − 2ηtc1
∥∥wt −w∗

∥∥ 〈∇`it(wt),wt −w∗〉

+ η2
t c

2
1

∥∥∇`it(wt)
∥∥2 ∥∥wt −w∗

∥∥2

(16)
Using the convexity of f(·) and the order-1 strong convexity [40] of `it(·), we have that (let µit = 0
if `it is not order-1 strongly convex):

−〈∇`it(wt),wt −w∗〉 ≤ `it(w∗)− `it(wt)− µit
2

∥∥wt −w∗
∥∥ (17)

which leads to∥∥wt+1 −w∗
∥∥2 ≤

∥∥wt −w∗
∥∥2

+ 2ηtc1
∥∥wt −w∗

∥∥ (`it(w∗)− `it(wt)− µit
2

∥∥wt −w∗
∥∥)

+ c21
∥∥∇`it(wt)

∥∥2 ∥∥wt −w∗
∥∥2

=
∥∥wt −w∗

∥∥2
+ 2ηtc1

∥∥wt −w∗
∥∥ (`it(w

∗)− `it(wt))− ηtc1µit
∥∥wt −w∗

∥∥2

+ c21
∥∥∇`it(wt)

∥∥2 ∥∥wt −w∗
∥∥2
.

Using the condition that `i is Li-Lipschitz continuous and denoting Lmax = maxi Li, we have that∥∥wt+1 −w∗
∥∥2 ≤

∥∥wt −w∗
∥∥2

+ 2ηtc1
∥∥wt −w∗

∥∥ (`it(w
∗)

− `it(wt))− ηtc1µit
∥∥wt −w∗

∥∥2
+ η2

t c
2
1L

2
max

∥∥wt −w∗
∥∥2
.

The interpolation condition [80] implies that w∗ is the minimum for all functions `i, which is
equivalent to `i(w∗) ≤ `i(wt) for all i. Therefore, we have that (`it(w

∗)− `it(wt)) ≤ 0. Then we
end up with∥∥wt+1 −w∗

∥∥2 ≤
∥∥wt −w∗

∥∥2 − ηtc1µit
∥∥wt −w∗

∥∥2
+ η2

t c
2
1L

2
max

∥∥wt −w∗
∥∥2

= (1− µitηtc1 + η2
tL

2
maxc

2
1)
∥∥wt −w∗

∥∥2
.

(18)

Taking expectation w.r.t. it, we have that

E{
∥∥wt+1 −w∗

∥∥2} ≤ Eit{(1− µitηtc1 + η2
tL

2
maxc

2
1)
∥∥wt −w∗

∥∥2}

= (1− Eit{µit}ηtc1 + η2
tL

2
maxc

2
1)
∥∥wt −w∗

∥∥2

= (1− µ̄ηtc1 + η2
tL

2
maxc

2
1)
∥∥wt −w∗

∥∥2
.

(19)

18

Using recursion, we have that

E{
∥∥wT −w∗

∥∥2} ≤ (1− µ̄ηtc1 + η2
t c

2
1L

2
max)T

∥∥w0 −w∗
∥∥2 (20)

where we typically make ηtc1 a constant such that (1 − µ̄ηtc1 + η2
t c

2
1L

2
max) is also a

constant between 0 and 1. This is equivalent to the statement in the theorem that at
most d(log 1

1−c1ηtµ̄+η2
t c

2
1Lmax

)−1 log(1
ε ‖w

0 −w∗‖2)e iterations are needed to achieve the ε-

approximation E{‖wT −w∗‖2} ≤ ε. �

19

C Proof of Theorem 2

Proof. The gradient update rule with the greedy LAST teacher is given by:

wt+1 = wt − ηt∇wt`(xit , yit |wt) (21)

where yit is the label synthesized by the teacher for xit . It can be rewritten as

wt+1 = wt − ηtg(yit)∇wt`(xit , ỹit |wt) (22)

where ỹit is the ground truth label for xit . Therefore, we can simply define a new dynamic learning
rate η′t(yit) = ηtg(yit) and analyze the new gradient update rule based on the ground truth label:

wt+1 = wt − η′t(yit)∇wt`(xit , ỹit |wt). (23)

From the smoothness of `it and the new gradient update above, we have that

`it(xit+1
, ỹit+1

|wt+1) ≤ `ik(xit , ỹit |wt)−(η′t(yit)−
Lit(η

′
t(yit))

2

2
)
∥∥∇`it(xit , ỹit |wt)

∥∥2
. (24)

Combining it with the condition:

`it(xit+1 , ỹit+1 |wt+1) ≤ `ik(xit , ỹit |wt)− c2η′t(yit)
∥∥∇`it(xit , ỹit |wt)

∥∥2
, (25)

we will have that

c2η
′
t(yit) ≥ (η′t(yit)−

Lit(η′t(yit))2

2
) (26)

which leads to η′t(yit) ≥
2(1−c2)
Lit

. Considering that η′t(yit) ≤ ηmax := maxt{ηt} ·maxi{g(yi)}, we
end up with

η′t(yit) ≥ min{2(1− c2)

Lit
, η′max}. (27)

Then we consider the distance between wt+1 and w∗:∥∥wt+1 −w∗
∥∥2

=
∥∥wt − η′t(yit)∇wt`(xit , ỹit |wt)−w∗

∥∥2

=
∥∥wt −w∗

∥∥2 − 2η′t(yit)〈∇wt`(xit , ỹit |wt),wt −w∗〉

+ (η′t(yit))
2
∥∥∇wt`(xit , ỹit |wt)

∥∥2
.

(28)

For the convenience of notation, we denote ∇wt`(xit , ỹit |wt) as ∇`it(wt). Based on the strong
convexity of `it(·) (let µit = 0 if the `it is not strongly convex), we have that

− 〈∇`it(wt),wt −w∗〉 ≤ `it(w∗)− `it(wt)− µit
2

∥∥wt −w∗
∥∥2
. (29)

Combining Eq. (28) and Eq. (29), we have that∥∥wt+1 −w∗
∥∥2 ≤

∥∥wt −w∗
∥∥2

+ 2η′t(yit)
(
`it(w

∗)− `it(wt)− µit
2

∥∥wt −w∗
∥∥2)

+ (η′t(yit))
2
∥∥∇`it(wt)

∥∥2

≤ (1− µitη′t(yit))
∥∥wt −w∗

∥∥2
+ 2η′t(yit)

(
`it(w

∗)− `it(wt)
)

+ η′t(yit)
∥∥∇`it(wt)

∥∥2
.

According to the condition that `it(w
t − ηtg(y)∇`it(wt)) ≤ `it(wt)− c2ηtg(y) ‖∇`it(wt)‖2, we

have that∥∥wt+1 −w∗
∥∥2 ≤ (1− µitη′t(yit))

∥∥wt −w∗
∥∥2

+ 2η′t(yit)
(
`it(w

∗)− `it(wt)
)

+
η′t(yit)

c2

(
`it(w

t)− `it(wt+1)
)
.

(30)

From the interpolation condition, we can obtain that w∗ is the minimum for all functions `i, which
implies that `i(w∗) ≤ `i(wt+1) for all i. Putting this into the inequality, we have that∥∥wt+1 −w∗

∥∥2 ≤ (1− µitη′t(yit))
∥∥wt −w∗

∥∥2
+ 2η′t(yit)

(
`it(w

∗)− `it(wt)
)

+
η′t(yit)

c2

(
`it(w

t)− `it(w∗)
) (31)

20

which can be simplified to∥∥wt+1 −w∗
∥∥2 ≤ (1−µitη′t(yit))

∥∥wt −w∗
∥∥2

+
(
2η′t(yit)−

η′t(yit)

c2

)(
`it(w

∗)−`it(wt)
)

(32)

where the term
(
`it(w

∗)− `it(wt)
)

is negative. We let c2 ≥ 1
2 , and therefore we will have that for

for all η′t(yit), (
2η′t(yit)−

η′t(yit)

c2

)
≥ 0 (33)

which finally leads to ∥∥wt+1 −w∗
∥∥2 ≤ (1− µitη′t(yit))

∥∥wt −w∗
∥∥2
. (34)

Then we take expectation w.r.t. it on both sides:

E{
∥∥wt+1 −w∗

∥∥2} ≤ Eit
{

(1− µitη′t(yit))
∥∥wt −w∗

∥∥2 }
= (1− Eit{µitη′t(yit)})

∥∥wt −w∗
∥∥2

≤
(

1− Eit
{
µit min

{2(1− c2)

Lit
, η′max

}})∥∥wt −w∗
∥∥2
.

(35)

When c2 = 1
2 , we have that

E{
∥∥wt+1 −w∗

∥∥2} ≤
(

1− Eit
{
µit min

{ 1

Lit
, η′max

}})∥∥wt −w∗
∥∥2
. (36)

We can discuss this under two scenarios. First, when η′max <
1

Lmax
, we have that

E{
∥∥wt+1 −w∗

∥∥2} ≤ (1− Eit{µitη′max})
∥∥wt −w∗

∥∥2

= (1− Eit{µit}η′max)
∥∥wt −w∗

∥∥2

= (1− µ̄η′max)
∥∥wt −w∗

∥∥2

(37)

which leads to
E{
∥∥wT −w∗

∥∥2} ≤ (1− µ̄η′max)T
∥∥w0 −w∗

∥∥2
. (38)

Second, when η′max ≥ 1
Lmax

, we have that

E{
∥∥wt+1 −w∗

∥∥2} ≤
(

1− Eit
{
µit min

{ 1

Lmax
, η′max

}})∥∥wt −w∗
∥∥2

=
(
1− µ̄

Lmax

) ∥∥wt −w∗
∥∥2

(39)

which leads to
E{
∥∥wT −w∗

∥∥2} ≤
(
1− µ̄

Lmax

)T ∥∥w0 −w∗
∥∥2
. (40)

Combining both Eq. (38) and Eq. (40), we have that

E{
∥∥wT −w∗

∥∥2} ≤ max

{(
1− µ̄

Lmax

)
, (1− µ̄η′max)

}T ∥∥w0 −w∗
∥∥2
. (41)

which concludes the proof. It implies that c3 =

(
log 1

max
{(

1− µ̄
Lmax

)
,(1−µ̄η′max)

})−1

and

c3 log(1
ε

∥∥w0 −w∗
∥∥2

) samples are needed to achieve E{‖wT −w∗‖2} ≤ ε.

21

D Proof of Theorem 3

With g(y) = η−1
t (∇2

wf(αw∗ + (1− α)w))−1, the gradient update becomes

wt+1 = wt − (∇2
wf(αw∗ + (1− α)wt))−1∇wf(wt) (42)

Because we are given that |λmin(∇2
wf(w))| ≥ µ, then we have for w in the σ-neighborhood that∥∥∥(∇2

wf(w)
)−1
∥∥∥ ≤ µ. (43)

We write∇2
wf(wt) as the following equation:

∇wf(wt) =

∫ 1

0

∇2
wf(w∗ + t(wt −w∗))>(wt −w∗)dt. (44)

Then we estimate the discrepancy between wt+1 and w∗:∥∥wt+1 −w∗
∥∥

=
∥∥wt −w∗ − (∇2

wf(αw∗ + (1− α)wt))−1∇wf(wt)
∥∥

=

∥∥∥∥(∇2
wf(αw∗ + (1− α)wt))−1

(
(∇2

wf(αw∗ + (1− α)wt)) · (wt −w∗)−∇wf(wt)

)∥∥∥∥
=

∥∥∥∥(∇2
wf(αw∗ + (1− α)wt))−1

(
∇2
wf(αw∗ + (1− α)wt)

−
∫ 1

0

∇2f(w∗ + t(wt −w∗))dt
)

(wt −w∗)
∥∥∥∥

=

∥∥∥∥(∇2
wf(αw∗ + (1− α)wt))−1

(∫ 1

0

(
∇2
wf(αw∗ + (1− α)wt)

−∇2
wf(w∗ + t(wt −w∗))

)
dt
)

(wt −w∗)
∥∥∥∥

≤µ
(∫ 1

0

∥∥∇2
wf(αw∗ + (1− α)wt)−∇2

wf(w∗ + t(wt −w∗))
∥∥ dt
)∥∥wt −w∗

∥∥
=µ

(∫ 1

0

L|1− α− t| ·
∥∥wt −w∗

∥∥ dt
)∥∥wt −w∗

∥∥2

=µL ·
∫ 1

0

|1− α− t|dt ·
∥∥wt −w∗

∥∥2

=µL
(1− α)2 + α2

2

∥∥wt −w∗
∥∥2

When α = 0 and α = 1, we will have quadratic convergence (i.e., super-exponential teachability) if
µLδ

2 < 1. In general, we need µL((1−α)2+α2)δ
2 < 1 to achieve super-ET. �

22

E Connection between Large-Margin Softmax and LAST

From [51], we consider the large-margin softmax loss (typically used for neural networks) as

L = − log

(
exp(fy)∑
j exp(fj)

)
= − log

(
exp(‖Wy‖‖x‖ψ(θy)

exp(‖Wy‖‖x‖ψ(θy) +
∑
j 6=y exp(‖Wj‖‖x‖ cos(θj))

) (45)

where fj = ‖Wj‖‖x‖ cos(θj), Wj is the classifier of the j-th class, y denotes the ground truth
class, x is the features and θj is the angle between x and the j-th classifier Wj . ψ(θy) is the key
that differentiates large-margin softmax and the standard softmax. Typically to inject large margin
between learned features, we need to let ψ(θ) to be always larger than cos(θ) in the range of [0, π].

It can be approximately viewed as teaching a special dynamic form of soft labels to the learner.
Specifically, if we have a teacher model to generate a soft label [a1, a2, · · · , ay, · · · , aK] where K is
the number of classes and

∑
i ai = 1, we have the following cross-entropy loss:

L =
∑
i

−ai log

(
exp(fi)∑
j exp(fj)

)
. (46)

According to Jensen’s inequality, we have that

L =
∑
i

−ai log

(
exp(fi)∑
j exp(fj)

)
≥ − log

(∑
i

ai exp(fi)∑
j exp(fj)

)
.

(47)

We can apply Jensen’s inequality again and obtain that

− log

(∑
i

ai exp(fi)∑
j exp(fj)

)
≤ − log

(
exp(

∑
i aifi)∑

j exp(fj)

)

= − log

(
exp(ayfy +

∑
i 6=y aifi)∑

j exp(fj)

)
= − log

(
exp(ay‖Wy‖‖x‖ cos(θy) +

∑
i 6=y ai‖Wi‖‖x‖ cos(θi))∑

j exp(fj)

)
= − log

(
exp

(
‖Wy‖‖x‖(ay cos(θy) +

∑
i 6=y biai cos(θi))

)∑
j exp(fj)

)
= − log

(
exp

(
‖Wy‖‖x‖ψ(θy)

)∑
j exp(fj)

)
where we define that

ψ(θy) = ay cos(θy) +
∑
i 6=y

biai cos(θi) (48)

where bi = ‖Wi‖
‖Wy‖ Therefore, we have the following surrogate loss Ls for the original cross-entropy

loss with soft labels L:

Ls = − log

(
exp

(
‖W ‖‖x‖ψ(θy)

)∑
j exp(fj)

)
(49)

where ψ(·) here is a dynamic margin function that depends on the current prediction of the learner
(θi,∀i) and the learner model (Wi,∀i). As long as we generate a ψ(·) that is always larger than
cos(·), then the large-margin effects can be achieved. Therefore, it is highly possible to use our
LAST framework to generate soft labels that serve as a dynamic large-margin softmax loss. This
kind of loss (with static margin) has diverse and useful applications [50, 81]. In contrast, our LAST
framework can enable dynamic margin effect (based on the current learner), and could potentially be
more effective in these applications.

23

F Additional Discussions and Results

F.1 Experiments of Teaching Logistic Regression Learner on Gaussian Data

The results of teaching logistic regression learner to perform binary classification on Gasussian
distributed cluster data are given in Fig. 13. The experimental details are given in Appendix F. We
see that greedy LAST consistently converges faster than SGD, while LAST without constraints
achieve significantly faster convergence than IMT. Moreover, we can observe that the mix teaching
(LAST+IMT) achieves the best convergence. The experiments further validates our conclusion in the
main paper.

Number of Training Samples

O
bj

ec
tiv

e
Va

lu
e

Number of Training Samples

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Baseline
IMT
LAST (NC)
LAST (One-Hot)
LAST (Soft)
LAST+IMT (NC)

0 200 400 600 800 1000 1200 1400 1600

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Baseline
IMT
LAST (NC)
LAST (One-Hot)
LAST (Soft)
LAST+IMT (NC)

Figure 13: logistic regression learner on Gaussian data.

F.2 Experiments of Teaching Logistic Regression Learner on Half-moon Data

We show the full convergence results in Fig. 14 for teaching logistic regression learner on half-moon
data. The main paper shows some visualization results on synthesized labels, and we show the
detailed objective values, distance between wt and w∗ and testing accuracy. The results again
validate the effectiveness of greedy LAST.

Iteration
0 500 1000 1500

0.45

0.5

0.55

0.6

0.65

0.7

SGD
IMT
LAST (NC)
LAST (One-Hot)
LAST (Soft)
LAST-IMT (NC)

O
bj

ec
tiv

e
Va

lu
e

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

0 500 1000 1500

0.7

0.72

0.74

0.76

0.78

0.8

SGD
IMT
LAST (NC)
LAST (One-Hot)
LAST (Soft)
LAST+IMT (NC)

Te
st

in
g

A
cc

ur
ac

y

0 500 1000 1500
0

0.4

0.8

1.2

1.6

SGD
IMT
LAST (NC)
LAST (One-Hot)
LAST (Soft)
LAST+IMT (NC)

Iteration Iteration

Figure 14: logistic regression learner on Gaussian data.

F.3 Experiments of Teaching MLP Learner on MNIST

We show additional results on teaching MLP learners on MNIST in Fig. 15. Here we further present
the 7/9 MNIST digit classification. We use greedy LAST to teach the MLP learners, and the settings
are the same as the 3/5 digit classification in the main paper.

Iteration Iteration

O
bj

ec
tiv

e
Va

lu
e

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

0 100 200 300 400 500 600

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74 SGD
IMT
LAST (NC)
LAST (One-Hot)
LAST (Soft)
LAST+IMT (NC)

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25 SGD
IMT
LAST (NC)
LAST (One-Hot)
LAST (Soft)
LAST+IMT (NC)

Figure 15: logistic regression learner on Gaussian data.

24

F.4 Qualitative Results of LAST for Logistic Regression Learners

We show some teaching examples of greedy LAST in 3/5 classification. Fig. 16 shows that LAST
tends to modify the labels of hard examples, while for easy examples, LAST will preserve the
ground truth labels. LAST will typically synthesize the label of a hard example based on the current
prediction so that the learner’s convergence is less affected by the hard examples.

Iteration 118

GT: 3
LAST: 5

Iteration 254

GT: 5
LAST: 3

Iteration 527

GT: 5
LAST: 3

Iteration 596

GT: 5
LAST: 3

Iteration 955

GT: 3
LAST: 5

Iteration 999

GT: 5
LAST: 3

Iteration 7

GT: 5
LAST: 3

Iteration 338

GT: 5
LAST: 3

Iteration 834

GT: 5
LAST: 3

Figure 16: Some examples of labels generated by LAST (one-hot constraint).

F.5 Omniscient Parameterized Teaching of Logistic Regression Learners

We also supplement the experiment of omniscient parameterize teaching (see Fig. 12 for the 1 batch
size case) in the main paper with the case of 128 batch size. The other settings are exactly the same.
Note that, for IMT, we still use the same setting where there is only one example selected for each
iteration. The iteration-wise and time-wise convergence curves are given in Fig. 17.

Iteration

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

Time (s)

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

10-2 10-1 100 101
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

IMT
LAST (policy gradient)
LAST (unrolling 20 steps)
LAST (unrolling 100 steps)

0 50 100 150 200 250 300
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

SGD
IMT
LAST (policy gradient)
LAST (unrolling 20 steps)
LAST (unrolling 100 steps)

Figure 17: Omniscient parameterized teaching for logistic regression learners on binary classification on MNIST.

F.6 Omniscient Parameterized Teaching of MLP Learners

We learn a parameterized teaching policy for 2-layer MLP learners. The teacher model is parameter-
ized as a MLP. Details are given in Appendix G. We conduct multi-class classification of MNIST
digit 1/2/3/4/5. For the unrolling, we unroll the teaching policy into 20 steps of gradient update. The
results in Fig. 18 show that unrolling is powerful enough to learn an effective teaching policy that
achieves faster convergence than SGD. We evaluate the batch size as 1 and 128 for both LAST and
SGD. The convergence speed-up is very consistent.

Iteration

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

Iteration

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

0 50 100 150 200 250
9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

SGD
LAST (unrolling 20 steps)

0 50 100 150 200 250
9.3

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

SGD
LAST (unrolling 20 steps)

(a) Batch Size = 1 (b) Batch Size = 128

Figure 18: Omniscient parameterized teaching for MLP Learners on multi-class classification on MNIST digits.

25

F.7 Effects of Different Action Spaces for LAST with Policy Gradient

On training omniscient parametrized teachers with reinforcement learning, we investigate the effects
of scale in the action space. Our experimental setup is identical to that of Fig. 12 in the main paper.
More specifically, we compare the action spaces for linear learners for binary classification on our
projected MNIST dataset with otherwise identical settings in Appendix G:

• The default action space we use (augmented): {(0.0, 1.0), (0.25, 0.75), (0.5, 0.5), (0.75,
0.25), (1.0, 0.0), (0.0, 2.0), (0.5, 1.5), (1.0, 1.0), (1.5, 0.5), (2.0, 0.0)}.

• A strictly one-hot action space (non-augmented): {(0.0, 1.0), (0.25, 0.75), (0.5, 0.5), (0.75,
0.25), (1.0, 0.0)}.

We present the evaluation results with evaluation batch size 1 and 128 in Fig. 19. The results show
that by having a more flexible and powerful action space, the teacher performance improves.

Iteration

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

Iteration

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

(a) Batch Size = 1 (b) Batch Size = 128

0 50 100 150 200 250
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

SGD
LAST-RL (w/o augmented action)
LAST-RL (augmented action)

0 50 100 150 200 250
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

SGD
LAST-RL (w/o augmented action)
LAST-RL (augmented action)

Figure 19: Effects of different action spaces for LAST with policy gradient.

F.8 Black-box Parameterized Teaching of Logistic Regression Learners

To compare how unrolling and policy gradients perform in the black-box scenario, we first evaluate
both unrolling and policy gradient on teaching a logistic regression learner on MNIST 3/5 digit
classification. We parameterize the teacher with a MLP. Details are given in Appendix G. For
the policy gradient, the space of synthesized label (i.e., action space) includes [0, 1], [0.25, 0.75],
[0.5, 0.5], [0.75, 0.25] and [1, 0]. For the unrolling, we unroll the teaching policy into 20 steps of
the gradient update. The results in Fig. 20 demonstrate the great potential of BLAST to be able
to consistently outperform SGD in the black-box scenario. Details of our settings are given in
Appendix G.

Iteration

O
bj

ec
tiv

e
Va

lu
e

D
is

ta
nc

e
be

tw
ee

n
w

 a
nd

 w
*

t

Iteration
0 50 100 150 200 250 300

0.35

0.4

0.45

0.5

0.55

SGD
BLAST-RL (policy gradient)
BLAST-UR (20 steps)

0 50 100 150 200 250 300
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

SGD
BLAST-RL (policy gradient)
BLAST-UR (20 steps)

Figure 20: Black-box parameterized teaching for linear learners.

26

G Experimental Details

General Settings. For the experiments with linear models, the formulation of ridge regression is:

min
w∈Rd,b∈R

1

n

n∑
i=1

1

2

(
w>xi + b− ŷi

)2
+
λ

2
‖w‖2 (50)

where the synthesised label ŷi is replaced by the true value yi in the SGD and IMT baselines, the
constraint r in LAST is defined as r = maxi ||yi − ŷi||2. The formulation of binary classification is:

min
w∈Rd,b∈R

1

n

n∑
i=1

LCE
(
ŷi, σs

(
w>xi + b

))
+
λ

2
‖w‖2 (51)

where LCE(·, ·) and σs(·) are the cross entropy loss and sigmoid function, respectively. We use the
ground truth label yi instead of the synthesized counterpart ŷi in the SGD and IMT baselines.

Experiments on linear regression. We first generate 800 data points x[i] ∈ R4, where y[i] =
〈w∗,xi〉+ bi, with additional Gaussian noise 0.02 · N (0, 1). For all methods, the learning rate is set
as 0.001 and λ is 0.00005.

Experiments on synthetic data for classification. For generating Gaussian cluster data, we use the
4-dimension data that is Gaussian distributed with (0.2, · · · , 0.2) (label +1) and (-0.2, · · · , -0.2) (label
-1) as mean and identity matrix as covariance matrix. For half moon data, we use the API provided
in scikit-learn, with 0.2 noise magnitude. For both synthesized data, we generate 400 training data
points for each class, while the learning rate for the all methods is 0.0001, and λ is set as 0.00005.

Experiments on MNIST. As in previous work [43], we use 24D random features (projected by a
fixed and randomly generated matrix R784×24) of each image from the MNIST dataset. For non-
parametrized teacher setting, the learning rate for all the compared methods are 0.001. λ is set as
0.00005.

Teacher architecture. We use a two-hidden-layer MLP (‘input dimension - 128 - 128 - output
dimension’) with ReLU activations for the whitebox and blackbox experiments on non-synthetic
datasets unless otherwise specified.

Omniscient teaching with parameterized teachers. We create a subset of projected MNIST (24D
random feature as before) by selecting 1000 images out of digit 3/5 for linear learner and digit
1/2/3/4/5 for MLP learner. The classifiers are randomly initialized around the optimal weights by
adding a zero-mean Gaussian noise with standard deviation set to 5e-2 for linear learners and 1e-1
for MLP learners. The teacher simultaneously teaches 10 students (initialized differently) at the same
time. We use an one-hidden-layer MLP architecture (‘input dimension - 32 - number of classes’) with
a LeakyReLU activation (with coefficient 0.01) for the MLP learner. All learners do not use bias in
the linear layers. We set learner update step size to 5e-4. During training, the batch that the learner
receives is of size 1. For evaluation, the initialization and random seed is fixed. We try teaching batch
size 1 and 128 for evalutation.

• Unrolling. We unroll the teaching process for K steps. To make the teacher works well even
after these steps, some students are reinitialized (with the same initialization method) after
each K-step update and the remaining ones are not. For linear learners, we try unrolling
20 steps with 20% reset rate and 100 steps with 80% reset rate; for MLP learners, we show
results of 20-step unrolling. We use Adam optimizer for the teacher with learning rate set to
1e-3, (β1, β2) = (0.9, 0.999) and weight decay 1e-4. We train the model for 1000 episodes
(each episode is a K-step inner update loop) for linear learners and 2000 episode for MLP
learners. The objective for the teacher is a sum of whitebox L2 loss at each step, weighted
by an exponential decay factor of 0.95 (similar in reinforcement learning but in reverse
order). During testing, we fix the initialization of students and run 300 steps SGD with
labels synthesized by the teacher. The input state is composed of 1) the input pair of images
and labels, 2) the flattened and concatenated weight vectors and 3) the prediction of the
learner given the input images.

• Policy Gradient. The state is composed of 1) the weight vectors (flattened and concatenated
into one single vector) and 2) M inner products between the displacement vector towards
the optimal weights and the gradients given each possible action in a M -dim action space

27

where the actions are the synthesized labels. For binary classification, we consider this
action space: {(0.0, 1.0), (0.25, 0.75), (0.5, 0.5), (0.75, 0.25), (1.0, 0.0), (0.0, 2.0), (0.5, 1.5),
(1.0, 1.0), (1.5, 0.5), (2.0, 0.0)}. The reward at each step is the negative squared L2 distance
to the optimal weights. We use the following variant of policy gradient:

∇J(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(at|st)
T∑
τ=t

γτ (rτ − b), (52)

where N is the number of trajectories, T is the length of the episode, γ is the discount
rate and b is the reward baseline for variance reduction. We set T = 100, γ = 0.999
and b = −0.1. N = 10 since we simultaneously train 10 students. Unlike the unrolling
experiments, we randomly reset all students after each episode (with the same initialization
method). We use the same Adam optimizer setting as in the unrolling experiments but
without weight decay. We train the models until convergence and pick the best checkpoints
along the trajectory.

Blackbox teaching with parameterized teachers. We set the teaching batch size to 20 for both
training and evaluation, the step size for student updates to 1e-3 and use the student training cross-
entropy loss (on a randomly sampled batch of size 20) instead of L2 distance to the optimal weights
as the training objective. The other settings are kept the same as in whitebox teaching.

28

