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Abstract

In recent years, the Transformer architecture has proven to be very successful in
sequence processing, but its application to other data structures, such as graphs,
has remained limited due to the difficulty of properly defining positions. Here, we
present the Spectral Attention Network (SAN), which uses a learned positional
encoding (LPE) that can take advantage of the full Laplacian spectrum to learn the
position of each node in a given graph. This LPE is then added to the node features
of the graph and passed to a fully-connected Transformer. By leveraging the full
spectrum of the Laplacian, our model is theoretically powerful in distinguishing
graphs, and can better detect similar sub-structures from their resonance. Further,
by fully connecting the graph, the Transformer does not suffer from over-squashing,
an information bottleneck of most GNNs, and enables better modeling of physical
phenomenons such as heat transfer and electric interaction. When tested empirically
on a set of 4 standard datasets, our model performs on par or better than state-of-the-
art GNNs, and outperforms any attention-based model by a wide margin, becoming
the first fully-connected architecture to perform well on graph benchmarks.

1 Introduction

The prevailing strategy for graph neural networks (GNNs) has been to directly encode graph structure
structure through a sparse message-passing process [17, 19]. In this approach, vector messages
are iteratively passed between nodes that are connected in the graph. Multiple instantiations of
this message-passing paradigm have been proposed, differing in the architectural details of the
message-passing apparatus (see [19] for a review).

However, there is a growing recognition that the message-passing paradigm has inherent limitations.
The expressive power of message passing appears inexorably bounded by the Weisfeiler-Lehman iso-
morphism hierarchy [29, 30, 39]. Message-passing GNNs are known to suffer from pathologies, such
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as oversmoothing, due to their repeated aggregation of local information [19], and over-squashing,
due to the exponential blow-up in computation paths as the model depth increases [1].

As a result, there is a growing interest in deep learning techniques that encode graph structure as a soft
inductive bias, rather than as a hard-coded aspect of message passing [14, 24]. A central issue with
message-passing paradigm is that input graph structure is encoded by restricting the structure of the
model’s computation graph, inherently limiting its flexibility. This reminds us of how early recurrent
neural networks (RNNs) encoded sequential structure via their computation graph—a strategy that
leads to well-known pathologies such as the inability to model long-range dependencies [20].

There is a growing trend across deep learning towards more flexible architectures, which avoid strict
and structural inductive biases. Most notably, the exceptionally successful Transformer architecture
removes any structural inductive bias by encoding the structure via soft inductive biases, such as
positional encodings [36]. In the context of GNNs, the self-attention mechanism of a Transformer
can be viewed as passing messages between all nodes, regardless of the input graph connectivity.

Prior work has proposed to use attention in GNNs in different ways. First, the GAT model [37]
proposed local attention on pairs of nodes that allows a learnable convolutional kernel. The GTN work
[42] has improved on the GAT for node and link predictions while keeping a similar architecture,
while other message-passing approaches have used enhancing spectral features [8, 13] . More
recently, the GT model [14] was proposed as a generalization of Transformers to graphs, where they
experimented with sparse and full graph attention while providing low-frequency eigenvectors of the
Laplacian as positional encodings.

In this work, we offer a principled investigation of how Transformer architectures can be applied
in graph representation learning. Our primary contribution is the development of novel and
powerful learnable positional encoding methods, which are rooted in spectral graph theory. Our
positional encoding technique — and the resulting spectral attention network (SAN) architecture —
addresses key theoretical limitations in prior graph Transformer work [14] and provably exceeds the
expressive power of standard message-passing GNNs. We show that full Transformer-style attention
provides consistent empirical gains compared to an equivalent sparse message-passing model, and
we demonstrate that our SAN architecture is competitive with or exceeding the state-of-the-art on
several well-known graph benchmarks. An overview of the entire method is presented in Figure 1,
with a link to the code here: https://github.com/DevinKreuzer/SAN.

2 Theoretical Motivations

There can be a significant loss in structural information if naively generalizing Transformers to graphs.
To preserve this information as well as local connectivity, previous studies [37, 14] have proposed to
use the eigenfunctions of their Laplacian as positional encodings. Taking this idea further by using
the full expressivity of eigenfunctions as positional encodings, we can propose a principled way
of understanding graph structures using their spectra. The advantages of our methods compared to
previous studies [37, 14] are shown in Table 1.

Table 1: Comparison of the properties of different graph Transformer models.

MODELS GAT GT sparse GT full SAN
Preserves local structure in attention 3 3 7 3
Uses edge features 7 3 7 3
Connects non-neighbouring nodes 7 7 3 3
Uses eigenvector-based PE for attention 7 3 3 3
Use a PE with structural information 7 3 7 3
Considers the ordering of the eigenvalues 7 3 3 3
Invariant to the norm of the eigenvector - 3 3 3
Considers the spectrum of eigenvalues 7 7 7 3
Considers variable # of eigenvectors - 7 7 3
Aware of eigenvalue multiplicities - 7 7 3
Invariant to the sign of the eigenvectors - 7 7 7

1Presented results add full connectivity before computing the eigenvectors, thus losing the structural informa-
tion of the graph.
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Figure 1: The proposed SAN model with the node LPE, a generalization of Transformers to graphs.

2.1 Absolute and relative positional encoding with eigenfunctions

The notion of positional encodings (PEs) in graphs is not a trivial concept, as there exists no canonical
way of ordering nodes or defining axes. In this section, we investigate how eigenfunctions of the
Laplacian can be used to define absolute and relative PEs in graphs, to measure physical interactions
between nodes, and to enable ”hearing” of specific sub-structures - similar to how the sound of a
drum can reveal its structure.

2.1.1 Eigenvectors equate to sine functions over graphs

In the Transformer architecture, a fundamental aspect is the use of sine and cosine functions as PEs
for sequences [36]. However, sinusoids cannot be clearly defined for arbitrary graphs, since there is
no clear notion of position along an axis. Instead, their equivalent is given by the eigenvectors φ of
the graph Laplacian L. Indeed, in a Euclidean space, the Laplacian (or Laplace) operator corresponds
to the divergence of the gradient and its eigenfunctions are sine/cosine functions, with the squared
frequencies corresponding to the eigenvalues (we sometimes interchange the two notions from here
on). Hence, in the graph domain, the eigenvectors of the graph Laplacian are the natural equivalent of
sine functions, and this intuition was employed in multiple recent works which use the eigenvectors
as PEs for GNNs [15], for directional flows [4] and for Transformers [14].

Being equivalent to sine functions, we naturally find that the Fourier Transform of a function F [f ]
applied to a graph gives F [f ](λi) = 〈f,φi〉, where the eigenvalue is considered as a position in the
Fourier domain of that graph [6]. Thus, the eigenvectors are best viewed as vectors positioned on the
axis of eigenvalues rather than components of a matrix as illustrated in Figure 2.

2.1.2 What do eigenfunctions tell us about relative positions?

In addition to being the analog of sine functions, the eigenvectors of the Laplacian also hold important
information about the physics of a system and can reveal distance metrics. This is not surprising as
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Figure 2: a) Standard view of the eigenvectors as a matrix. b) Eigenvectors φi viewed as vectors
positionned on the axis of frequencies (eigenvalues).

the Laplacian is a fundamental operator in physics and is notably used in Maxwell’s equations [16]
and the heat diffusion [6].

In electromagnetic theory, the (pseudo)inverse of the Laplacian, known in mathematics as the Green’s
function of the Laplacian [9], represents the electrostatic potential of a given charge. In a graph, the
same concept uses the pseudo-inverse of the LaplacianG and can be computed by its eigenfunctions.
See equation 1 , where G(j1, j2) is the electric potential between nodes j1 and j2, φ̂i and λ̂i are
the i-th eigenvectors and eigenvalues of the symmetric LaplacianD

−1
2 LD

−1
2 , andD is the degree

matrix, and φ̂i,j the j-th row of the vector.

G(j1, j2) = d
1
2
j1
d

−1
2
j2

∑
i>0

(φ̂i,j1φ̂i,j2)
2

λ̂i
(1)

Further, the original solution of the heat equation given by Fourier relied on a sum of sines/cosines
known as a Fourier series [7]. As eigenvectors of the Laplacian are the analogue of these functions in
graphs, we find similar solutions. Knowing that heat kernels are correlated to random walks [6, 4],
we use the interaction between two heat kernels to define in equation 2 the diffusion distance dD
between nodes j1, j2 [6, 10]. Similarly, the biharmonic distance dB was proposed as a better measure
of distances [28]. Here we use the eigenfunctions of the regular Laplacian L.

d2D(j1, j2) =
∑
k>0

e−2tλi(φi,j1 − φi,j2)2 , d2B(j1, j2) =
∑
i>0

(φi,j1 − φi,j2)2

λ2i
(2)

There are a few things to note from these equations. Firstly, they highlight the importance of pairing
eigenvectors and their corresponding eigenvalues when supplying information about relative positions
in a graph. Secondly, we notice that the product of eigenvectors is proportional to the electrostatic
interaction, while the subtraction is proportional to the diffusion and biharmonic distances. Lastly,
there is a consistent pattern across all 3 equations: smaller frequencies/eigenvalues are more heavily
weighted when determining distances between nodes.

2.1.3 Hearing the shape of a graph and its sub-structures

Another well-known property of eigenvalues is how they can be used to discriminate between different
graph structures and sub-structures, as they can be interpreted as the frequencies of resonance
of the graph. This led to the famous question about whether we can hear the shape of a drum
from its eigenvalues [23], with the same questions also applying to geometric objects [12] and 3D
molecules [33]. Various success was found with the eigenfunctions being used for partial functional
correspondence [32], algorithmic understanding geometries [26], and style correspondence [12].
Examples of eigenvectors for molecular graphs are presented in Figure 3.

Figure 3: Examples of eigenvalues λi and eigenvectors φi for molecular graphs. The low-frequency
eigenvectors φ1,φ2 are spread accross the graph, while higher frequencies, such as φ14,φ15 for the
left molecule or φ10,φ11 for the right molecule, often resonate in local structures.
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2.2 Laplace Eigenfunctions etiquette

In Euclidean space and sequences, using sinusoids as PEs is trivial: we can simply select a set of
frequencies, compute the sinusoids, and add or concatenate them to the input embeddings, as is done
in the original Transformer [36]. However, in arbitrary graphs, reproducing these steps is not as
simple since each graph has a unique set of eigenfunctions. In the following section, we present
key principles from spectral graph theory to consider when constructing PEs for graphs, most of
which have been overlooked by prior methods. They include normalization, the importance of the
eigenvalues and their multiplicities, the number of eigenvectors being variable, and sign ambiguities.
Our LPE architectures, presented in section 3, aim to address them.

Normalization. Given an eigenvalue of the Laplacian, there is an associated eigenspace of dimension
greater than 1. To make use of this information in our model, a single eigenvector has to be chosen.
In our work, we use the L2 normalization since it is compatible with the definition of the Green’s
function (1). Thus, we will always chose eigenvectors φ such that 〈φ,φ〉 = 1.

Eigenvalues. Another fundamental aspect is that the eigenvalue associated with each eigenvector
supplies valuable information. An ordering of the eigenvectors based on their eigenvalue works in
sequences since the frequencies are pre-determined. However, this assumption does not work in
graphs since the eigenvalues in their spectrum can vary. For example, in Figure 3, we observe how an
ordering would miss the fact that both molecules resonate at λ = 1 in different ways.

Multiplicities. Another important problem with choosing eigenfunctions is the possibility of a
high multiplicity of the eigenvalues, i.e. when an eigenvalue appears as a root of the characteristic
polynomial more than once. In this case, the associated eigenspace may have dimension 2 or
more as we can generate a valid eigenvector from any linear combination of eigenvectors with the
same eigenvalue. This further complicates the problem of choosing eigenvectors for algorithmic
computations and highlights the importance of having a model that can handle this ambiguity.

Variable number of eigenvectors. A graphGi can have at mostNi linearly independent eigenvectors
with Ni being its number of nodes. Most importantly, Ni can vary across all Gi in the dataset. Prior
work [14] elected to select a fixed number k eigenvectors for each graph, where k ≤ Ni,∀i. This
produces a major bottleneck when the smallest graphs have significantly fewer nodes than the largest
graphs in the dataset since a very small proportion of eigenvectors will be used for large graphs. This
inevitably causes loss of information and motivates the need for a model which constructs fixed PEs
of dimension k, where k does not depend on the number of eigenvectors in the graph.

Sign invariance. As noted earlier, there is a sign ambiguity with the eigenvectors. With the sign of
φ being independent of its normalization, we are left with a total of 2k possible combination of signs
when choosing k eigenvectors of a graph. Previous work has proposed to do data augmentation by
randomly flipping the sign of the eigenvectors [4, 15, 14], and although it can work when k is small,
it becomes intractable for large k.

2.3 Learning with Eigenfunctions

Learning generalizable information from eigenfunctions is fundamental to their succesful usage. Here
we detail important points that support it is possible to do so if done correctly.

Similar graphs have similar spectra. Thus, we can expect the network to transfer patterns across
graphs through the similarity of their spectra. In fact, spectral graph theory tells us that the lowest
and largest non-zero eigenvalues are both linked to the geometry of the graph (algebraic connectivity
and spectral radius).

Eigenspaces contain geometric information. Spectral graph theory has studied the geometric and
physical properties of graphs from their Laplacian eigenfunctions in depth. Developing a method
that can use the full spectrum of a graph makes it theoretically possible capture this information. It
us thus important to capture differences between the full eigenspaces instead of minor differences
between specific eigenvalues or eigenvectors from graph to graph.

Learned positions are relative within graphs. Eigenspaces are used to understand the relationship
between nodes within graphs, not across them. Proposed models should therefore only compare the
eigenfunctions of nodes within graphs.
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3 Model Architecture

In this section, we propose an elegant architecture that can use the eigenfunctions as PEs while
addressing the concerns raised in section 2.2. Our Spectral Attention Network (SAN) model inputs
eigenfunctions of a graph and projects them into a learned positional encoding (LPE) of fixed size.
The LPE allows the network to use up to the entire Laplace spectrum of each graph, learn how the
frequencies interact, and decide which are most important for the given task.

We propose a two-step learning process summarized earlier in Figure 1. The first step, depicted by
blocks (c-d-e) in the figure, applies a Transformer over the eigenfunctions of each node to generate
an LPE matrix for each graph. The LPE is then concatenated to the node embeddings (blocks g-h),
before being passed to the Graph Transformer (block i). If the task involves graph classification or
regression, the final node embeddings are subsequently passed to a final pooling layer.

3.1 LPE Transformer Over Nodes

Using Laplace encodings as node features is ubiquitous in the literature concerning the topic. Here,
we propose a method for learning node PEs motivated by the principles from section 2.2. The idea of
our LPE is inspired by Figure 2, where the eigenvectors φ are represented as a non-uniform sequence
with the eigenvalue λ being the position on the frequency axis. With this representation, Transformers
are a natural choice for processing them and generating a fixed-size PE.

The proposed LPE architecture is presented in Figure 4. First, we create an embedding matrix
of size 2 × m for each node j by concatenating the m-lowest eigenvalues with their associated
eigenvectors. Here, m is a hyper-parameter for the maximum number of eigenvectors to compute
and is analog to the variable-length sequence for a standard Transformer. For graphs where m > N ,
a masked-padding is simply added. Note that to capture the entire spectrum of all graphs, one can
simply select m such that it is equal to the maximum number of nodes a graph has in the dataset.
A linear layer is then applied on the dimension of size 2 to generate new embeddings of size k. A
Transformer Encoder then computes self-attention on the sequence of length m and hidden dimension
k. Finally, a sum pooling reduces the sequence into a fixed k-dimensional node embedding.

The LPE model addresses key limitations of previous graph Transformers and is aligned with the
first four etiquettes presented in section 2.2. By concatenating the eigenvalues with the normalized
eigenvector, this model directly addresses the first three etiquettes. Namely, it normalizes the
eigenvectors, pairs eigenvectors with their eigenvalues and treats the number of eigenvectors as a
variable. Furthermore, the model is aware of multiplicities and has the potential to linearly combine
or ignore some of the repeated eigenvalues.

However, this method still does not address the limitation that the sign of the pre-computed eigenvec-
tors is arbitrary. To combat this issue, we randomly flip the sign of the pre-computed eigenvectors
during training as employed by previous work [15, 14], to promote invariance to the sign ambiguity.

Figure 4: Learned positional encoding (LPE) architectures, with the model being aware of the graph’s
Laplace spectrum by considering m eigenvalues and eigenvectors, where we permit m ≤ N , with
N denoting the number of nodes. Since the Transformer loops over the nodes, each node can be
viewed as an element of a batch to parallelize the computation. Here φi,j is the j-th element of the
eigenvector paired to the i-th lowest eigenvalue λi.

3.2 LPE Transformer Over Edges

Here we present an alternative formulation for Laplace encodings. This method addresses the same
issues as the LPE over nodes, but also resolves the eigenvector sign ambiguity. Instead of encoding
absolute positions as node features, the idea is to consider relative positions encoded as edge features.
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Inspired by the physical interactions introduced in 1 and 2, we can take a pair of nodes (j1, j2)
and obtain sign-invariant operators using the absolute subtraction |φi,j1 − φi,j2 | and the product
φi,j1φi,j2 . These operators acknowledge that the sign of φi,j1 at a given node j1 is not important, but
that the relative sign between nodes j1 and j2 is important. One might argue that we could directly
compute the deterministic values from equations (1, 2) as edge features instead. However, our goal is
to construct models that can learn which frequencies to emphasize and are not biased towards the
lower frequencies — despite lower frequencies being useful in many tasks.

This approach is only presented thoroughly in appendix A, since it suffers from a major computational
bottleneck compared to the LPE over nodes. In fact, for a fully-connected graph, there are N times
more edges than nodes, thus the computation complexity is O(m2N2), or O(N4) considering all
eigenfunctions. The same limitation also affects memory and prevents the use of large batch sizes.

3.3 Main Graph Transformer

Our attention mechanism in the main Transformer is based on previous work [14], which attempts
to repurpose the original Transformer to graphs by considering the graph structure and improving
attention estimates with edge feature embeddings.

In the following, note that hli is the i-th node’s features at the l-th layer, and eij is the edge feature
embedding between nodes i and j. Our model employs multi-head attention over all nodes:

ĥl+1
i = Ol

h

Hn

k=1

(
∑
j∈V

wk,lij V
k,lhlj) (3)

where Ol
h ∈ Rd×d, V k,l ∈ Rdk×d, H denotes the number of heads, L the number of layers, and

f

concatenation. Note that d is the hidden dimension, while dk is the dimension of a head ( dH = dk).

A key addition from our work is the design of an architecture that performs full-graph attention while
preserving local connectivity with edge features via two sets of attention mechanisms: one for nodes
connected by real edges in the sparse graph and one for nodes connected by added edges in the
fully-connected graph. The attention weights wk,lij in equation 3 at layer l and head k are given by:

ŵk,l
ij =


Q1,k,lhl

i◦K
1,k,lhl

j◦E
1,k,leij√

dk
if i and j are connected in sparse graph

Q2,k,lhl
i◦K

2,k,lhl
j◦E

2,k,leij√
dk

otherwise

 (4)

wk,lij =


1

1+γ · softmax(
∑
dk
ŵk,l
ij ) if i and j are connected in sparse graph

γ
1+γ · softmax(

∑
dk
ŵk,l
ij ) otherwise

 (5)

where ◦ denotes element-wise multiplication and Q1,k,l, Q2,k,l, K1,k,l, K2,k,l, E1,k,l, E2,k,l ∈
Rdk×d. γ ∈ R+ is a hyperparameter which tunes the amount of bias towards full-graph attention,
allowing flexibility of the model to different datasets and tasks where the necessity to capture long-
range dependencies may vary. Note that softmax outputs are clamped between−5 and 5 for numerical
stability and that the keys, queries and edge projections are different for pairs of connected nodes
(Q1,K1,E1) and disconnected nodes (Q2,K2,E2).

A multi-layer perceptron (MLP) with residual connections and normalization layers are then applied
to update representations, in the same fashion as the GT method [14].
ˆ̂
hl+1 = Norm(hli + ĥ

l+1
i ),

ˆ̂
ĥl+1
i =W l

2ReLU(W l
1
ˆ̂
hl+1
i ), hl+1

i = Norm(
ˆ̂
hl+1 +

ˆ̂
ĥl+1
i ) (6)

with the weight matrices W l
1 ∈ R2d×d, W l

2 ∈ Rd×2d. Edge representations are not updated as it
adds complexity with little to no performance gain. Bias terms are omitted for presentation.

3.4 Limitations

The first limitation of the node-wise LPE, and noted in Table 1 is the lack of sign invariance of the
model. A random sign-flip of an eigenvector can produce different outputs for the LPE, meaning
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that the model needs to learn a representation invariant to these flips. We resolve this issue with the
edge-wise LPE proposed in 3.2, but it comes at a computational cost.

Another limitation of the approach is the computational complexity of the LPE being O(m2N), or
O(N3) if considering all eigenfunctions. Further, as nodes are batched in the LPE, the total memory
on the GPU will be num_params * num_nodes_in_batch instead of num_params * batch_size.
Although this is limiting, the LPE is not parameter hungry, with k usually kept around 16. Most of
the model’s parameters are in the Main Graph Transformer of complexity O(N2).

Despite Transformers having increased complexity, they managed to revolutionalize the NLP com-
munity. We argue that to shift away from the message-passing paradigm and generalize Transformers
to graphs, it is natural to expect higher computational complexities. This is exacerbated by sequences
being much simpler to understand than graphs due to their linear structure. Future work could
overcome this by using variations of Transformers that scale linearly or logarithmically [34].

3.5 Theoretical properties of the architecture

Due to the full connectivity, it is trivial that our model does not suffer from the same limitations in
expressivity as its convolutional/message-passing counterpart.

WL test and universality. The DGN paper [4] showed that using the eigenvector φ1 is enough to
distinguish some non-isomorphic graphs indistinguishable by the 1-WL test.

Given that our model uses the full set of eigenfunctions, and given enough parameters, our model can
distinguish any pair of non-isomorphic graphs and is more powerful than any WL test in that regard.
However, this does not solve the graph isomorphism problem in polynomial time; it only approximates
a solution, and the number of parameters required is unknown and possibly non-polynomial. In
appendix C, we present a proof of our statement, and discuss why the WL test is not well suited to
study the expressivity of graph Transformers due to their universality.

Reduced over-squashing. Over-squashing represents the difficulty of a graph neural network to pass
information to distant neighbours due to the exponential blow-up in computational paths [1].

For the fully-connected network, it is trivial to see that over-squashing is non-existent since there are
direct paths between distant nodes.

Physical interactions. Another point to consider is the ability of the network to learn physical
interactions between nodes. This is especially important when the graph models physical, chemical,
or biological structures, but can also help understanding pixel interaction in images [2, 3]. Here, we
argue that our SAN model, which uses the Laplace spectrum more effectively, can learn to mimic
the physical interactions presented in section 2.1.2. This contrasts with the convolutional approach
that requires deep layers for the receptive field to capture long-distance interactions. It also contrasts
with the GT model [14], which does not use eigenvalues or enough eigenfunctions to properly model
physical interactions in early layers. However, due to the lack of sign-invariance in the proposed
node-wise LPE, it is difficult to learn these interactions accurately. The edge-wise LPE (section 3.2)
could be better suited for the problem, but it suffers from higher computational complexity.

4 Experimental Results

The model is implemented in PyTorch [31] and DGL [38] and tested on established benchmarks from
[15] and [21] provided under MIT license. Specifically, we applied our method on ZINC, PATTERN,
CLUSTER, MolHIV and MolPCBA, while following their respective training protocols with minor
changes, as detailed in the appendix B.1. The computation time and hardware is provided in appendix
B.4.

We first conducted an ablation study to fairly compare the benefits of using full attention and/or the
node LPE. We then took the best-performing model, tuned some of its hyperparameters, and matched
it up against the current state-of-the-art methods. Since we use a similar attention mechanism, our
code was developed on top of the code from the GT paper [14], provided under the MIT license.
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Figure 5: Effect of the γ parameter on the performance across datasets from [15, 21], using the Node
LPE. Dotted black lines indicate sparse attention, which is equivalent to setting γ = 0. Each box plot
consists of 4 runs, with different seeds (except MolHIV).

Model details ZINC PATTERN CLUSTER MOLHIV
Attention LPE MAE % ACC % ACC % ROC-AUC

Sparse - 	0.267 ±0.032 83.613 ±0.663 75.683 ±0.098 73.46± 0.71
Sparse Node 0.198 ±0.004 81.329 ±2.150 75.738 ±0.106 76.61± 0.62

Full - 0.392 ±0.055 86.322 ±0.049 76.447 ±0.177 73.84± 1.80
Full Node 𝟎.𝟏𝟓𝟕 ±𝟎. 𝟎𝟎𝟔 𝟖𝟔. 𝟒𝟒𝟏 ±𝟎. 𝟎𝟒𝟎 𝟕𝟔. 𝟔𝟗𝟏 ±𝟎. 𝟐𝟒𝟕 𝟕𝟕.𝟓𝟕 ±𝟎. 𝟔𝟏

Best

Worst

Figure 6: Ablation study on datasets from [15, 21] for the node LPE and full graph attention, with
no hyperparameter tuning other than γ taken from Figure 5. For a given dataset, all models use the
same hyperparameters, but the hidden dimensions are adjusted to have ∼ 500k learnable parameters.
Means and uncertainties are derived from four runs, with different seeds (except MolHIV).

4.1 Sparse vs. Full Attention

To study the effect of incorporating full attention, we present an ablation study of the γ parameter in
Figure 5. We remind readers that γ is used in equation 5 to balance between sparse and full attention.
Setting γ = 0 strictly enables sparse attention, while γ = 1 does not bias the model in any direction.

It is apparent that molecular datasets, namely ZINC and MOLHIV, benefit less from full attention,
with the best parameter being log γ ∈ (−7,−5). On the other hand, the larger SBM datasets
(PATTERN and CLUSTER) benefit from a higher γ value. This can be explained by the fact that
molecular graphs rely more on understanding local structures such as the presence of rings and
specific bonds, especially in the artificial task from ZINC which relies on counting these specific
patterns [15]. Furthermore, molecules are generally smaller than SBMs. As a result, we would
expect less need for full attention, as information between distant nodes can be propagated with
few iterations of even sparse attention. We also expect molecules to have fewer multiplicities, thus
reducing the space of eigenvectors. Lastly, the performance gains in using full attention on the
CLUSTER dataset can be attributed to it being a semi-supervised task, where some nodes within
each graph are assigned their true labels. With full attention, every node receives information from
the labeled nodes at each iteration, reinforcing confidence about the community they belong to.

In Figure 6, we present another ablation study to measure the impact of the node LPE in both the
sparse and full architectures. We observe that the proposed node-wise LPE contributes significantly
to the performance for molecular tasks (ZINC and MOLHIV), and believe that it can be attributed
to the detection of substructures (see Figure 3). For PATTERN and CLUSTER, the improvement is
modest as the tasks are simple clustering [15]. Previous work even found that the optimal number of
eigenvectors to construct PE for PATTERN is only 2 [14].

4.2 Comparison to the state-of-the-art

When comparing to the state-of-the-art (SOTA) models in the literature in Figure 7, we observe that
our SAN model consistently performs better on all synthetic datasets from [15], highlighting the
strong expressive power of the model. On the MolHIV dataset, the performance on the test set is
slightly lower than the SOTA. However, the model performs better on the validation set (85.30%)
in comparison to PNA (84.25%) and DGN (84.70%). This can be attributed to a well-known issue
with this dataset: the validation and test metrics have low correlation. In our experiments, we found
higher test results with lower validation scores when restricting the number of epochs. Here, we also
included results on the MolPCBA dataset, where we witnessed competitive results as well.
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Other top-performing models, namely PNA [11] and DGN [4], use a message-passing approach [17]
with multiple aggregators. When compared to attention-based models, SAN consistently outperforms
the SOTA by a wide margin. To the best of our knowledge, SAN is the first fully-connected model to
perform well on graph tasks, as is evident by the poor performance of the GT (full) model.

Column1 ZINC PATTERN CLUSTER MOLHIV MOLPCBA

Model MAE % Acc % Acc % ROC-AUC % AP

GCN 0.367	 ± 0.011 71.892	 ± 0.334 68.498	 ± 0.976 76.06	 ± 0.97 20.20	 ± 0.24

GraphSage 0.398	 ± 0.002 50.492	 ± 0.001 63.844	 ± 0.110 - -

GatedGCN 0.282	 ± 0.015 85.568	 ± 0.088 73.840	 ± 0.326 - -

GatedGCN-PE 0.214	 ± 0.013 86.508	 ± 0.085 76.082	 ± 0.196

GIN 0.526	 ± 0.013 85.387	 ± 0.136 64.716	 ± 1.553 75.58	 ± 1.40 22.66	 ± 0.28

PNA 0.142	 ± 0.010 - - 79.05	 ± 1.32 28.38	 ± 0.35

DGN - - - 𝟕𝟗. 𝟕𝟎	 ± 𝟎. 𝟗𝟕 𝟐𝟖. 𝟖𝟓	 ± 𝟎. 𝟑𝟎

Attention-based

GAT 0.384	 ± 0.007 78.271	 ± 0.186 70.587	 ± 0.447 - -

GT (sparse) 0.226	 ± 0.014 84.808	 ± 0.068 73.169	 ± 0.662 - -

GT (full) 0.598	 ± 0.049 56.482	 ± 3.549 27.121	 ± 8.471 - -

SAN 𝟎. 𝟏𝟑𝟗	 ± 𝟎. 𝟎𝟎𝟔 𝟖𝟔. 𝟓𝟖𝟏	 ± 𝟎. 𝟎𝟑𝟕 𝟕𝟔. 𝟔𝟗𝟏	 ± 𝟎. 𝟔𝟓 77.85	 ± 0.247	 27.65	 ± 0.42

Best

Worst

Figure 7: Comparing our tuned model on datasets from [15, 21], against GCN [25], GraphSage [18],
GIN [39], GAT [37], GatedGCN [5], PNA [11], and DGN [4]. Means and uncertainties are derived
from four runs with different seeds, except MolHIV which uses 10 runs with identical seed. The
number of parameters is fixed to ∼ 500k for ZINC, PATTERN and CLUSTER.

5 Conclusion

In summary, we presented the SAN model for graph neural networks, a new Transformer-based
architecture that is aware of the Laplace spectrum of a given graph from the learned positional
encodings. The model was shown to perform on par or better than the SOTA on multiple benchmarks
and outperforms other Attention-based models by a large margin. As is often the case with Trans-
formers, the current model suffers from a computational bottleneck, and we leave it for future work
to implement variations of Transformers that scale linearly or logarithmically. This will enable the
edge-wise LPE presented in appendix A, a theoretically more powerful version of the SAN model.

Societal Impact. The presented work is focused on theoretical and methodological improvements
to graph neural networks, so there are limited direct societal impacts. However, indirect negative
impacts could be caused by malicious applications developed using the algorithm. One such example
is the tracking of people on social media by representing their interaction as graphs, thus predicting
and influencing their behavior towards an external goal. It also has an environmental impact due
to the greater energy use that arises from the computational cost O(m2N +N2) being larger than
standard message passing or convolutional approaches of O(E).
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