
A Test Error substitutions

The test errorHtest
t in (1) can be expanded into smaller terms

Htest
t = Ex0 [y(x0)2]− 2Ex0 [y(x0)ŷt(x0)] + Ex0 [ŷt(x0)2]

= Ex0
[y(x0)2]− 2

βT√
d
Ex0

[x0z(x0)T]
at√
N

+
aTt√
N

Ex0
[z(x0)z(x0)T]

at√
N
. (18)

The random noise ε from y(x0) only impacts the first term on the right hand side with Ex0 [y(x0)2] =

1 + s2. Using further q(t) = βT√
d
Ex0

[x0z(x0)T] at√
N

and p(t) =
aTt√
N
Ex0

[z(x0)z(x0)T] at√
N

, we write
Htest
t = 1 + s2 − 2q(t) + p(t).

We provide analytical arguments to justify the formula (3) showing that:

q(t) = µg(t) + od(1) (19)

p(t) = µ2h(t) + ν2l(t) + od(1) (20)

with

g(t) =
βT√
d

ΘT

√
d

at√
N
, l(t) =

∥∥∥∥ at√
N

∥∥∥∥2

, h(t) =

∥∥∥∥ΘT

√
d

at√
N

∥∥∥∥2

(21)

and where limd→+∞ od(1) = 0 with probability tending to one when d → +∞. The arguments
below are based further on the prior assumption that the (θi/

√
d) are sampled uniformly on the

hyper-sphere of radius 1. We will assume further that these results can be extended in our setting
with θi sampled from a gaussian distribution. Notice that this is a reasonable assumption because
‖θi‖2 /d is a χ2 distribution of mean 1 and variance 2

d .

A.1 limit of q(t)

We decompose our activation function as σ(x) = µx+ νσ⊥(x) where σ⊥ ∈ Span(Hei)i≥2. In other
words, we have EG[σ⊥(G)] = EG[σ⊥(G)G] = 0 and EG[σ⊥(G)2] = 1. Notice that conditional
on (θi)i sampled on the sphere of radius

√
d, we have for all i ∈ {1, . . . , N} that ui ≡ θTi x0√

d
∼
x0

N (0, 1), and for all j ∈ {1, . . . , N}, we have Cov(ui, uj) =
θTi θj
d =

[
ΘΘT

d

]
i,j

. Similarly, for any

l ∈ {1, . . . , d} we have Cov(uj , [x0]l) =
[θj]l√
d

.. Now, using the Mehler-Kernel formula, we have

Ex0
[[x0]l[z(x0)]j] =

∑
k≥0

1

k!
(Cov(uj , [x0]l))

k Ex0
[x0Hek(x0)]Euj [σ(uj)Hek(uj)] (22)

which does not vanish only for k = 1 due to the first expectation on the RHS. Thus

Ex0
[[x0]l[z(x0)]j] =

[θj]l√
d
µ (23)

and hence we find that q(t) = βT√
d
Ex0

[
x0z(x0)T

]
at√
N

= µβ
T

√
d

ΘT√
d

at√
N

.

The result ought not be exact anymore when (θi) are sampled from a normal distribution, and we
make the assumption that we can account for a correction term od(1) which goes to 0 as d grows to
infinity, hence q(t) = µg(t) + od(1) in general.

A.2 limit of p(t)

Similarly for p(t), we evaluate the kernel Ui,j = Ex0
[[z(x0)]i[z(x0)]j] for which the Mehler-Kernel

formula provides

Ui,j =
∑
k≥0

1
k! (Cov(ui, uj))

k Eui [σ(ui)Hek(ui)]
2

= µ2Cov(ui, uj) + ν2
∑
k≥2

(Cov(ui,uj))
k

k! Eui
[
σ⊥(ui)Hek(ui)

]2
.

(24)

14

Intuitively, the terms (Cov(ui, uj))
k for k ≥ 2 are on a smaller order in d compared to Cov(ui, uj)

when i 6= j. We refer the reader to Lemma C.7 in [17] where it is shown with some additional
assumptions on σ (weakly differentiable with ∃c0, c1,∀x > 0, |σ(x)|, |σ′(x)| ≤ c0ec1x) that:

EΘ

[∥∥∥∥U − µ2 ΘΘT

d
− ν2IN

∥∥∥∥
op

]
= od(1). (25)

Therefore, we can bound:

|p(t)− µ2h(t)− ν2l(t)| =
∣∣∣〈 aTt√

N
,
(
U − µ2 ΘΘT

d − ν2
)

aTt√
N

〉∣∣∣
≤

∥∥∥ at√
N

∥∥∥ · ∥∥∥U − µ2 ΘΘT

d − ν2IN

∥∥∥
op
·
∥∥∥ at√

N

∥∥∥
= l(t)

∥∥∥U − µ2 ΘΘT

d − ν2IN

∥∥∥
op
.

(26)

As per the general assumptions 2.1, l(t) concentrates to a finite quantity l̄(t) at all times as d grows
to infinity (that l̄(t) is finite is explicitly checked by the anlytical computations of the generalization
error). Thus by Markov’s inequality we have at any fixed time t, |p(t)− µ2h(t)− ν2l(t)| = od(1)
with probability tending to one as d→ +∞.

Notice also that we assume as before that od(1) also contains the correction added when (θi) are
sampled from a normal distribution.

B Cauchy’s integral representation formula

In this section we complete the proof of propositions 2.0.1 and 2.0.2. We show how to derive the
Cauchy integral representation of the two functions l(t) and h(t) by similar analysis of Sect. 4.1 for
the representation of g(t).

B.1 Representation formula for l(t)

We define the function Lt(z) =
aTt√
N
R(z) at√

N
and the auxiliary functions Ut(z) = Y TZ

N R(z) at√
N

and V (z) = Y TZ
N R(z)Z

TY
N . We find a set of 2 integro-differential equations using the gradient flow

equation for dat
dt (as in the derivation of 14)

1

2

∂Lt(z)

∂t
= Ut(z)− l(t)− (z + δ)Lt(z)

∂tUt(z)

∂t
= V (z)−RzUt − (z + δ)Ut(z)

(27)

Similarly Gt(z) and g(t), we also have that l(t) = −
∮

Γ
dz
2iπLt(z) = RzLt. So we get a pair

of integro-differential equations in this case (wheras for Gt(z) we had only one such equation).
However, we have one additional differential equation in this case. Pursuing with the Laplace
transform operator1 the equations (27) become

LLp(z) = 1
1
2p+z+δ

(
1
2L0(z) + LUp(z)− Ll(p)

)
LUp(z) = 1

p+z+δ

(
U0(z) + V (z)

p − LRzUp
) (28)

and re-injecting LUp from the second equation into the first equation we find

LLp(z) =
1

1
2p+ z + δ

(
L0(z)

2
− Ll(p)

)
+

1

(1
2p+ z + δ)(p+ z + δ)

(
U0(z) +

V (z)

p
− LRzUp

)
.

(29)

1Defined as (Lf)(p) =
∫ +∞

0
dte−ptf(t) for Re p large enough. We also use the notation Lfp to mean

(Lf)(p) specially when there are other variables involved. For example LLp(z) =
∫ +∞

0
dte−ptLt(z).

15

With similar considerations as before, with p large enough to have −δ is outside the loop Γ, we see
the terms Ll(p) and LRzUp don’t contribute to the former equation when the operatorRz is applied

RzLLp(z) = Rz
{

1

2

L0(z)
1
2p+ z + δ

+
1

(1
2p+ z + δ)(p+ z + δ)

(
U0(z) +

V (z)

p

)}
. (30)

Finally, there remains to use the commutativity of Rz and L (for Re p large enough by Fubini’s
theorem) and compute the inverse Laplace transforms to find

l(t) = Rz

{
e−2t(z+δ)

[
L0(z) + 2

et(δ+z) − 1

δ + z
U0(z) +

(
et(δ+z) − 1

δ + z

)2

V (z)

]}
(31)

Expanding further the terms individually

l(t) = Rz

{
e−2t(z+δ)L0(z) + 2e−t(z+δ)

(
1− e−t(z+δ)

δ + z

)
U0(z) +

(
1− e−t(δ+z)

δ + z

)2

V (z)

}
.

(32)
We end-up (as for g(t)) with an expression where the time dependence is decoupled from random
matrix expressions.

B.2 Representation formula for h(t)

The last term requires additional considerations. We will now use a double contour Γx,Γy enclosing
the eigenvalues of Z

TZ√
N

and such that Γx ∩ Γy = ∅. We consider the operatorsRx,Ry associated to
each contour. Contrary to the previous two representations, when computing the multiple derivatives
h(k)(t), due to the Θ matrix in h(t), there appears pairs of matrices ZTZ√

N
. In terms of generating

functions, this translates into a "2-variable resolvent" functions

Ht(x, y) =
aTt√
N
R(x)

ΘΘT

d
R(y)

at√
N
, (33)

which has the property h(t) = Rx,yHt, and two auxiliary functions

Qt(x, y) =
aTt√
N
R(x)

ΘΘT

d
R(y)

ZTY

N
, and W (x, y) =

Y TZ

N
R(x)

ΘΘT

d
R(y)

ZTY

N
. (34)

Using the former method for equation (27) leads to the following integro-differential equations:

∂Ht(x, y)

∂t
= Qt(x, y) +Qt(y, x)−RxHt(y)−RyHt(x)− (x+ y + 2δ)Ht(x, y)

∂Qt(x, y)

∂t
= W (x, y)−RxQt(y)− (x+ δ)Qt(x, y)

(35)

Then the Laplace transform on the first equation reads

LHp(x, y) =
1

p+ x+ y + 2δ
[H0(x, y) + L{Qt(x, y) +Qt(y, x)−RxHt(y)−RyHt(x)}] .

(36)
Notice that Rx and Ry commute with each other as being integrals over a compact set Γx,Γy
respectively. So by Fubini we can name indifferently Rx,y = RxRy = RyRx. Notice also that
RxHt(y) is not a function of x anymore, thus for p large enough to have |2δ + x + y| > 0 for all
(x, y) ∈ Γx × Γy , we find

Rx,y
{

RxHt(y)

p+ x+ y + 2δ

}
= Ry

{
Rx
{

RxHt(y)

p+ x+ y + 2δ

} }
= Ry{0} = 0. (37)

Symmetrically, the same statement can be made forRyHt(x), so applying the operatorRx,y and the
result (37) to (36) we find

Rx,yLHp(x, y) = Rx,y
{
H0(x, y) + LQp(x, y) + LQp(y, x)

p+ x+ y + 2δ

}
. (38)

16

Finally, we haveRx,yLHp(x, y) = LRx,yHp(x, y) = Lh(p). The Laplace transform of the second
equation of (35) provides

LQp(x, y) =
1

p+ x+ δ

(
Q0(x, y) +

W (x, y)

p
−RxLQp(y)

)
. (39)

Before injecting this equation into (38) (and its symmetrical result in x and y), notice that one term
will not contribute under the operatorRx,y

Rx,y
{

RxLQp(y)

(p+ x+ y + 2δ)(p+ x+ δ)

}
= Ry{0} = 0 (40)

and finally, using W (x, y) = W (y, x), we obtain

Lh(p) = Rx,y

{
1

p+ x+ y + 2δ

(
H0(x, y) +

Q0(x, y) + W (x,y)
p

p+ x+ δ
+
Q0(y, x) + W (x,y)

p

p+ y + δ

)}
.

(41)
Eventually, applying inverse Laplace transform we get the representation

h(t) = Rx,y
{
e−t(x+y+2δ)H0(x, y)

}
+ Rx,y

{
e−t(2δ+x+y)

(
et(δ+y)−1
δ+y Q0(x, y) + et(δ+x)−1

δ+x Q0(y, x)
)}

+ Rx,y
{

1−e−t(x+δ)

x+δ
1−e−t(y+δ)

y+δ W (x, y)
} (42)

B.3 Remark on the consistency with the minimum least squares estimator

It can be seen, at least formally, that the integral representation formula correctly retrieves the
minimum least-squares estimator formulas in the limit t→∞. Indeed, commuting limt andRz we
find

lim
t→+∞

g(t) = Rz
{

1

z + δ
K(z)

}
=

N∑
i=1

βT√
d
viRz

{
1

(λi + z)(z + δ)

}
vTi
ZTY

N

=

N∑
i=1

βT√
d

viv
T
i

(λi − δ)
ZTY

N
= K(−δ). (43)

On the other hand, we expect

lim
t→+∞

g(t) = lim
t

βT√
d

ΘT

√
d
at =

βT√
d

ΘT

√
d
a∞ (44)

with a∞ defined as the minimum least-squares estimator. Thus, we clearly have:

βT√
d

ΘT

√
d
a∞ =

βT√
d

ΘT

√
d

(
ZTZ

N
+ δI

)−1
ZT√
N

Y√
N

= K(−δ) (45)

The same calculations can be done on each term h(t), l(t).

B.4 Representation formula for the training error

The derivation ofHtrain
t is quite straightforward based on the previous terms derived for the test error.

Firstly, expanding the expression ofHtrain
t we get:

Htrain
t =

1

n

∥∥∥∥ Y − Z at√
N

∥∥∥∥2

+ λ

∥∥∥∥ at√
N

∥∥∥∥2

=
‖Y ‖2

n
− 2

n
Y T

Zat√
N

+
1

n

∥∥∥∥Zat√N
∥∥∥∥2

+
δ

c

∥∥∥∥ at√
N

∥∥∥∥2

(46)

Reusing the function Ut(z) from Sect. B.1, and defining u(t) = RzUt(z) = 1
N Y

T Zat√
N

and

h̃(t) = 1
N

∥∥∥Zat√
N

∥∥∥2

, we get:

Htrain
t =

‖Y ‖2

n
+

1

c

(
−2u(t) + h̃(t) + δl(t)

)
(47)

17

Furthermore, reusing the differential equation found for Ut(z), a simpler solution can be extracted
for u(t):

u(t) = Rz
{
e−t(z+δ)U0(z) +

1− e−t(z+δ)

z + δ
V (z)

}
(48)

The second term h̃(t) can also be derived from the expression Lt(z) which is also defined in appendix
B.1. We find h̃(t) = Rz{ zLt(z)}. Hence the terms δl(t) and h̃(t) can be grouped together with
h̃(t) + δl(t) = Rz{ (z + δ)Lt(z)}. Expanding from the expression ofRzLLt(z) we find

(h̃+ δl)(t) = Rz
{

(z + δ)e−2t(z+δ)L0(z) + 2e−t(z+δ)
(

1− e−t(z+δ)
)
U0(z)

+

(
1− e−t(δ+z)

)2
δ + z

V (z)

}
. (49)

Remarkably, all the terms can be summed together in (47) and we retrieve a simpler expression

Htrain
t =

‖Y ‖2

n
+

1

c
Rz
{

(z + δ)e−2t(z+δ)L0(z)− 2e−2t(z+δ)U0(z)− 1− e−2t(δ+z)

δ + z
V (z)

}
. (50)

C High-dimensional limit

In this appendix we use assumption 2.1 in section 2.3 to compute limiting expressions of traces.

As d → ∞, the mean of a0 or β converges two 0. Let’s consider the auxiliary functions
U0(z), G0(z), Q0(x, y). These three terms have only occurrence of a0 and β on each side of the
matrix-vector multiplication composition (notice β is also included in the term Y): they can be written
in the form F (H) =

aT0√
N
H β√

d
where H is a random matrix independent of a0, β. For instance we

have G0(z) = F
(
R(z) Θ√

d

)
. As the mean of F (H) is precisely 0, assuming concentration, we have

that these terms go to 0 when d → ∞. The same considerations can be applied to the term ξ from
Y .

Besides, when a vector such as a0 is expressed on both side of another expression such as F (H) =
aT0√
N
H a0√

N
, it can still be rewritten as the trace F (H) = Tr

[
H
a0a

T
0

N

]
so that we can effectively use

the independence of H with a0 and compute the expectation Ea0
[F (H)] = r2

N Tr [H]. Hence if F (H)

concentrates as N → ∞, we can replace it by limN
r2

N Tr [H].

In the sequel we will adopt the following notation. For any sequence of matrices (Mk) ∈ Rk×k we
set Trk [Mk] = limk→∞

1
kTr [Mk].

Therefore, in general, applying the concentration arguments above, we can substitute the limiting
expressions with the following terms

L0(z) =
aT0√
N
R(z)

a0√
N
−→
d→∞

r2 TrN [R(z)] (51)

K(z) =
βT√
d

ΘT

√
d
R(z)

ZTY

N
−→
d→∞

Trd

[
ΘT

√
d
R(z)

ZT√
N

X√
N

]
(52)

H0(x, y) =
aT0√
N
R(x)

ΘΘT

d
R(y)

a0√
N
−→
d→∞

r2 TrN

[
R(x)

ΘΘT

d
R(y)

]
(53)

V (z) =
Y TZ

N
R(z)

ZTY

N
−→
d→∞

Trd

[
XT

√
N

Z√
N
R(z)

ZT√
N

X√
N

]
+ s2TrN

[
Z√
N
R(z)

ZT√
N

]
(54)

W (x, y) −→
d→∞

Trd

[
XT

√
N

Z√
N
R(x)

ΘΘT

d
R(y)

ZT√
N

X√
N

]
+ s2TrN

[
Z√
N
R(x)

ΘΘT

d
R(y)

ZT√
N

]
(55)

As for the training error, all the required terms are given by V (z), L0(z), U0(z), of which only
V (z), L0(z) contributes to the result as d→∞

18

Finally, we apply the gaussian equivalence principle with the substitution described in 4.2 with the
linearization Z → Zlin with Zlin ≡ µ√

d
XΘT + νΩ. This substitution is applied throughout all the

occurrences of Z, including in the resolvents z → R(z).

D Linear Pencil

D.1 Main matrix

The main approach of the linear-pencil method is to design a block-matrixMx,y =
∑
i,j Ei,j⊗M

(i,j)
x,y

where the blocks M (i,j)
x,y are either a gaussian random matrix or a scalar matrix, and Ei,j is the matrix

with matrix elements (Ei,j)k,l = δkiδlj . The subscripts indicate explicitly the dependence on two
complex variables (x, y) ∈ C2. Importantly, this matrix is inverted using block-inversion formula to
have an expression of the form M−1

x,y =
∑
i,j Ei,j ⊗ (M−1

x,y)(i,j) such that some blocks (M−1
x,y)(i,j)

match the different matrix terms in equations (51).

In order to define our main linear pencil matrix, we first need to introduce some additional upper-
level blocks: UT = [X√

N
, ν Ω√

N
] and V T = [µ Θ√

d
, I]. In addition, in order to keep a consistent

symmetry and structure to our block-matrix, we will use the following blocks in reverse order:
ŪT = [ν Ω√

N
, X√

N
] and V̄ T = [I, µ Θ√

d
]. Furthermore, we let Kx = (−xI +

ZTlinZlin√
N

)−1 and Lx =

(−xI + UUTV V T)−1 and Rx = (−xI + V V TUUT)−1 and K̃x = (−xI +
ZlinZ

T
lin√

N
)−1. The

following identities (which can be obtained with the push-through identity) provide additional
relations which can be used later:

Zlin√
N

= UTV (56)

LxUU
T = UK̃xU

T (57)
V V TLx = V KxV

T (58)

−xK̃x = I −
(
−xI +

ZlinZ
T
lin

N

)−1
ZlinZ

T
lin

N
= I − Zlin√

N
Kx

ZTlin√
N

(59)

We define our main block-matrix consisting in 13×13 blocks where the upper-level blocks U, V, Ū , V̄
are to be considered as "flattened":

Mx,y =

−xI −V T 0 0 Θ√
d

0 0 0 0

0 I U 0 0 0 0 0 0
0 0 I UT 0 0 0 0 0
V 0 0 I 0 0 0 0 0

0 0 0 0 I 0 0 0 ΘT√
d

0 0 0 0 0 I Ū 0 0
0 0 0 0 0 0 I ŪT 0
0 0 0 0 0 0 0 I −V̄
0 0 0 0 0 V̄ T 0 0 −yI

(60)

This is precisely the block-matrix M given at the end of Sect. 4.

D.2 Linear-pencil inversion and relation to the matrix terms

The inverse of Mx,y can be computed by splitting it into higher-level blocks. These blocks are
highlighted with the lines and double-lines depicted in equation (60): the block-matrix is split into
a 2 × 2 block-matrix recursively in order to apply the block-matrix inversion formula recursively.
Starting with the higher level split:

Mx,y =

[
M1,1 M1,2

0 M2,2

]
=⇒M−1

x,y =

[
M−1

1,1 −M−1
1,1M1,2M

−1
2,2

0 M−1
2,2

]
(61)

19

It is now quite straightforward algebra to proceed with the remaining blocks. Starting with M1,1:

M−1
1,1 =

Kx KxV

T −Kx
ZTlin√
N

Kx
ZTlin√
N
UT

−U Zlin√
N
Kx −xLx xLxU −xLxUUT

Zlin√
N
Kx

Zlin√
N
V TLx −xK̃x xK̃xU

T

−V Kx −V V TLx V
ZTlin√
N
K̃x −xRx

 (62)

For M2,2, with an additional split:

M2,2 =

[
I N1,2

0 N2,2

]
=⇒M−1

2,2 =

[
I −N1,2N

−1
2,2

0 N−1
2,2

]
(63)

A straightforward algebra calculation provides the result of M−1
2,2 :

M−1
2,2 =

I ΘT√
d
KyV̄

T −ΘT√
d
Ky

ZTlin√
N

ΘT√
d
Ky

ZTlin√
N
ŪT −ΘT√

d
Ky

0 −yR̄y yŪK̃y −yŪŪT L̄y Ū Zlin√
N
Ky

0 K̃y
Zlin√
N
V̄ T −yK̄y yŪT L̄y − Zlin√

N
Ky

0 −L̄yV̄ V̄ T L̄yV̄
ZTlin√
N

−yL̄y V̄ Ky

0 −KyV̄
T Ky

ZTlin√
N

−Ky
ZTlin√
N
ŪT Ky

(64)

Finally, using Q = Kx
ΘΘT

d Ky we obtain the third block of Mx,y:

−M−1
1,1M1,2M

−1
2,2 =

−Kx

Θ√
d

−QV̄ T Q
ZTlin√
N

−QZTlinŪ
T

√
N

Q

UZlin√
N
Kx

Θ√
d

UZlin√
N
QV̄ T −UZlin√

N
Q
ZTlin√
N

UZlin√
N
Q
ZTlinŪ

T

√
N

−UZlin√
N
Q

− Zlin√
N
Kx

Θ√
d
− Zlin√

N
QV̄ T Zlin√

N
Q
ZTlin√
N

− Zlin√
N
Q
ZTlinŪ

T

√
N

Zlin√
N
Q

VKx
Θ√
d

V QV̄ T −V Q ZTlin√
N

V Q
ZTlinŪ

T

√
N

−V Q

(65)

Notice now that all the matrix terms in equations (51) are actually contained in some of the blocks of
our matrix (note that Trd

[
XTX
n

]
= 1):

L̄0(y) = r2TrN [Ky] (66)

K̄(y) = Trd

[
ΘT

√
d
Ky

ZTlin√
N
ŪT
]

1,2

(67)

H̄0(x, y) = r2TrN [Q] (68)

W̄ (x, y) = s2 φ

ψ
Trn

[
Zlin√
N
Q
ZTlin√
N

]
+ Trd

[
UZlin√
N
Q
ZTlinŪ

T

√
N

]
1,2

(69)

V̄ (x) = s2 φ

ψ
Trn

[
In + xK̃x

]
+

(
Trd
[
xLxUU

T
]
1,1

+ Trd

[
XTX

N

])
(70)

Or equivalently, with the block coordinates of the inverse matrix M−1
x,y :

L̄0(y) = r2TrN
[
(M−1

x,y)(13,13)
]

(71)

K̄(y) = Trd
[
(M−1

x,y)(7,12)
]

(72)

H̄0(x, y) = r2TrN
[
(M−1

x,y)(1,13)
]

(73)

W̄ (x, y) = s2 φ

ψ
Trn

[
(M−1

x,y)(4,10)
]

+ Trd
[
(M−1

x,y)(2,12)
]

(74)

V̄ (x) = s2 φ

ψ

(
1− Trn

[
(M−1

x,y)(4,4)
])

+

(
−Trd

[
(M−1

x,y)(2,5)
]

+
φ

ψ

)
(75)

20

In the next section we show how to derive further each trace of the squared matrices from the block
matrix Mx,y . In order to deal with self-adjoint matrices, we double the dimensions with M̃x,y:

M̃x,y =

[
0 Mx,y

M†x,y 0

]
(76)

and find the inverse:

M̃−1
x,y =

[
0 (M†x,y)−1

M−1
x,y 0

]
(77)

D.3 Structural terms of the limiting traces

The matrix Mx,y is a block-matrix constituted with either gaussian random matrices, or constant
matrices (proportional to I). More precisely, letting S be the matrix of the coefficients of the
constant blocks of Mx,y (and S̃ for M̃x,y), and A the random blocks part (Ã respectively) we write :
M̃x,y =

∑
i,j Ei,j⊗M̃

(i,j)
x,y where M̃ (i,j)

x,y = S̃(i,j) + Ã(i,j) is the block of size (Ni, Nj). Also notice
that letting L = {(i, j)| Ni = Nj}, the fact that the constant blocks are supposed to be proportional
to an identity matrix implies that: ∀(i, j) /∈ L =⇒ S̃(i,j) = 0 = zi,j0Ni,Nj with 0Ni,Nj the
zero-matrix of size Ni ×Nj and otherwise ∀(i, j) ∈ L =⇒ S̃(i,j) = zi,jINi with B̃ = (zi,j) the
matrix of size 26× 26.

Now we want to find a matrix G̃ ∈ R26×26 such that

[G̃]i,j = TrNi
[
(M̃−1

x,y)(i,j)
]
, ∀(i, j) ∈ L, (78)

An important theorem in [38] (chapter 9, equ. (9.5) and theorem 2), which we show again in the next
section, states that there is a solution G̃ of the equation

B̃G̃ = I + η(G̃)G̃ (79)

which satisfies (78). In this equation η(G̃) is the matrix mapping defined element-wise as:

[η(G̃)]i,j = δL(i, j) ·
∑
k,l∈L

σ(i, k; l, j) · [G̃]k,l (80)

and where σ satisfies the relation for all (i, k, l, j) such that Ni = Nj and Nk = Nl (and keeping in
mind that the Nk are growing with the dimension d):

∀(r, s) ∈ {1, . . . , Ni}×{1, . . . , Nj}, r 6= s =⇒ σ(i, k; l, j) = lim
d →∞

Nk ·E
[
[Ã(i,k)]r,s[Ã

(l,j)]s,r

]
(81)

We remark that the setting here, and in particular equation (79), is in fact more general than in [38]
(chapter 9, equ. (9.5)) and we provide an independent and self-contained (formal) derivation of (79)
in Appendix E using the replica method.

For example, we have M (5,1)
x,y = µΘT√

d
of size d × N and M (1,7)

x,y = Θ√
d

of size N × d. So this is

M̃
(5,14)
x,y = µΘT√

d
and M̃ (1,20)

x,y = Θ√
d

, with N5 = N20 = d and N14 = N1 = N . For r = 1, s = 2 (or
any other suitable indices) we find:

σ(5, 14; 1, 20) = lim
d→∞

µ
N

d
E
[
[Θ]21,2

]
= µψ

In fact, a careful inspection of all the blocks in row 5 and all the blocks in column 20 shows that we
have [η(G̃)]5,20 = µψ[G̃]14,1.

Calculating all the terms of η(G̃) is quite cumbersome, but it can be done automatically with the help
of a computer algebra system. Still, this approach yields many equations for each 26× 26 terms of
G̃. However, some initial structure can also be provided for this matrix. Looking back at M̃−1

x,y , it is
clear that some blocks will have the same limiting traces (potentially seen using the aforementioned
push-through identities). For instance, (M−1

1,1)(1,1) = Kx = −(M−1
1,1)(6,1) (expanding the U, V

blocks), so (M−1
x,y)(1,1) = −(M−1

x,y)(6,1), in other words (M̃−1
x,y)(14,1) = −(M̃−1

x,y)(19,1), and thus we

21

expect [G̃]14,1 = −[G̃]19,1. Non-squared blocks can also be mapped to 0 in G̃. In the end, taking
every block into account, G̃ is expected to be of the form:

G̃ =

[
0 G†

G 0

]
(82)

with

G =

 G1,1 G1,2 G1,3

0 1 G2,3

0 0 G3,3

 (83)

(which has 13× 13 scalar matrix elements) where:

G1,3 =

−q1 0 0 −νqyx6 0 q1

0 µqyx7 0 0 q2 0
νqxy6 0 0 ν2q3 0 −νqxy6

0 0 q4 0 0 0
0 µ2q5 0 0 µqxy7 0
q1 0 0 νqyx6 0 −q1

 (84)

G1,1 =

gx1 0 gx1 0 0 νgx2
0 hx1 0 0 hx4 0
−νgx2 0 hx2 0 0 ν2hx5

0 0 0 gx3 0 0
0 −µ2hx3 0 0 hx1 0
−gx1 0 −gx1 0 0 hx2

 (85)

G3,3 =

hy2 0 0 ν2hy5 0 νgy2
0 hy1 0 0 hy4 0
0 0 gy3 0 0 0
−gy1 0 0 hy2 0 gy1

0 −µ2hy3 0 0 hy1 0
−gy1 0 0 −νgy2 0 gy1

 (86)

G1,2 =

0
tx1
0
0

µhx3
0

 G2,3 = [0 µhy3 0 0 ty1 0] (87)

All (non-vanishing) matrix elements depend on the complex variables x and y. This is indicated by
the upper-script notation with x, y, xy, yx. Some quantities depend only on x, some only on y, and
some on both x and y. Among the ones that depend on both variables the quantities qxy6 , qyx6 , qxy7 , qyx7
are non-symmetric, while q1, q2, q3, q4, q5 are symmetric (e.g., qx,y1 = qy,x1). We choose not to use the
upper-script notation for the symmetric quantities in order to distinguish them from the non-symmetric
ones.

Eventually, with a careful mapping between M̃−1
x,y and G̃ in equations (66), only gx1 , t

x
1 , h

x
4 , g

x
3 and

the symmetric terms q1, q2, q4 are needed and equations (66) take the form:

L̄0(x) = r2gx1 (88)

K̄(x) = tx1 (89)

H̄0(x, y) = r2q1 (90)

W̄ (x, y) = s2 φ

ψ
q4 + q2 (91)

V̄ (x) = s2 φ

ψ
(1− gx3) +

(
φ

ψ
− hx4

)
(92)

22

D.4 Solution of the fixed point equation

The fixed-point equations as described in (79) for the given matrices S̃, η(G̃), G̃ is a priori a system
of 26× 26 algebraic equations. are computed using Sympy in python, a symbolic calculation tool.
In effect this is really a fixed point equation for G a priori involving 13 × 13 algebraic equations.
It turns out that many matrix elements vanish and (using the symbolic calculation tool Sympy in
python) we can extract a system of 39 algebraic equations which are given in the following:

0 = gx1
(
−µ2hx4 + x

)
− gx2ν + 1 (93)

0 = gx1
(
−µ2hx4 + x

)
+ hx2 (94)

0 = gx2ν
(
−µ2hx4 + x

)
+ hx5ν

2 (95)

0 = −gy1
(
µ2q2 − µtx1 − µt

y
1 + 1

)
+ νqxy6 − q1

(
−µ2hx4 + x

)
(96)

0 = −gy2ν
(
µ2q2 − µtx1 − µt

y
1 + 1

)
+ ν2q3 − νqyx6

(
−µ2hx4 + x

)
(97)

0 = gy1
(
µ2q2 − µtx1 − µt

y
1 + 1

)
− νqxy6 + q1

(
−µ2hx4 + x

)
(98)

0 =
µ2φgx3h

x
3

ψ
− hx1 + 1 (99)

0 =
φgx3h

x
1

ψ
− hx4 (100)

0 = −µφg
x
3h

x
3

ψ
− tx1 (101)

0 =
µ2φgx3 q5

ψ
+
µ2φhy3q4

ψ
− µqyx7 (102)

0 =
µφgx3 q

xy
7

ψ
+
φhy1q4

ψ
− q2 (103)

0 = −φg
x
1g
x
3ν

2

ψ
+ gx2ν (104)

0 = −φg
x
1g
x
3ν

2

ψ
− hx2 + 1 (105)

0 =
φgx3h

x
2ν

2

ψ
− hx5ν2 (106)

0 = −φg
y
1ν

2q4

ψ
+
φgx3ν

2q1

ψ
− νqxy6 (107)

0 =
φgx3ν

3qyx6

ψ
+
φhy2ν

2q4

ψ
− ν2q3 (108)

0 =
φgy1ν

2q4

ψ
− φgx3ν

2q1

ψ
+ νqxy6 (109)

0 = gx3

(
µ2hx3
ψ
− gx1ν2 − 1

)
+ 1 (110)

0 = gy3

(
µ2q5

ψ
+ ν2q1

)
+ q4

(
µ2hx3
ψ
− gx1ν2 − 1

)
(111)

0 = −µ2ψgx1h
x
1 − µ2hx3 (112)

0 = −µ2ψgx1h
x
4 − hx1 + 1 (113)

0 = −µ2ψgx1 t
x
1 + µψgx1 + µhx3 (114)

0 = −µ3ψgx1 q
yx
7 − µ2ψgx1h

y
3 + µ2ψhy1q1 − µ2q5 (115)

0 = −µ2ψgx1 q2 + µ2ψhy4q1 + µψgx1 t
y
1 − µq

xy
7 (116)

0 = −gx2ν − hx2 + 1 (117)

23

0 = µψgy1h
y
1 + µhy3 (118)

0 = µψgy1h
y
4 − t

y
1 (119)

0 = −φg
y
1g
y
3ν

2

ψ
− hy2 + 1 (120)

0 =
φgy3h

y
2ν

2

ψ
− hy5ν2 (121)

0 =
φgy1g

y
3ν

2

ψ
− gy2ν (122)

0 =
µ2φgy3h

y
3

ψ
− hy1 + 1 (123)

0 =
φgy3h

y
1

ψ
− hy4 (124)

0 = gy3

(
µ2hy3
ψ
− gy1ν2 − 1

)
+ 1 (125)

0 = −gy2ν − h
y
2 + 1 (126)

0 = −µ2ψgy1h
y
1 − µ2hy3 (127)

0 = −µ2ψgy1h
y
4 − h

y
1 + 1 (128)

0 = −gy1
(
−µ2hy4 + y

)
− hy2 (129)

0 = −gy2ν
(
−µ2hy4 + y

)
− hy5ν2 (130)

0 = gy1
(
−µ2hy4 + y

)
− gy2ν + 1 (131)

D.5 Reduction of the solutions

The previous system of equations can be reduced further by substitutions with a computer algebra
system. We find the variables gx3 , t

x
1 , h

x
4 , g

x
1 , h

x
1 are linked through the algebraic system:

0 = 1 + gx1

(
−µ2hx4 −

φ
ψ g

x
3u

2 + x
)

0 = −hx4 + gx3

(
−µ2φgx1h

x
4 + φ

ψ

)
0 = φ

ψ (1− gx3)− gx1x− 1
0 = µψgx1h

x
4 − tx1

0 = 1− hx1 − µtx1

(132)

Notice this system can be shrinked further down to 3 equations to get to the main result in 3.1 using
the substitution hx1 with the 5th equation and gx3 with the 3rd equation. Also, by symmetry we find the
same equations for gy3 , t

y
1, h

y
4, g

y
1 , h

y
1 .

For the other variables, a set of equations link q1, q2, q4, q5. Notice there can many different represen-
tations depending on the reductions that are applied. Here we only show the example which has been
used throughout the computations:

0 = −µ2gy1q2 + µ2hx4q1 + µgy1 t
x
1 + µgy1 t

y
1 −

φgy1 q4ν
2

ψ − gy1 − q1x+
q1ν

2(φ−ψgx1x−ψ)
ψ

0 = µ (φ− ψgx1x− ψ) (−µgx1 q2 + µhy4q1 + gx1 t
y
1) +

φhy1q4
ψ − q2

0 = −µ2gx1h
x
1q4 +

µ2q5(φ−ψgy1y−ψ)
φψ − gx1 q4ν

2 − q4 +
q1ν

2(φ−ψgy1y−ψ)
φ

0 = µ2φgx1g
y
1h

y
1q4 − µ2gx1 q5(φ−ψgx1x−ψ)

ψ + ψgx1g
y
1h

y
1 + hy1q1 − q5

ψ

(133)

In conclusion, we can obtain 3 systems with (4, 5, 5)-equations or 3 systems with (4, 3, 3)-equations
(so a total of 10), as in the main result 3.1 (as discussed above these various systems are all equivalent
and depend on the applied reductions).

The solutions are not necessarily unique and one has to choose the appropriate ones with care. In
our experimental results using Matlab with the "vpasolve" function, conditioning on Im gx1 > 0 and
Im gx3 > 0 provided a unique solution to (132) for x ∈ R+ (or x ∈ R× i[0, ε] for ε close to 0); while

24

conditioning on gx1 , g
x
3 ∈ R+ provided a unique solution to (132) for x ∈ R−. We remind that we

use x ∈ R− exclusively in the time limit t→∞ in result 3.2 while we use x ∈ R+ in the situation of
result 3.1. In addition, we found that selecting the appropriate solutions for x and y as just described
for (132) also led to a unique solution for 133 in our experiments.

E Linear pencil method from the replica trick argument

A general approach to solve random matrix problems is to use the replica method, and historically
this goes back to [39]. In this appendix we show how to derive the fixed point equation (79) and (81)
as well as (78) in appendix D. Such equations have been rigorously proved thanks to combinatorial
methods in the recent literature on random matrix theory (see [38], chapter 9, equ. (9.5)), but here
we give a self-contained derivation using the replica trick, similar in spirit to [39]. Although our
derivation is far from rigorous it does covers linear pencils with a more general structure than in [38],
chapter 9, which are needed for our purposes.

Setting the replica calculation. Let (N1, . . . , Nd) ∈ Nd for some d ∈ N, and N =
∑d
i=1Ni.

and let’s consider a symmetric2 block matrix, called the "linear pencil", withM =
∑
i,j Ei,j⊗M (i,j)

such that M (i,j) is a matrix of size Ni × Nj and Ei,j the matrix with elements (Ei,j)kl = δkiδlj .
We assume that we can decompose M = R + S with two block-matrices R and S such that the
blocks R(i,j) are sum of independent real gaussian random matrices (with possibly their transpose)
and S(i,j) = 0 if Ni 6= Nj or a scalar matrix S(i,j) = zi,j · INi if Ni = Nj (with INi the Ni ×Ni
identity). Given the list of squares-blocks L = {i, j|Ni = Nj}, we let B = (zi,j) be the matrix3 of
the scalar coefficients in C where it is assumed zi,j = 0 when (i, j) /∈ L.

Now we have defined a standard linear pencil. As a side remark, note also that we can accomodate
random blocks R(i,j) which are symmetric gaussian random matrices (i.e., the lower and upper
triangular parts are not independent) because we can always decompose them into the sum of two
random matrices, R(i,j) = Y + Y ᵀ.

In general, let {Yk}1≤k≤K be a list of K independent gaussian random matrices with i.i.d elements
of variance N−1, and various heights and widths among {Ni ×Nj , i, j ∈ {1, · · · , d}}. These will
constitute the random blocks of R(i,j) as follows. Given i, j we define the set Si,j = {k|width(Yk) =
Ni, height(Yk) = Nj}. We have for some coefficients αki,j ,

R =

d∑
i,j=1

∑
k∈Si,j

αki,j(Ei,j ⊗ Yk + Ej,i ⊗ Y ᵀ
k). (134)

Notice αki,j is not necessarily symmetric under exchange of i and j, but R = Rᵀ is still guaranteed
to be symmetric (however, if αki,j is symmetric for all k, then it implies all the random blocks are
themselves symmetric). Similarly, we have the scalar block,

S =

d∑
(i,j)∈L

zi,j(Ei,j ⊗ INi). (135)

Now, let’s define I = E{Yk} log det(M). Then using the replica trick,

I = −2E log
[
det(M)−

1
2

]
' lim
n →0

2E
[

1− det(M)−
n
2

n

]
. (136)

We will first compute the term J = Edet(M)−
n
2 for integers n ≥ 1.

2Here M plays the role of the symmetric matrix M̃ in appendix D. We remove the tilde to alleviate the
notation as this will not create any confusion here

3This plays the role of B̃ in appendix D.

25

Calculation of J for integer n ≥ 1. We start with the Gaussian representation of the determinant

J = E

[
n∏
a=1

∫
RN

dx

(2π)
N
2

exp

(
−1

2
xᵀMx

)]
. (137)

We have

J =

∫
Rn×N

exp

(
−1

2

n∑
a=1

xaᵀSxa

)
E

[
exp

(
−1

2

n∑
a=1

xaᵀRxa

)]
n∏
a=1

dxa

(2π)
N
2

(138)

where a = 1, . . . , n is called the "replica index". Setting xᵀ = [x1| . . . |xd] where each xi is of size
Ni,

xᵀRx =

d∑
i,j=1

xᵀi
 ∑
k∈Si,j

αki,jYk

xj + xᵀj

 ∑
k∈Si,j

αki,jY
ᵀ
k

xi

 . (139)

Then defining the set S−1
k = {(i, j)|Ni = width(Yk), Nj = height(Yk)} (for a given k)

xᵀRx =

K∑
k=1

∑
(i,j)∈S−1

k

2αki,j(x
ᵀ
i Ykxj) (140)

an expanding the inner products we can further write down

xᵀRx = 2

K∑
k=1

∑
r,s

[Yk]r,s
∑

(i,j)∈S−1
k

αki,j [xi]r[xj]s (141)

Thus

E

[
exp

(
−1

2

n∑
a=1

xaᵀRxa

)]
=
∏
k,r,s

E

exp

−[Yk]r,s
∑

1≤a≤n
(i,j)∈S−1

k

αki,j [x
a
i]r[x

a
j]s

 (142)

and using the moment generating function of the normal distribution, with E[Yk]2r,s = 1
N , we obtain

E

[
exp

(
−1

2

n∑
a=1

xaᵀRxa

)]
= exp

 1

2N

∑
k,r,s

 ∑
1≤a≤n

(i,j)∈S−1
k

αki,j [x
a
i]r[x

a
j]s

2 . (143)

But now, we can expand the square using the set T = {(i, j, k, l) ∈ {1, . . . , d}4|(Ni, Nj) =
(Nk, Nl)}:

∑
k,r,s

 ∑
1≤a≤n

(i,j)∈S−1
k

αki,j [x
a
i]r[x

a
j]s

2

=
∑

1≤a≤n
1≤b≤n

∑
ia,ja,ib,jb
∈T

(xaia · x
b
ib

)(xaja · x
b
jb

)
∑

k∈Sia,ja

αkia,jaα
k
ib,jb

.

(144)
Notice the symmetry with the indices∑
ia,ja,ib,jb
∈T

(xaia ·x
b
ib

)(xaja ·x
b
jb

)
∑

k∈Sia,ja

αkia,jaα
k
ib,jb

=
∑

ja,ia,jb,ib
∈T

(xaia ·x
b
ib

)(xaja ·x
b
jb

)
∑

k∈Sja,ia

αkja,iaα
k
jb,ib

.

(145)
Therefore, defining σl,ki,j ≡

∑
t∈Si,j α

t
i,jα

t
k,l +

∑
t∈Sj,i α

t
j,iα

t
l,k∑

ia,ja,ib,jb
∈T

(xaia · x
b
ib

)(xaja · x
b
jb

)
∑

k∈Sia,ja

αkia,jaα
k
ib,jb

=
1

2

∑
ia,ja,ib,jb
∈T

(xaia · x
b
ib

)(xaja · x
b
jb

)σjb,ibia,ja
. (146)

26

We remark for further use the symmetry property σl,ki,j = σk,lj,i .

Now, notice also that we have xᵀBx =
∑

(i,j)∈L zi,j(xi · xj), so

J =

∫
Rn×N

exp

(
−1

2

∑
1≤a≤n
(i,j)∈L

zi,j(x
a
i ·xaj)+

1

4N

∑
1≤a≤n
1≤b≤n

∑
ia,ja,ib,jb
∈T

(xaia ·x
b
ib

)(xaja ·x
b
jb

)σjb,ibia,ja

) n∏
a=1

dxa

(2π)
N
2

(147)
Now, let’s define the "overlaps" qa,bi,j = 1

N x
a
i · xbj for i, j ∈ L and 1 ≤ a, b ≤ n, and 0 otherwise,

then

J =

∫
q

∫
Rn×N

(
n∏
a=1

dxa

(2π)
N
2

) ∏
(i,j)∈L

1≤a≤b≤n

dqa,bi,j δ

(
qa,bi,j −

xai · xbi
N

) eNΞ(q) (148)

with

Ξ(q) = −1

2

n∑
a=1

∑
(i,j)∈L

zi,jq
a,a
i,j +

1

4

∑
1≤a≤n
1≤b≤n

∑
ia,ja,ib,jb
∈T

qa,bia,ibq
a,b
ja,jb

σjb,ibia,ja
. (149)

Eventually, with a Fourier transform representation of the Dirac distribution and a change of variable
to have real integrands

J =

∫
q̂

∫
q

∫
Rn×N

(
n∏
a=1

dxa

(2π)
N
2

) ∏
(i,j)∈L

1≤a≤b≤n

dqa,bi,j dq̂a,bi,j
N

2πi
e−q̂

a,b
i,j (Nqa,bi,j −x

a
i ·x

b
j)

 eNΞ(q). (150)

So for some constant C we have (the constant turns out to be unimportant in the high-dimensional
limit)

J = C

∫
q̂

∫
q

 n∏
i,j

1≤a≤b≤n

dqa,bi,j dq̂a,bi,j

 eN(Γ(q,q̂)+Ξ(q))+ψ(q̂)) (151)

where
Γ(q, q̂) = −

∑
(i,j)∈L

∑
1≤a≤b≤n

q̂a,bi,j q
a,b
i,j (152)

and

ψ(q̂) =
1

N
log

∫
Rn×N

 ∏
1≤a≤n
1≤k≤d

dxak

(2π)
Nk
2

 e
∑

(i,j)∈L
∑

1≤a≤b≤n q̂
a,b
i,j (xai ·x

b
j). (153)

Notice that for ψ(q̂) we can further expand the terms over components of xak = [xak]Nkr=1

ψ(q̂) =
1

N
log

∫
Rn×N

 ∏
1≤a≤n
1≤k≤d

Nk∏
r=1

d[xak]r√
2π

 exp

 ∑
(i,j)∈L

1≤a≤b≤n

Ni∑
r=1

q̂a,bi,j [xai]r[x
b
j]r

 . (154)

Now setting φ(q, q̂) = Γ(q, q̂) + Ξ(q) + ψ(q̂), the saddle point method provides for N large enough

log J

N
' Extr(φ(q, q̂)). (155)

Replica symmetric ansatz. Before computing the extremum we make the "replica symmteric
ansatz": we assume for all (i, j), qa,bi,j = qi,jδa,bδ(i,j)∈L and q̂a,bi,j = − 1

2 q̂i,jδa,bδ(i,j)∈L. As shown
here with this ansatz φ(q, q̂) will become tractable. We have

Γ(q, q̂) =
n

2

∑
(i,j)∈L

qi,j q̂i,j . (156)

27

Furthermore, we can calculate ψ(q̂) noticing that

ψ(q̂) =
1

N
log

∫
Rn×N

 ∏
1≤a≤n
1≤k≤d

Nk∏
r=1

d[xak]r√
2π

 exp

−1

2

∑
(i,j)∈L

q̂i,j

Ni∑
r=1

∑
1≤a≤n

[xai]r[x
a
j]r

 , (157)

so

ψ(q̂) =
n

N
log

∫
RN

 ∏
1≤k≤d

Nk∏
r=1

d[xk]r√
2π

 exp

−1

2

∑
(i,j)∈L

q̂i,j

Ni∑
r=1

[xi]r[xj]r

 . (158)

But notice also that we can group the terms. Defining the "equivalence class of i" as the set
ī = {j|Ni = Nj}, we get

ψ(q̂) =
n

N
log

∫
RN

∏
1≤i≤d

Ni∏
r=1

d[xi]r√
2π

∏
j∈ī

e−
1
2 q̂i,j [xi]r[xj]r

 . (159)

But now, since the equivalence classes forms a partition P of {1, . . . , d}, we have

ψ(q̂) =
n

N
log

∫
RN

∏
k̄∈P

∏
i∈k̄

Nk∏
r=1

d[xi]r√
2π

∏
j∈k̄

e−
1
2 q̂i,j [xi]r[xj]r

 . (160)

Hence

ψ(q̂) =
n

N
log

∏
k̄∈P

∫
R|k̄|

∏
i∈k̄

 dyi√
2π

∏
j∈k̄

e−
1
2 q̂i,jyiyj

Nk (161)

Or written in a slightly different way

ψ(q̂) = n
∑
k̄∈P

Nk
N

log

∫
R|k̄|

∏
i∈k̄

dyi√
2π

 e−
1
2

∑
(i,j)∈k̄ q̂i,jyiyj

 . (162)

We define the overlap matrix Q̂ = (q̂i,j) and the sub-matrix Q̂k̄ = (Q̂i,j)(i,j)∈k̄. Recalling that for a
multivariate gaussian distribution∫

R|k̄|

∏
i∈k̄

dyi√
2π

 e−
1
2

∑
(i,j)∈k̄ q̂i,jyiyj =

(
det Q̂k̄

)− 1
2

(163)

we find

ψ(q̂) = −n
2

∑
k̄∈P

Nk
N

log det Q̂k̄ (164)

Finally, for the term Ξ(q) we obtain

Ξ(q) = −n
2

∑
(i,j)∈L

zi,jqi,j +
n

4

∑
(i,j,k,l)∈T

qi,kqj,lσ
l,k
i,j . (165)

Summarizing, we have found

φ(q, q̂) =
n

2

{
−
∑

(i,j)∈L

zi,jqi,j +
1

2

∑
i,j,k,l
∈T

qi,kqj,lσ
l,k
i,j +

∑
(i,j)∈L

qi,j q̂i,j −
∑
k̄∈P

Nk
N

log det Q̂k̄

}

≡ n

2
φ̃(q, q̂). (166)

28

Derivation of fixed point equation (79). Now we will have to take derivatives to find the extremum
of φ(q, q̂) or equivalently φ̃(q, q̂). In order to perform the derivatives it is useful to recall that for a
symmetric matrix X we have

∂ log detX

∂[X]i,j
=

1

detX

∂ detX

∂[X]i,j
= [X−1]ji = [X−1]i,j . (167)

Therefore, we have for any (i, j) ∈ L (using the symmetry of σl,ki,j)

∂φ̃(q, q̂)

∂q̂i,j
= 0 =⇒ qi,j =

Ni
N

[(Q̂ī)−1]i,j (168)

∂φ̃(q, q̂)

∂qi,j
= 0 =⇒ zi,j = q̂i,j +

∑
(k,l)∈L

qk,lσ
l,j
i,k (169)

In matrix form, using the matrix G with matrix elements Gi,j = N
Ni
Qi,j , and given an equivalence

class k̄ we have

Qk̄ =
Nk
N

(Q̂k̄)−1 (170)

Bk̄ = Q̂k̄ + ηk̄ (G) (171)

where for any given matrix D ∈ Rd×d, the matrices Bk̄, ηk̄(D) are the restriction of B, η(D) on the
subspace spanned by the basis Bk̄ (that is, on all the indices (i, j) ∈ k̄× k̄), and η(D) is defined such
that for any (i, j) ∈ L

[η(D)]i,j =
∑

(u,v)∈L

Nu
N

[D]u,vσ
v,j
i,u . (172)

So for any k ∈ {1, . . . , d} we have

Bk̄ =

(
N

Nk
Qk̄
)−1

+ ηk̄ (G) (173)

Hence using only G, because Gk̄ = N
Nk
Qk̄, we obtain

Bk̄Gk̄ = I|k̄| + ηk̄(G)Gk̄. (174)

Notice now that X ∈ R|k̄| 7→ Q̂k̄X is related to the endomorphism restriction of X 7→ Q̂X

in the vector space spanned by the canonical basis Bk̄ = (ei)i∈k̄. In other words, we have that
Rd =

⊕
k̄∈P Bk̄, and that the subspaces Bk̄ are stable under action of Q̂, but also under action of B

as there is also the constraint that ∀(i, j) /∈ L, zi,j = 0. Similarly this is the case also for η, since
by definition of η, we have [η(D)]i,j = 0 for any (i, j) /∈ L. In other words, assuming the partition
formed by the equivalence classes ī = {j|Nj = Ni} is P = {k̄1, . . . , k̄p}, there exists a matrix
P ∈ Rd×d such that

P−1BP =

Bk̄1 0 . . . 0

0 Bk̄2 . . . 0
...

...
. . .

...
0 0 . . . Bk̄p

 , P−1GP =

Gk̄1 0 . . . 0

0 Gk̄2 . . . 0
...

...
. . .

...
0 0 . . . Gk̄p

 (175)

and similarly with the same matrix P

P−1η(D)P =

ηk̄1(D) 0 . . . 0

0 ηk̄1(D) . . . 0
...

...
. . .

...
0 0 . . . ηk̄p(D)

 (176)

Therefore, since we have for all k̄ ∈ P the equation (174), this is equivalent to having
(P−1BP)(P−1GP) = Id + (P−1η(D)P)(P−1GP), in other words, this is equivalent to

BG = Id + η(G)G (177)
At this point we have derived the important fixed point equation (79).

29

Derivation of equation (78). Notice that we also have (because M is symmetric)

∂I

∂zi,j
=

N∑
r,s=1

E
∂[M]r,s
∂zi,j

∂ log detM

∂[M]r,s
=

N∑
r,s=1

E
∂[S]r,s
∂zi,j

[M−1]r,s = ETr
[
(M−1)(i,j)

]
(178)

But on the other hand, with (q∗, q̂∗) the extrema of φ̃

I = 2 lim
n→0

1− EJ
n

' 2 lim
n→0

1− e−N n
2 φ̃(q∗,q̂∗)

n
= −Nφ̃(q∗, q̂∗). (179)

But notice that φ and q, q∗ are also themselves functions of B, in other words

I

N
' −φ̃(q∗(B), q̂∗(B), B), (180)

and hence using chain rule, and remembering that ∂φ̃
∂qi,j

= ∂φ̃
∂q̂i,j

= 0 in q∗, q̂∗, we have

1

N

∂I

∂zi,j
= −

d∑
r,s=1

∂[B]r,s
∂zi,j

∂φ̃

∂[B]r,s
(q∗, q̂∗, B) + 0 + 0 = q∗i,j =

Ni
N

[G∗]i,j . (181)

Eventually we obtain

[G∗]i,j = lim
N→∞

1

Ni
ETr

[
(M−1)(i,j)

]
(182)

which is (78).

Derivation of equation (81). Regarding σl,ki,j , notice that we can express the random block R(i,j)

in the following way

R(i,j) =
∑

t∈S(i,j)

αti,jYt +
∑

t∈S(j,i)

αtj,iY
ᵀ
t (183)

so, provided r, s are chosen such that r 6= s, we find

N · E
[
[R(i,j)]r,s[R

(l,k)]s,r

]
=

∑
t∈S(i,j)

αti,jα
t
k,l +

∑
t∈S(j,i)

αtj,iα
t
l,k = σl,ki,j (184)

which is nothing else than (81).

A note on correlated random matrices. To extend further the result, notice that we can always
construct standard gaussian random blocks, say R(i,j) and R(l,k), such that they have a priori some
covariance v with v = E

[
[R(i,j)]r,s[R

(l,k)]s,r
]
]. While we stated a result where these blocks are built

from a sum of (Yk) which are standard gaussian random matrices, notice that it is always possible to
use two independent standard random matrices Y1, Y2, and define: R(i,j) = vY1 +

√
1− v2Y2 and

R(k,l) = Y T1 . Therefore, the result remains valid even in the general case where we only suppose that
the blocks in R are distributed following a gaussian distribution, with potentially some entry-wise
covariance and using equation (184) as the definition of σl,ki,j .

F Numerical results

All the experiments are run on a standard desktop configuration:

1. Matlab R2019b is used to generate the heatmaps or 3D landscapes. Most exemples can be
generated in less than 12h on a standard machine.

2. The experimental comparisons run on a standard instance of a Google collaboratory notebook
in less than a few hours.

30

F.1 Numerical computations

We take equation (4) as an example of how to proceed with the numerical experiments. Specifically
we consider the second integral in the Cauchy integral representation of g(t)

g2(t) = − 1

2iπ

∮
Γ

dz

{
1− e−t(z+δ)

z + δ
K(z)

}
. (185)

We choose a contour with λ∗ = max SpZ
TZ
N with two positive fixed constants ε,∆:

Γ = {γλ∗±i∆|−ε ≤ γ ≤ 1 +ε}∪{ελ∗+γi∆|−1 ≤ γ ≤ 1 }∪{−ε+γi∆|−1 ≤ γ ≤ 1 } (186)

Now, the integrand is continuous in λ? + ε and −ε for ε small enough. So taking the limit ε→ 0 and
∆→ 0

g(t) = lim
∆→0

1

2iπ

∫ λ∗

0

{
1− e−t(r+δ+i∆)

r + δ + i∆
K(r + i∆)− 1− e−t(r+δ)−i∆

r + δ − i∆
K(r − i∆)

}
dr (187)

which is simply

g(t) =

∫ λ∗

0

1− e−t(r+δ)

r + δ
lim

∆→0

1

2iπ

{
K(r + i∆)−K(r − i∆)

}
dr (188)

Obviously the inward term is also given by the limit lim∆→0
1
π ImK(r + i∆). So this all there is to

compute from the former algebraic equations are appropriate imaginary parts. This can be done by
taking a discretized interval 0 ≤ r1 ≤ . . . ≤ rK ≤ λ∗, and solving the algebraic equations for the
imaginary value Im tx1 for x = ri, i = 1, · · · ,K.

We proceed similarly with the terms containing two complex variables x and y (or two resolvents).
For instance for W (x, y) one uses the limit in ∆x,∆y → 0 of ρ(x, y) where

ρ(x, y) = lim
∆x→0

lim
∆y→0

[
−1

4π2

{
W (rx + i∆x, ry + i∆y)−W (rx + i∆x, ry − i∆y)

}
− −1

4π2

{
W (rx − i∆x, ry + i∆y)−W (rx − i∆x, ry − i∆y)

}]
(189)

or equivalenlty

ρ(x, y) = lim
∆x,∆y→0

1

2π2
Re

{
W (rx + i∆x, ry − i∆y)−W (rx + i∆x, ry + i∆y)

}
(190)

F.2 Technical considerations

Dirac distributions with 1-variable functions: It happens that the limiting distribution ZTZ
N may

contain a mixture of a Dirac peak at 0 and a continuous measure. For instance, K(z) may contain a
branch cut in the interval C∗ = [λ1, λ

∗] with λ0 = 0 < λ1 < λ∗ <∞ along with an isolated pole in
0 with: K(z) = α

0−z +Kc(z) (where Kc : C \ C∗ → C). For instance, equation (188) becomes:

g(t) = α
1− e−tδ

δ
+

∫ λ∗

λ0

dr
1− e−t(δ+r)

r + δ
lim

∆→0

1

π
ImKc(r + i∆) (191)

The weight α can be retrieved by computing α = limε→0+(−iε)K(iε) = limε→0+ ε ImK(iε).

Dirac distributions with 2-variables functions: Similarly, we can have an isolated pole at 0 for
x, y for W (x, y). In that case, we can write down W (x, y) as for instance:

W (x, y) =
αxy

(0− x)(0− y)
+

αx
0− x

Wy(y) +
αy

0− y
Wx(x) +Wxy(x, y) (192)

where Wx,Wy are defined on C \ C∗ → C and Wxy : (C \ C∗)2 → C. Firstly, We can easily find
αxy with:

αxy = lim
ε→0+

(−ε2) ReW (iε, iε) (193)

31

Secondly, all the considered 2-variables functions are symmetrical with respect to x and y: W (x, y) =
W (y, x) which implies that αx = αy and Wx(r) = Wy(r) for all r ∈ C \ C∗. Therefore, if we have
γt(z) = 1−e−t(δ+z)

z+δ , we have to compute:

Rx,y {γt(x)γt(y)W (x, y)} = γt(0)2αxy +

∫∫
[λ0,λ∗]2

γt(u)γt(v)ρ(u, v)dudv

+2γt(0)

∫ λ∗

λ0

drγt(r) lim
∆→0+

αx
2iπ

{
Wy(r + i∆)−Wy(r − i∆)

} (194)

But because we don’t have access to αx nor Wy directly, we can use the full form:

Rx,y {γt(x)γt(y)W (x, y)} = γt(0)2αxy +

∫∫
[λ0,λ∗]2

γt(u)γt(v)ρ(u, v)dudv

+2γt(0)

∫ λ∗

λ0

drγt(r) lim
∆→0+

lim
ε→0+

−iε
2iπ

{
W (iε, r + i∆)−W (iε, r − i∆)

} (195)

This comes from the fact that for ε→ 0 we have: W (iε, r + i∆) ∼ αx
−iεWy(r + i∆). Because we

expect a real result, we ought to have numerically:

Rx,y {γt(x)γt(y)W (x, y)} = γt(0)2αxy +

∫∫
[λ0,λ∗]2

γt(u)γt(v)ρ(u, v)dudv

+γt(0)

∫ λ∗

λ0

drγt(r) lim
∆→0+

lim
ε→0+

ε

π
Re

{
W (iε, r − i∆)−W (iε, r + i∆)

} (196)

1-variable distributions in 2-variables functions Finally, it can happen that the 2-variables
functions W (x, y) actually generates a distribution ρ(u, v) = ρc(u, v) + µ(u)δ(v − u) which
may be the sum of a continuous measure ρc(u, v) as described above, and another measure
µ(u)δ(v − u) = δ(u− v)µ(v).

F.3 Additional heatmaps

We provide additional heatmaps that complement those of Sect. 3. Notice that all the heat-maps are
always derived from a 3D mesh comprising 30× 100 points as in Fig. 12.

Instead of fixing λ, we can rescale it and fix δ = cλ. As we have seen, the λ parameter seems to
affect the length of the time scale on the first plateau. Rescaling it as seen in Fig. 6, the interpolation
threshold time scale becomes constant in the over-parametrized regime at fixed δ, and the results are
consistent with what is observed empirically in [22].

We notice also that under the configuration in Fig. 7 where r = 0 (the noise of the second layer
vanishes), the second plateau seems to vanish with the test error.

One of the effects of a large λ is that it removes the double descent on the test error, which is
consistent with the description in [17]. Another effect is that it seems to add an additional "two-stage
decrease" in the training error as can be seen in Fig. 9 and also in the experiments in Figs. 15, 16.

Note that the previous figures are perfomed for the activation function σ(x) = Relu(x)− 1√
2π

while
Figs. 10 and 11 are displayed other activation functions, σ(x) = tanh(x) and σ(x) = tanh(5x). We
can see that the epoch-wise structures are more marked when the slope of the activation function is
bigger in the second case.

F.4 Comparison with experimental simulations

We have already shown on figure 2 in Sect. 3 that the analytical formulas for the training and
generalization errors match the experimental curves in the limit of t → +∞. Here we provide
additional evidence that this is also the case for the whole time-evolution in Figs. 13 and 14 as the
dimension d increases.

In 15, 16, we can see that the epoch-wise descent structures of the training error and test error can be
captured correctly experimentally for long time. Note that we have taken d = 100 small enough to
be able to run these experiments for such a long timescale.

32

Figure 6: Analytical training error and test error evolution at fixed δ with parameters
(µ, ν, φ, r, s, δ) = (0.5, 0.3, 3, 2., 0.4, 0.001)

Figure 7: Analytical training error and test error evolution with parameters (µ, ν, φ, r, s, λ) =
(0.5, 0.3, 3, 0, 0.4, 0.001)

Figure 8: Analytical training error and test error evolution with parameters (µ, ν, φ, r, s, λ) =
(0.5, 0.3, 0.5, 2, 0.1, 0.003)

Figure 9: Analytical training error and test error evolution with parameters (µ, ν, φ, r, s, λ) =
(0.5, 0.3, 3, 0, 0.4, 0.1)

33

Figure 10: Analytical training error and test error evolution with parameters corresponding to
σ(x) = tanh(x) with (µ, ν, φ, r, s, λ) = (0.61, 0.15, 3, 0, 0.4, 0.001)

Figure 11: Analytical training error and test error evolution with parameters corresponding to
σ(x) = tanh(5x) with (µ, ν, φ, r, s, λ) = (0.79, 0.47, 3, 2, 0.4, 0.001)

Figure 12: Analytical training error with parameters (µ, ν, φ, r, s, λ) = (0.5, 0.3, 3, 2., 0.4, 0.001)

34

Figure 13: Analytical training error and test error profile with parameters (µ, ν, φ, ψ, r, s, λ) =
(0.5, 0.3014, 1.4, 1.8, 1.0, 0, 0.01) compared to 10 experimental runs (σ = Relu− 1√

2π
) with d = 200

and dt = 0.01

Figure 14: Analytical training error and test error profile with parameters (µ, ν, φ, ψ, r, s, λ) =
(0.5, 0.3014, 1.4, 1.8, 1.0, 0, 0.01) compared to 10 experimental runs (σ = Relu − 1√

2π
) with d =

1000 and dt = 0.01

Figure 15: Analytical training error with parameters (µ, ν, φ, ψ, r, s, λ) =
(0.5, 0.3, 300, 3, 2, 0.4, 0.1) compared to 10 experimental runs (σ = Relu− 1√

2π
) with d = 100 and

dt = 0.01

35

Figure 16: Analytical test error with parameters (µ, ν, φ, ψ, r, s, λ) = (0.5, 0.3, 6, 3, 2, 0.4, 0.0001)
compared to 10 experimental runs with d = 100 and dt = 0.01 for 0 ≤ t ≤ 104 and dt = 0.1 for
104 ≤ t ≤ 106

36

