
NeRV: Neural Representations for Videos

Hao Chen1, Bo He1, Hanyu Wang1, Yixuan Ren1, Ser-Nam Lim2, Abhinav Shrivastava1

1University of Maryland, College Park, 2Facebook AI
{chenh, bohe, hywang66, yxren, abhinav}@umd.edu, sernamlim@fb.com

Abstract

We propose a novel neural representation for videos (NeRV) which encodes videos
in neural networks. Unlike conventional representations that treat videos as frame
sequences, we represent videos as neural networks taking frame index as input.
Given a frame index, NeRV outputs the corresponding RGB image. Video encoding
in NeRV is simply fitting a neural network to video frames and decoding process
is a simple feedforward operation. As an image-wise implicit representation,
NeRV output the whole image and shows great efficiency compared to pixel-
wise implicit representation, improving the encoding speed by 25× to 70×, the
decoding speed by 38× to 132×, while achieving better video quality. With such a
representation, we can treat videos as neural networks, simplifying several video-
related tasks. For example, conventional video compression methods are restricted
by a long and complex pipeline, specifically designed for the task. In contrast, with
NeRV, we can use any neural network compression method as a proxy for video
compression, and achieve comparable performance to traditional frame-based
video compression approaches (H.264, HEVC etc.). Besides compression, we
demonstrate the generalization of NeRV for video denoising. The source code and
pre-trained model can be found at https://github.com/haochen-rye/NeRV.git.

1 Introduction

What is a video? Typically, a video captures a dynamic visual scene using a sequence of frames. A
schematic interpretation of this is a curve in 2D space, where each point can be characterized with a
(x, y) pair representing the spatial state. If we have a model for all (x, y) pairs, then, given any x, we
can easily find the corresponding y state. Similarly, we can interpret a video as a recording of the
visual world, where we can find a corresponding RGB state for every single timestamp. This leads to
our main claim: can we represent a video as a function of time?

More formally, can we represent a video V as V = {vt}Tt=1, where vt = fθ(t), i.e., a frame at times-
tamp t, is represented as a function f parameterized by θ. Given their remarkable representational
capacity [1], we choose deep neural networks as the function in our work. Given these intuitions,
we propose NeRV, a novel representation that represents videos as implicit functions and encodes
them into neural networks. Specifically, with a fairly simple deep neural network design, NeRV
can reconstruct the corresponding video frames with high quality, given the frame index. Once the
video is encoded into a neural network, this network can be used as a proxy for video, where we can
directly extract all video information from the representation. Therefore, unlike traditional video
representations which treat videos as sequences of frames, shown in Figure 1 (a), our proposed NeRV
considers a video as a unified neural network with all information embedded within its architecture
and parameters, shown in Figure 1 (b).

As an image-wise implicit representation, NeRV shares lots of similarities with pixel-wise implicit
visual representations [5, 6] which takes spatial-temporal coordinates as inputs. The main differences
between our work and image-wise implicit representation are the output space and architecture

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/haochen-rye/NeRV.git

Video Video

(a) Explicit representations for videos (e.g., HEVC) (b) Neural implicit representations for videos (e.g., NeRV)

 Network layers

Figure 1: (a) Conventional video representation as frame sequences. (b) NeRV, representing video as neural
networks, which consists of multiple convolutional layers, taking the normalized frame index as the input and
output the corresponding RGB frame.

Table 1: Comparison of different video representations. Although explicit representations outperform implicit
ones in encoding speed and compression ratio now, NeRV shows great advantage in decoding speed. And NeRV
outperforms pixel-wise implicit representations in all metrics.

Explicit (frame-based) Implicit (unified)

Hand-crafted
(e.g., HEVC [2])

Learning-based
(e.g., DVC [3])

Pixel-wise
(e.g., NeRF [4]

Image-wise
(Ours)

Encoding speed Fast Medium Very slow Slow
Decoding speed Medium Slow Very slow Fast
Compression ratio Medium High Low Medium

designs. Pixel-wise representations output the RGB value for each pixel, while NeRV outputs
a whole image, demonstrated in Figure 2. Given a video with size of T × H × W , pixel-wise
representations need to sample the video T ∗ H ∗W times while NeRV only need to sample T
times. Considering the huge pixel number, especially for high resolution videos, NeRV shows
great advantage for both encoding time and decoding speed. Different output space also leads to
different architecture designs, NeRV utilizes a MLP + ConvNets architecture to output an image
while pixel-wise representation uses a simple MLP to output the RGB value of the pixel. Sampling
efficiency of NeRV also simplify the optimization problem, which leads to better reconstruction
quality compared to pixel-wise representations.

We also demonstrate the flexibility of NeRV by exploring several applications it affords. Most
notably, we examine the suitability of NeRV for video compression. Traditional video compression
frameworks are quite involved, such as specifying key frames and inter frames, estimating the residual
information, block-size the video frames, applying discrete cosine transform on the resulting image
blocks and so on. Such a long pipeline makes the decoding process very complex as well. In contrast,
given a neural network that encodes a video in NeRV, we can simply cast the video compression task
as a model compression problem, and trivially leverage any well-established or cutting edge model
compression algorithm to achieve good compression ratios. Specifically, we explore a three-step
model compression pipeline: model pruning, model quantization, and weight encoding, and show the
contributions of each step for the compression task. We conduct extensive experiments on popular
video compression datasets, such as UVG [7], and show the applicability of model compression
techniques on NeRV for video compression. We briefly compare different video representations in
Table 1 and NeRV shows great advantage in decoding speed.

Besides video compression, we also explore other applications of the NeRV representation for the
video denoising task. Since NeRV is a learnt implicit function, we can demonstrate its robustness
to noise and perturbations. Given a noisy video as input, NeRV generates a high-quality denoised
output, without any additional operation, and even outperforms conventional denoising methods.

The contribution of this paper can be summarized into four parts:

2

• We propose NeRV, a novel image-wise implicit representation for videos, representating a video
as a neural network, converting video encoding to model fitting and video decoding as a simple
feedforward operation.

• Compared to pixel-wise implicit representation, NeRV output the whole image and shows great
efficiency, improving the encoding speed by 25× to 70×, the decoding speed by 38× to 132×,
while achieving better video quality.

• NeRV allows us to convert the video compression problem to a model compression problem,
allowing us to leverage standard model compression tools and reach comparable performance
with conventional video compression methods, e.g., H.264 [8], and HEVC [2].

• As a general representation for videos, NeRV also shows promising results in other tasks,
e.g., video denoising. Without any special denoisng design, NeRV outperforms traditional
hand-crafted denoising algorithms (medium filter etc.) and ConvNets-based denoisng methods.

2 Related Work

Implicit Neural Representation. Implicit neural representation is a novel way to parameterize a
variety of signals. The key idea is to represent an object as a function approximated via a neural
network, which maps the coordinate to its corresponding value (e.g., pixel coordinate for an image and
RGB value of the pixel). It has been widely applied in many 3D vision tasks, such as 3D shapes [9, 10],
3D scenes [11–14], and appearance of the 3D structure [4, 15, 16]. Comparing to explicit 3D
representations, such as voxel, point cloud, and mesh, the continuous implicit neural representation
can compactly encode high-resolution signals in a memory-efficient way. Most recently, [17]
demonstrated the feasibility of using implicit neural representation for image compression tasks.
Although it is not yet competitive with the state-of-the-art compression methods, it shows promising
and attractive proprieties. In previous methods, MLPs are often used to approximate the implicit
neural representations, which take the spatial or spatio-temporal coordinate as the input and output the
signals at that single point (e.g., RGB value, volume density). In contrast, our NeRV representation,
trains a purposefully designed neural network composed of MLPs and convolution layers, and takes
the frame index as input and directly outputs all the RGB values of that frame.

Video Compression. As a fundamental task of computer vision and image processing, visual
data compression has been studied for several decades. Before the resurgence of deep networks,
handcrafted image compression techniques, like JPEG [18] and JPEG2000 [19], were widely used.
Building upon them, many traditional video compression algorithms, such as MPEG [20], H.264 [8],
and HEVC [2], have achieved great success. These methods are generally based on transform coding
like Discrete Cosine Transform (DCT) [21] or wavelet transform [22], which are well-engineered
and tuned to be fast and efficient. More recently, deep learning-based visual compression approaches
have been gaining popularity. For video compression, the most common practice is to utilize
neural networks for certain components while using the traditional video compression pipeline. For
example, [23] proposed an effective image compression approach and generalized it into video
compression by adding interpolation loop modules. Similarly, [24] converted the video compression
problem into an image interpolation problem and proposed an interpolation network, resulting in
competitive compression quality. Furthermore, [25] generalized optical flow to scale-space flow to
better model uncertainty in compression. Later, [26] employed a temporal hierarchical structure, and
trained neural networks for most components including key frame compression, motion estimation,
motions compression, and residual compression. However, all of these works still follow the overall
pipeline of traditional compression, arguably limiting their capabilities.

Model Compression. The goal of model compression is to simplify an original model by reducing
the number of parameters while maintaining its accuracy. Current research on model compression
research can be divided into four groups: parameter pruning and quantization [27–32]; low-rank
factorization [33–35]; transferred and compact convolutional filters [36–39]; and knowledge distilla-
tion [40–43]. Our proposed NeRV enables us to reformulate the video compression problem into
model compression, and utilize standard model compression techniques. Specifically, we use model
pruning and quantization to reduce the model size without significantly deteriorating the performance.

3

Embedding FC FC FC Pixel concat &
Reshape

Embedding FC FC NeRV block Frame Output

Pixel
Coordinate:

Frame
Index:

Pixel-wise
Output Frame Output

(b) NeRV: Image-wise implicit representation (ours)

(a) Pixel-wise implicit representation (e.g, SIREN)

NeRV block

(c) NeRV block

Convolution

PixelShuffle

Activation Layer

Input

Output

Figure 2: (a) Pixel-wise implicit representation taking pixel coordinates as input and use a simple MLP to output
pixel RGB value (b) NeRV: Image-wise implicit representation taking frame index as input and use a MLP +
ConvNets to output the whole image. (c) NeRV block architecture, upscale the feature map by S here.

3 Neural Representations for Videos

We first present the NeRV representation in Section 3.1, including the input embedding, the network
architecture, and the loss objective. Then, we present model compression techniques on NeRV in
Section 3.2 for video compression.

3.1 NeRV Architecture

In NeRV, each video V = {vt}Tt=1 ∈ RT×H×W×3 is represented by a function fθ : R→ RH×W×3,
where the input is a frame index t and the output is the corresponding RGB image vt ∈ RH×W×3.
The encoding function is parameterized with a deep neural network θ, vt = fθ(t). Therefore, video
encoding is done by fitting a neural network fθ to a given video, such that it can map each input
timestamp to the corresponding RGB frame.

Input Embedding. Although deep neural networks can be used as universal function approxima-
tors [1], directly training the network fθ with input timestamp t results in poor results, which is also
observed by [4, 44]. By mapping the inputs to a high embedding space, the neural network can better
fit data with high-frequency variations. Specifically, in NeRV, we use Positional Encoding [4, 6, 45]
as our embedding function

Γ(t) =
(
sin
(
b0πt

)
, cos

(
b0πt

)
, . . . , sin

(
bl−1πt

)
, cos

(
bl−1πt

))
(1)

where b and l are hyper-parameters of the networks. Given an input timestamp t, normalized between
(0, 1], the output of embedding function Γ(·) is then fed to the following neural network.

Network Architecture. NeRV architecture is illustrated in Figure 2 (b). NeRV takes the time
embedding as input and outputs the corresponding RGB Frame. Leveraging MLPs to directly output
all pixel values of the frames can lead to huge parameters, especially when the images resolutions are
large. Therefore, we stack multiple NeRV blocks following the MLP layers so that pixels at different
locations can share convolutional kernels, leading to an efficient and effective network. Inspired
by the super-resolution networks, we design the NeRV block, illustrated in Figure 2 (c), adopting
PixelShuffle technique [46] for upscaling method. Convolution and activation layers are also inserted
to enhance the expressibilty. The detailed architecture can be found in the supplementary material.

Loss Objective. For NeRV, we adopt combination of L1 and SSIM loss as our loss function for
network optimization, which calculates the loss over all pixel locations of the predicted image and
the ground-truth image as following

L =
1

T

T∑
t=1

α ‖fθ(t)− vt‖1 + (1− α)(1− SSIM(fθ(t), vt)) (2)

where T is the frame number, fθ(t) ∈ RH×W×3 the NeRV prediction, vt ∈ RH×W×3 the frame
ground truth, α is hyper-parameter to balance the weight for each loss component.

4

Model
Quantization

Weight
Encoding

Model
Pruning

Video
Overfit

Figure 3: NeRV-based video compression pipeline.

3.2 Model Compression

In this section, we briefly revisit model compression techniques used for video compression with
NeRV. Our model compression composes of four standard sequential steps: video overfit, model
pruning, weight quantization, and weight encoding as shown in Figure 3.

Model Pruning. Given a neural network fit on a video, we use global unstructured pruning to reduce
the model size first. Based on the magnitude of weight values, we set weights below a threshold as
zero,

θi =

{
θi, if θi ≥ θq
0, otherwise,

(3)

where θq is the q percentile value for all parameters in θ. As a normal practice, we fine-tune the
model to regain the representation, after the pruning operation.

Model Quantization. After model pruning, we apply model quantization to all network parameters.
Note that different from many recent works [31, 47–49] that utilize quantization during training,
NeRV is only quantized post-hoc (after the training process). Given a parameter tensor µ

µi = round
(
µi − µmin

2bit

)
∗ scale + µmin, scale =

µmax − µmin

2bit (4)

where ‘round’ is rounding value to the closest integer, ‘bit’ the bit length for quantized model, µmax
and µmin the max and min value for the parameter tensor µ, ‘scale’ the scaling factor. Through
Equation 4, each parameter can be mapped to a ‘bit’ length value. The overhead to store ‘scale’ and
µmin can be ignored given the large parameter number of µ, e.g., they account for only 0.005% in a
small 3× 3 Conv with 64 input channels and 64 output channels (37k parameters in total).

Entropy Encoding. Finally, we use entropy encoding to further compress the model size. By taking
advantage of character frequency, entropy encoding can represent the data with a more efficient codec.
Specifically, we employ Huffman Coding [50] after model quantization. Since Huffman Coding
is lossless, it is guaranteed that a decent compression can be achieved without any impact on the
reconstruction quality. Empirically, this further reduces the model size by around 10%.

4 Experiments

4.1 Datasets and Implementation Details

We perform experiments on “Big Buck Bunny” sequence from scikit-video to compare our NeRV
with pixel-wise implicit representations, which has 132 frames of 720× 1080 resolution. To compare
with state-of-the-arts methods on video compression task, we do experiments on the widely used
UVG [7], consisting of 7 videos and 3900 frames with 1920× 1080 in total.

In our experiments, we train the network using Adam optimizer [51] with learning rate of 5e-4.
For ablation study on UVG, we use cosine annealing learning rate schedule [52], batchsize of 1,
training epochs of 150, and warmup epochs of 30 unless otherwise denoted. When compare with
state-of-the-arts, we run the model for 1500 epochs, with batchsize of 6. For experiments on “Big
Buck Bunny”, we train NeRV for 1200 epochs unless otherwise denoted. For fine-tune process after
pruning, we use 50 epochs for both UVG and “Big Buck Bunny”.

For NeRV architecture, there are 5 NeRV blocks, with up-scale factor 5, 3, 2, 2, 2 respectively for
1080p videos, and 5, 2, 2, 2, 2 respectively for 720p videos. By changing the hidden dimension
of MLP and channel dimension of NeRV blocks, we can build NeRV model with different sizes.
For input embedding in Equation 1, we use b = 1.25 and l = 80 as our default setting. For loss
objective in Equation 2, α is set to 0.7. We evaluate the video quality with two metrics: PSNR and
MS-SSIM [53]. Bits-per-pixel (BPP) is adopted to indicate the compression ratio. We implement our
model in PyTorch [54] and train it in full precision (FP32). All experiments are run with NVIDIA
RTX2080ti. Please refer to the supplementary material for more experimental details, results, and
visualizations (e.g., MCL-JCV [55] results)

5

Table 2: Compare with pixel-wise implicit representations. Training
speed means time/epoch, while encoding time is the total training time.

Methods Parameters Training
Speed ↑

Encoding
Time ↓ PSNR ↑ Decoding

FPS ↑
SIREN [5] 3.2M 1× 2.5× 31.39 1.4
NeRF [4] 3.2M 1× 2.5× 33.31 1.4
NeRV-S (ours) 3.2M 25× 1× 34.21 54.5

SIREN [5] 6.4M 1× 5× 31.37 0.8
NeRF [4] 6.4M 1× 5× 35.17 0.8
NeRV-M (ours) 6.3M 50× 1× 38.14 53.8

SIREN [5] 12.7M 1× 7× 25.06 0.4
NeRF [4] 12.7M 1× 7× 37.94 0.4
NeRV-L (ours) 12.5M 70× 1× 41.29 52.9

Table 3: PSNR vs. epochs. Since
video encoding of NeRV is an over-
fit process, the reconstructed video
quality keeps increasing with more
training epochs. NeRV-S/M/L mean
models with different sizes.
Epoch NeRV-S NeRV-M NeRV-L

300 32.21 36.05 39.75
600 33.56 37.47 40.84
1.2k 34.21 38.14 41.29
1.8k 34.33 38.32 41.68
2.4k 34.86 38.7 41.99

0.0 0.2 0.4 0.6 0.8
Sparsity

30

35

40

PS
NR

NeRV-S
NeRV-M
NeRV-L

Figure 4: Model pruning. Sparsity
is the ratio of parameters pruned.

4 8 16 32
Bit

25

30

35

40

PS
NR

NeRV-S
NeRV-M
NeRV-L

Figure 5: Model quantization. Bit
is the bit length used to represent pa-
rameter value.

0.1 0.3 1 3
Bits per pixel (BPP)

34

36

38

40

PS
NR

Original
Pruned
Quantized
Encoded

Figure 6: Compression pipeline
to show how much each step con-
tribute to compression ratio.

4.2 Main Results

We compare NeRV with pixel-wise implicit representations on ’Big Buck Bunny’ video. We take
SIREN [5] and NeRF [4] as the baseline, where SIREN [5] takes the original pixel coordinates as
input and uses sine activations, while NeRF [4] adds one positional embedding layer to encode the
pixel coordinates and uses ReLU activations. Both SIREN and FFN use a 3-layer perceptron and
we change the hidden dimension to build model of different sizes. For fair comparison, we train
SIREN and FFN for 120 epochs to make encoding time comparable. And we change the filter width
to build NeRV model of comparable sizes, named as NeRV-S, NeRV-M, and NeRV-L. In Table 2,
NeRV outperforms them greatly in both encoding speed, decoding quality, and decoding speed. Note
that NeRV can improve the training speed by 25× to 70×, and speedup the decoding FPS by 38× to
132×. We also conduct experiments with different training epochs in Table 3, which clearly shows
that longer training time can lead to much better overfit results of the video and we notice that the
final performances have not saturated as long as it trains for more epochs.

4.3 Video Compression

Compression ablation. We first conduct ablation study on video “Big Buck Bunny”. Figure 4
shows the results of different pruning ratios, where model of 40% sparsity still reach comparable
performance with the full model. As for model quantization step in Figure 5, a 8-bit model still
remains the video quality compared to the original one (32-bit). Figure 6 shows the full compression
pipeline with NeRV. The compression performance is quite robust to NeRV models of different sizes,
and each step shows consistent contribution to our final results. Please note that we only explore
these three common compression techniques here, and we believe that other well-established and
cutting edge model compression algorithm can be applied to further improve the final performances
of video compression task, which is left for future research.

Compare with state-of-the-arts methods. We then compare with state-of-the-arts methods on UVG
dataset. First, we concatenate 7 videos into one single video along the time dimension and train
NeRV on all the frames from different videos, which we found to be more beneficial than training a
single model for each video. After training the network, we apply model pruning, quantization, and
weight encoding as described in Section3.2. Figure 7 and Figure 8 show the rate-distortion curves.
We compare with H.264 [8], HEVC [2], STAT-SSF-SP [56], HLVC [26], Scale-space [25], and Wu et
al. [24]. H.264 and HEVC are performed with medium preset mode. As the first image-wise neural

6

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Bits per pixel (BPP)

30

32

34

36

38

PS
NR

H.264
HEVC
HLVC
STAT-SSF-SP
Scale-space
Wu et al.
NeRV (Ours)

Figure 7: PSNR vs. BPP on UVG dataset.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Bits per pixel (BPP)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
S-

SS
IM

H.264
HEVC
HLVC
Scale-space
Wu et al.
NeRV (Ours)

Figure 8: MS-SSIM vs. BPP on UVG dataset.

(a) Ground Truth Frame (b) NeRV Decoded Frame (0.077 BPP) (c) HEVC Decoded Frame (0.075 BPP)

Figure 9: Video compression visualization. At similar BPP, NeRV reconstructs videos with better details.

representation, NeRV generally achieves comparable performance with traditional video compression
techniques and other learning-based video compression approaches. It is worth noting that when BPP
is small, NeRV can match the performance of the state-of-the-art method, showing its great potential
in high-rate video compression. When BPP becomes large, the performance gap is mostly because
of the lack of full training due to GPU resources limitations. As shown in Table 3, the decoding
video quality keeps increasing when the training epochs are longer. Figure 9 shows visualizations for
decoding frames. At similar memory budget, NeRV shows image details with better quality.

Decoding time We compare with other methods for decoding time under a similar memory budget.
Note that HEVC is run on CPU, while all other learning-based methods are run on a single GPU,
including our NeRV. We speedup NeRV by running it in half precision (FP16). Due to the simple
decoding process (feedforward operation), NeRV shows great advantage, even for carefully-optimized
H.264. And lots of speepup can be expected by running quantizaed model on special hardware. All
the other video compression methods have two types of frames: key and interval frames. Key frame
can be reconstructed by its encoded feature only while the interval frame reconstruction is also based
on the reconstructed key frames. Since most video frames are interval frames, their decoding needs to
be done in a sequential manner after the reconstruction of the respective key frames. On the contrary,
our NeRV can output frames at any random time index independently, thus making parallel decoding
much simpler. This can be viewed as a distinct advantage over other methods.

4.4 Video Denoising

We apply several common noise patterns on the original video and train the model on the perturbed
ones. During training, no masks or noise locations are provided to the model, i.e., the target of the
model is the noisy frames while the model has no extra signal of whether the input is noisy or not.
Surprisingly, our model tries to avoid the influence of the noise and regularizes them implicitly with

7

Table 4: Decoding speed with BPP
0.2 for 1080p videos

Methods FPS ↑
Habibian et al. [14] 10−3.7

Wu et al. [24] 10−3

Rippel et al. [57] 1
DVC [3] 1.8
Liu et al [58] 3
H.264 [8] 9.2

NeRV (FP32) 5.6
NeRV (FP16) 12.5

Table 5: PSNR results for video denoising. “baseline” refers to the
noisy frames before any denoising

noise white ↑ black ↑ salt &
pepper ↑ random ↑ Average ↑

Baseline 27.85 28.29 27.95 30.95 28.74

Gaussian 30.27 30.14 30.23 30.99 30.41
Uniform 29.11 29.06 29.10 29.63 29.22
Median 33.89 33.84 33.87 33.89 33.87
Minimum 20.55 16.60 18.09 18.20 18.36
Maximum 16.16 20.26 17.69 17.83 17.99

NeRV 33.31 34.20 34.17 34.80 34.12

(a) Ground Truth Frame

(b) Noisy Frame (c) DIP Output (30.13 PSNR)-Iteration 1800

(d) NeRV Output (39.27 PSNR) (e) DIP Output (32.30 PSNR)-Iteration 3600

Denoising Visualization
Please zoom in to view the details.

Figure 10: Denoising visualization. (c) and (e) are denoising output for DIP [59]. Data generalization of NeRV
leads to robust and better denoising performance since all frames share the same representation, while DIP
model overfits one model to one image only.

little harm to the compression task simultaneously, which can serve well for most partially distorted
videos in practice.

The results are compared with some standard denoising methods including Gaussian, uniform, and
median filtering. These can be viewed as denoising upper bound for any additional compression
process. As listed in Table 5, the PSNR of NeRV output is usually much higher than the noisy frames
although it’s trained on the noisy target in a fully supervised manner, and has reached an acceptable
level for general denoising purpose. Specifically, median filtering has the best performance among the
traditional denoising techniques, while NeRV outperforms it in most cases or is at least comparable
without any extra denoising design in both architecture design and training strategy.

We also compare NeRV with another neural-network-based denoising method, Deep Image Prior
(DIP) [59]. Although its main target is image denoising, NeRV outperforms it in both qualitative and
quantitative metrics, demonstrated in Figure 10. The main difference between them is that denoising
of DIP only comes form architecture prior, while the denoising ability of NeRV comes from both
architecture prior and data prior. DIP emphasizes that its image prior is only captured by the network
structure of Convolution operations because it only feeds on a single image. But the training data of
NeRV contain many video frames, sharing lots of visual contents and consistences. As a result, image
prior is captured by both the network structure and the training data statistics for NeRV. DIP relies
significantly on a good early stopping strategy to prevent it from overfitting to the noise. Without
the noise prior, it has to be used with fixed iterations settings, which is not easy to generalize to any
random kind of noises as mentioned above. By contrast, NeRV is able to handle this naturally by
keeping training because the full set of consecutive video frames provides a strong regularization on
image content over noise.

8

Table 6: Input embedding ablation.
PE means positional encoding

PSNR MS-SSIM

None 24.93 0.769
PE 37.26 0.970

Table 7: Upscale layer ablation
PSNR MS-SSIM

Bilinear Pooling 29.56 0.873
Transpose Conv 36.63 0.967
PixelShuffle 37.26 0.970

Table 8: Norm layer ablation
PSNR MS-SSIM

BatchNorm 36.71 0.971
InstanceNorm 35.5 0.963
None 37.26 0.970

Table 9: Activation function ablation

PSNR MS-SSIM

ReLU 35.89 0.963
Leaky ReLU 36.76 0.968
Swish 37.08 0.969
GELU 37.26 0.970

Table 10: Loss objective ablation
L2 L1 SSIM PSNR MS-SSIM

X 35.64 0.956
X 35.77 0.959

X 35.69 0.971
X X 35.95 0.960
X X 36.46 0.970

X X 37.26 0.970

4.5 Ablation Studies

Finally, we provide ablation studies on the UVG dataset. PSNR and MS-SSIM are adopted for
evaluation of the reconstructed videos.
Input embedding. In Table 6, PE means positional encoding as in Equation 1, which greatly
improves the baseline, None means taking the frame index as input directly. Similar findings can
be found in [4], without any input embedding, the model can not learn high-frequency information,
resulting in much lower performance.
Upscale layer. In Table 7, we show results of three different upscale methods. i.e., Bilinear Pooling,
Transpose Convolution, and PixelShuffle [46]. With similar model sizes, PixelShuffle shows best
results. Please note that although Transpose convolution [60] reach comparable results, it greatly
slowdown the training speed compared to the PixelShuffle.
Normalization layer. In Table 8, we apply common normalization layers in NeRV block. The
default setup, without normalization layer, reaches the best performance and runs slightly faster. We
hypothesize that the normalization layer reduces the over-fitting capability of the neural network,
which is contradictory to our training objective.
Activation layer. Table 9 shows results for common activation layers. The GELU [61] activation
function achieve the highest performances, which is adopted as our default design.
Loss objective. We show loss objective ablation in Table 10. We shows performance results of
different combinations of L2, L1, and SSIM loss. Although adopting SSIM alone can produce the
highest MS-SSIM score, but the combination of L1 loss and SSIM loss can achieve the best trade-off
between the PSNR performance and MS-SSIM score.

5 Discussion

Conclusion. In this work, we present a novel neural representation for videos, NeRV, which
encodes videos into neural networks. Our key sight is that by directly training a neural network with
video frame index and output corresponding RGB image, we can use the weights of the model to
represent the videos, which is totally different from conventional representations that treat videos as
consecutive frame sequences. With such a representation, we show that by simply applying general
model compression techniques, NeRV can match the performances of traditional video compression
approaches for the video compression task, without the need to design a long and complex pipeline.
We also show that NeRV can outperform standard denoising methods. We hope that this paper can
inspire further research works to design novel class of methods for video representations.

Limitations and Future Work. There are some limitations with the proposed NeRV. First, to achieve
the comparable PSNR and MS-SSIM performances, the training time of our proposed approach is
longer than the encoding time of traditional video compression methods. Second, the architecture
design of NeRV is still not optimal yet, we believe more exploration on the neural architecture design
can achieve higher performances. Finally, more advanced and cutting the edge model compression
methods can be applied to NeRV and obtain higher compression ratios.

Acknowledgement. This project was partially funded by the DARPA SAIL-ON (W911NF2020009)
program, an independent grant from Facebook AI, and Amazon Research Award to AS.

9

References
[1] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366, 1989. 1, 4

[2] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of the high efficiency
video coding (hevc) standard. IEEE Transactions on circuits and systems for video technology, 22(12):1649–
1668, 2012. 2, 3, 6

[3] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An end-to-end
deep video compression framework. In CVPR, 2019. 2, 8

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European Conference on
Computer Vision, pages 405–421. Springer, 2020. 2, 3, 4, 6, 9

[5] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. Advances in Neural Information Processing
Systems, 33, 2020. 1, 6

[6] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng. Fourier features let networks learn high
frequency functions in low dimensional domains. NeurIPS, 2020. 1, 4

[7] Alexandre Mercat, Marko Viitanen, and Jarno Vanne. Uvg dataset: 50/120fps 4k sequences for video
codec analysis and development. In Proceedings of the 11th ACM Multimedia Systems Conference, pages
297–302, 2020. 2, 5

[8] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h. 264/avc video
coding standard. IEEE Transactions on circuits and systems for video technology, 13(7):560–576, 2003. 3,
6, 8

[9] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and Thomas Funkhouser.
Learning shape templates with structured implicit functions. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7154–7164, 2019. 3

[10] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas A Funkhouser. Deep structured
implicit functions. 2019. 3

[11] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Continuous
3d-structure-aware neural scene representations. arXiv preprint arXiv:1906.01618, 2019. 3

[12] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, Thomas Funkhouser,
et al. Local implicit grid representations for 3d scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6001–6010, 2020.

[13] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional
occupancy networks. arXiv preprint arXiv:2003.04618, 2, 2020.

[14] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard
Newcombe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction. In European
Conference on Computer Vision, pages 608–625. Springer, 2020. 3, 8

[15] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3504–3515, 2020. 3

[16] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture
fields: Learning texture representations in function space. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4531–4540, 2019. 3

[17] Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin: Compression
with implicit neural representations. arXiv preprint arXiv:2103.03123, 2021. 3

[18] Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv, 1992. 3

[19] Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi. The jpeg 2000 still image compres-
sion standard. IEEE Signal processing magazine, 18(5):36–58, 2001. 3

10

[20] Didier Le Gall. Mpeg: A video compression standard for multimedia applications. Communications of the
ACM, 34(4):46–58, 1991. 3

[21] Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE transactions on
Computers, 100(1):90–93, 1974. 3

[22] Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingrid Daubechies. Image coding using wavelet
transform. IEEE Transactions on image processing, 1(2):205–220, 1992. 3

[23] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learning image and video compression
through spatial-temporal energy compaction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10071–10080, 2019. 3

[24] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl. Video compression through image interpolation.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 416–431, 2018. 3, 6, 8

[25] Eirikur Agustsson, David Minnen, Nick Johnston, Johannes Balle, Sung Jin Hwang, and George Toderici.
Scale-space flow for end-to-end optimized video compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8503–8512, 2020. 3, 6

[26] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu Timofte. Learning for video compression with
hierarchical quality and recurrent enhancement. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6628–6637, 2020. 3, 6

[27] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. Improving the speed of neural networks on cpus.
2011. 3

[28] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In International conference on machine learning, pages 1737–1746. PMLR, 2015.

[29] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[30] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. arXiv preprint arXiv:1608.03665, 2016.

[31] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018. 5

[32] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018. 3

[33] Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. Learning separable filters. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2754–2761, 2013.
3

[34] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear structure
within convolutional networks for efficient evaluation. arXiv preprint arXiv:1404.0736, 2014.

[35] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks with
low rank expansions. arXiv preprint arXiv:1405.3866, 2014. 3

[36] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference on
machine learning, pages 2990–2999. PMLR, 2016. 3

[37] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Doubly convolutional neural networks.
arXiv preprint arXiv:1610.09716, 2016.

[38] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving convo-
lutional neural networks via concatenated rectified linear units. In international conference on machine
learning, pages 2217–2225. PMLR, 2016.

[39] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry in convolutional
neural networks. In International conference on machine learning, pages 1889–1898. PMLR, 2016. 3

[40] Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? arXiv preprint arXiv:1312.6184,
2013. 3

11

[41] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[42] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. Learning efficient object
detection models with knowledge distillation. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 742–751, 2017.

[43] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantization.
arXiv preprint arXiv:1802.05668, 2018. 3

[44] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference on
Machine Learning, pages 5301–5310. PMLR, 2019. 4

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. 4

[46] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1874–1883, 2016. 4, 9

[47] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of neural
networks. arXiv preprint arXiv:1805.11046, 2018. 5

[48] Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel Roy, and Ali Ramezani-Kebrya. Adaptive
gradient quantization for data-parallel sgd. arXiv preprint arXiv:2010.12460, 2020.

[49] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training deep
neural networks with 8-bit floating point numbers. arXiv preprint arXiv:1812.08011, 2018. 5

[50] David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952. 5

[51] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 5

[52] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 5

[53] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality
assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003, volume 2,
pages 1398–1402. Ieee, 2003. 5

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. 5

[55] Haiqiang Wang, Weihao Gan, Sudeng Hu, Joe Yuchieh Lin, Lina Jin, Longguang Song, Ping Wang, Ioannis
Katsavounidis, Anne Aaron, and C-C Jay Kuo. Mcl-jcv: a jnd-based h. 264/avc video quality assessment
dataset. In 2016 IEEE International Conference on Image Processing (ICIP), pages 1509–1513. IEEE,
2016. 5

[56] Ruihan Yang, Yibo Yang, Joseph Marino, and Stephan Mandt. Hierarchical autoregressive modeling for
neural video compression. arXiv preprint arXiv:2010.10258, 2020. 6

[57] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G Anderson, and Lubomir Bourdev.
Learned video compression. In ICCV, 2019. 8

[58] Jerry Liu, Shenlong Wang, Wei-Chiu Ma, Meet Shah, Rui Hu, Pranaab Dhawan, and Raquel Urtasun.
Conditional entropy coding for efficient video compression. In ECCV, 2020. 8

[59] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 9446–9454, 2018. 8

[60] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285, 2016. 9

[61] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016. 9

12

