
Supplementary Material

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Problem Formulation . 3

2.2 Pruning Targets and Settings . 3

2.3 Subnetwork Discovery in Pre-trained SSL . 3

3 Method 4
3.1 Algorithm . 4

3.2 Obtaining and Adjusting the Initial Subnetwork 4

3.3 PARP-Progressive (PARP-P) . 5

4 Experiments and Analysis 5
4.1 Comparing PARP, OMP, and IMP on LSR, H2L, and CSR 5

4.2 How Important is the Initial Subnetwork (Step 1) in PARP? 7

4.3 Are Pruning Masks Transferrable across Spoken Languages? 8

4.4 Discovering a Single Subnetwork for 10 Spoken Languages 8

4.5 Does PARP work on Pre-trained BERT/XLNet? 8

4.6 Implications . 9

5 Related Work 10

6 Conclusions 10

7 NeurIPS Paper Checklist 20

8 Model Details 21
8.1 Model and Pruning Configurations . 21

8.2 Finetuning Hyper-Parameters . 21

8.3 PARP Hyper-Parameters . 21

8.4 Implementation . 21

9 Experimental Setup for LSR, H2L, and CSR 22

10 How important is the IMP rewinding starting point? 22

11 OMP Masks Overlap in H2L and CSR 23

18

11.1 OMP Masks Overlap in H2L . 23

11.2 OMP Masks Overlap in CSR . 27

12 xlsr Cross-Lingual Mask Transfer 31

13 Details of Task Transfer Results on Pre-trained BERT 32

14 Full H2L and CSR Pruning Results 34

15 wav2vec2 + PARP with Random Seeds and LM Decoding 38

16 wav2vec2 Cross-Task Mask Transfer on SUPERB 39

17 Does Observation 1 generalize across Pre-Training Objectives? 40

18 Pruned Weights Localization Across Layers 41

19 Experimental Limitations 53

19

7 NeurIPS Paper Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Through experiments results are in Section 4. For
example, our claim that PARP outperforms LTH is visible in Figure 3.

(b) Did you describe the limitations of your work? [Yes] Refer to Section 6 and Ap-
pendix 19.

(c) Did you discuss any potential negative societal impacts of your work? [No] We mention
in Section 6 on the broader impact of this research work. Since this work is on pruning
existing speech SSL models for low-resource spoken languages, we do not see its
potential negative societal impacts. However, we welcome reviewers and AC to raise
such concerns, and we will include corresponding statements.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Due to its
simplicity, PARP only adds a few lines of code to. Data and pre-trained models are
all publicly available. These details are in the Appendix and in our project webpage:
https://people.csail.mit.edu/clai24/parp/.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We follow [6, 29] for the model configurations and fine-tuning
hyper-parameters. These details are in Appendix 8.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Due to the computational expense and scale of our
experiments, we were not able to extensively re-run. We do note that our re-created
baselines match the numbers reported in prior work [6, 29].

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We briefly mention the compute
needed in the footnote in Page 2, and more details are in the Appendix 8.4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our work (code and

pre-trained models) are based on [6, 29].
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] No, we used published datasets and to the best of our knowledge,
none of them have consent-related issues.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We used published datasets and, to the best of
our knowledge, all of them have been reviewed carefully by the authors/community.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

20

https://people.csail.mit.edu/clai24/parp/

8 Model Details

Model and pruning configurations for wav2vec2-base, wav2vec2-large, and xlsr can be found
in Section 8.1. Fintuning hyper-parameters are generally the same as in [6], and we detailed
them in Section 8.2. PARP’s hyper-parameter is detailed in Section 8.3. More details on system
implementations is in Section 8.4.

8.1 Model and Pruning Configurations

wav2vec 2.0 consists of three modules: a 7-layer CNN feature encoder for pre-processing raw
speech waveforms, a quantization layer for discretizating, and a BERT for learning contextualized
representations. Given that the feature encoder is fixed and the quantization layer is discarded during
finetuning, we focus on pruning the BERT module in wav2vec 2.0 and XLSR-53. We also do not
prune the positional embedding layer nor the layer normalization layers within BERT. This setup is
consistent with BERT-Ticket [19]. wav2vec 2.0 BASE (wav2vec2-base) is based on BERT-BASE,
which has 12 transformer blocks, hidden dimension 768, 12 self-attention heads, and 95M parameters.
wav2vec 2.0 LARGE (denote as wav2vec2-large) is based on BERT-LARGE, which has 24
transformer blocks, hidden dimension 768, 16 self-attention heads, and 315M parameters. XLSR-53
(denoted as xlsr) shares the same architecture as wav2vec2-large. We took wav2vec2-base and
wav2vec2-large that were pre-trained on Librispeech 960h. wav2vec2-base, wav2vec2-large,
and xlsr are pre-trained with the contrastive predictive coding objective.

More on Pruning Configuration. There are 3 components in wav2vec2/xlsr that we did not prune
out: (1) CNN feature extractor, (2) layer norm running statistics, and (3) positional embedding/task-
specific linear layer. For (1), it is due to the CNN feature extractor being fixed during finetuning
by default, and the majority of the model parameters lie in the BERT module in wav2vec2/xlsr.
For (2)(3), we simply follow the setup described in BERT-Ticket [19]. These 3 decisions is why in
left of Figure 4, PARP (black line) attains ⇠50% PER at 100% sparsity. In fact, while re-producing
BERT-Ticket [19], we were surprised that BERT’s layer norm statistics plus its final linear layer
achieve non trivial loss/accuracy (e.g. BERT’s MLM at 0% sparsity is ⇠60% accuracy while at 100%
sparsity is ⇠15% accuracy.).

8.2 Finetuning Hyper-Parameters

wav2vec2 is finetuned for 20k steps on the 10h split, 15k steps on the 1h split, and 12k steps on
the 10min split. xlsr is finetuned for 12k steps for each spoken languages. In the default setup
in [6], wav2vec2 except the final linear layer is freezed for 10k steps, however, we observe doing
so on the pruned models may lead to training instability. Therefore, we do not include this trick in
our fine-tuning setups. The learning rate ramps up linearly for first 10% of the steps, remains the
same for 40% of the steps, and decay exponentially for 50% of the steps. The waveform encoder
output is randomly masked according to [6]. For LSR, the validation set is the dev-other subset from
Librispeech.

8.3 PARP Hyper-Parameters

PARP introduces an additional pruning frequency hyper-parameter, n in Algorithm Table 1. As long
as n is a sensible small number (e.g. 5-50 out of 10k+ steps), the final pruned models should have
similar performance. We heuristically set n = 5 for pruning XLSR on all spoken language splits;
we set n = 50 for wav2vec2-base on 10min/1h, n = 5 for wav2vec2-base on 10h, n = 5 for
wav2vec2-large on 10min, n = 2 for wav2vec2-large on 1h, and n = 1 for wav2vec2-large
on 10h.

8.4 Implementation

All experiments are based on the Fairseq repository7 and Wav2letter++ decoding8. We took publicly
available pre-trained wav2vec2-base, wav2vec2-large, and xlsr9. The pruning code is based on

7
https://github.com/pytorch/fairseq

8
https://github.com/flashlight/wav2letter

9Pre-trained models available at https://github.com/pytorch/fairseq/blob/master/examples/
wav2vec/README.md

21

https://github.com/pytorch/fairseq
https://github.com/flashlight/wav2letter
https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/README.md
https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/README.md

PyTorch’s pruning module 10. For each experiment, we fine-tune the model on either 2 or 4 GPUs in
parallel, and unlike the standard wav2vec 2.0 fine-tuning setup, we do not include a LM for validation
during fine-tuning. Given that not all of our GPUs support FP16, our fine-tuning setup is on FP32.
For fair comparison, we imposed a reasonable computational budget for all pruning methods used in
this study11.

9 Experimental Setup for LSR, H2L, and CSR

For LSR, we finetune pre-trained wav2vec2-base and wav2vec2-large on the 10h/1h/10min splits
from Librispeech and Libri-light, as this is the de facto setup for studying speech representation learn-
ing [6]. For H2L, we replicate the setting described in [94, 29], where pre-trained wav2vec2-base
is finetuned on 10 spoken languages (1 hour each) from CommonVoice: Spanish (es), French (fr),

Italian (it), Kyrgyz (ky), Dutch (nl), Russian (ru), Swedish (sv-SE), Turkish(tr), Tatar (tt), and Man-

darin (zh-TW). For CSR, we replicate the setting in [29], where pre-trained xlsr is finetuned on
the same 10 languages as in H2L. Studying LSR can inform us the effect of amount of finetuning
supervision (10min⇠10h) and pre-trained model scales (base v.s. large) on pruning; on the other
hand, comparing CSR and H2L could yield insights on the effect of mono-lingual versus cross-lingual
pre-training on pruning.

Evaluation Criteria. Word Error Rate (WER) is reported for LSR; Phone Error Rate (PER) is
reported for H2L and CSR12. Earlier work on pruning sequence to sequence tasks, such as ASR [12]
or Machine Translation [123, 41], showed that pruned models do not match or outperform the full
model, albeit with “minimal degradation”. Moreover, to isolate the effects of different pruning
methods, we do not include any external LM nor any means of self-training [118] during training or
decoding. To provide an unbiased grounding and accurate reflection of the pruned models, we thus
report relative gains of our proposed method over OMP/IMP/MPI, in addition to their raw WER/PERs.

10 How important is the IMP rewinding starting point?

We also examined the effectiveness of IMP rewinding [40, 93] for pruning speech SSL, where instead
of re-starting each IMP pruning iteration all the way back from pre-trained SSL initializations, the
iteration starts at some points during the downstream ASR finetuning. For example, in figure 9, IMP
with 10% rewinding (dark red line) means that each pruning iteration starts at 10% into the ASR
downstream finetuning; We find that rewinding has minimal effect for pruning speech SSL, which
aligns with the results in NLP [19]. Curiously, we observe the effect diminishes when the pre-training
model size is scaled up from base to large.

Figure 9: IMP on wav2vec2-base and wav2vec2-large with different rewinding starting point
within the downstream ASR finetuning. Its effect diminishes when pruning wav2vec2-large.

10
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

11Each finetuning run is capped at a total of 100 V100 hours. For example, OMP requires 2 finetunings, so we
will run it for at most a total of 50 hours on across 4 V100s.

12WER/PER (lower the better) is standard criteria for ASR. This is opposite to previous work on pruning CV
or NLP models, where accuracy or BLEU scores (higher the better) was reported.

22

https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

11 OMP Masks Overlap in H2L and CSR

We provide the rest of Figure 2 at other sparsities to support Observation 1. For readability, we
re-state it again:

For any sparsity, any amount of finetuning supervision, any pre-training model scale, and

any downstream spoken languages, the non-zero ASR pruning masks obtained from task-

agnostic subnetwork discovery has high IOUs with those obtained from task-aware subnetwork

discovery.

In addition to IOU, we also provide the overlap percentage between masks13. We divide this sec-
tion into OMP masks overlap over spoken language pairs on finetuned wav2vec2-base in H2L
(Section 11.1) and overlaps on finetuned xlsr in CSR (Section 11.2).

11.1 OMP Masks Overlap in H2L

H2L OMP masks overlap procedure. Each set of experiments require 10⇥10 rounds of xlsr
finetunings because there are 10 downstream spoken languages ASR. The experimental procedure is:

1. Finetune wav2vec2-base for a source spoken language ASR.
2. Prune the finetuned model and obtain an OMP mask for each spoken language ASR.
3. Calculate IOU/mask overlap over all pairs of spoken language masks at each sparsity.

Figure 10: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 10% sparsity.

Figure 11: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 20% sparsity.

13Instead of taking the Union in the denominator as in IOU, simply take the full number of parameters.

23

Figure 12: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 30% sparsity.

Figure 13: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 40% sparsity.

Figure 14: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 50% sparsity.

24

Figure 15: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 60% sparsity.

Figure 16: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 70% sparsity.

Figure 17: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 80% sparsity.

25

Figure 18: OMP pruning masks IOUs and overlap percentages on finetuned wav2vec2 at 90% sparsity.

26

11.2 OMP Masks Overlap in CSR

CSR OMP masks overlap procedure. Each set of experiments require 10⇥10 rounds of xlsr
finetunings because there are 10 downstream spoken languages ASR. The experimental procedure is:

1. Finetune xlsr for a source spoken language ASR.
2. Prune the finetuned model and obtain an OMP mask for each spoken language ASR.
3. Calculate IOU/mask overlap over all pairs of spoken language masks at each sparsity.

Figure 19: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 10% sparsity.

Figure 20: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 20% sparsity.

27

Figure 21: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 30% sparsity.

Figure 22: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 40% sparsity.

Figure 23: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 50% sparsity.

28

Figure 24: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 60% sparsity.

Figure 25: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 70% sparsity.

Figure 26: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 80% sparsity.

29

Figure 27: OMP pruning masks IOUs and overlap percentages on finetuned xlsr at 90% sparsity.

30

12 xlsr Cross-Lingual Mask Transfer

Cross-lingual mask transfer procedure. Each set of experiments require 10⇥10⇥2 rounds of xlsr
finetunings because there are 10 downstream spoken languages ASR, and we finetune for each spoken
language ASR twice (the first one for retrieving mask, and second one for mask transfer). The
experimental procedure is:

1. Finetune xlsr/wav2vec2 for a source spoken language ASR.
2. Prune the finetuned model and obtain an OMP mask for each spoken language ASR.
3. Apply the OMP mask at xlsr pre-trained initializations and finetune for a target spoken

language ASR with PARP.

Figure 28 is the result, and it has the same cross-lingual mask transfer setup as that in Section 4.3 and
Figure 7, except the pre-trained model is xlsr instead of wav2vec2.

Figure 28: Cross-lingual mask transfer for xlsr. Cross-lingual mask transfer with PARP has minimal
PER degradation (darker the better).

31

13 Details of Task Transfer Results on Pre-trained BERT

Cross-task mask transfer procedure. Each set of experiments require 9⇥9⇥2 rounds of finetunings
because there are 9 subtasks in GLUE, and we finetune for each subtask twice (the first one for
retrieving mask, and second one for mask transfer). We first note that our cross-task transfer
experimental designs are closely knitted to NLP probing work’s experimental setup [113, 36], i.e.
pretrained BERT/XLNet on 9 subtasks in GLUE. The experimental procedure is:

1. Finetune BERT/XLNet for a source task in GLUE.
2. Prune the finetuned model and obtain an IMP mask for each task.
3. Apply the IMP mask at BERT/XLNet pre-trained initializations and finetune for a target task

in GLUE with PARP.

Figure 29 is the IMP mask overlap for pre-trained BERT on the 9 natural language tasks in GLUE.
Figure 30 is the cross-task transfer result. For all the GLUE tasks, PARP can achieve better results
compared to BERT-Ticket (cross-task subnetwork regular finetuning) [19]. For the tasks with poor
transferability in BERT-Ticket [19], like CoLA and STS-B, PARP still achieves good transfer scores.

Figure 29: IOUs over all GLUE tasks’ IMP pruning masks on finetuned BERT at 70% sparsity. Notice
the high overlap rates, which aligns with Observation 1.

32

Figure 30: Results for subnetwork transfer experiment (take subnetwork found by IMP at task A and
finetune it for task B). Top: the transfer results in BERT-Ticket [19]. Bottom: transfer with PARP
finetuning instead. Each row is a source task A, and each column is a target task B. All numbers are
subtracted by the scores of same-task transfer (task A = task B, and the darker the better).

33

14 Full H2L and CSR Pruning Results

We provide the full set of H2L and CSR pruning (refer to Section 4.1 and Section 4.4 for experimental
description). Below are the rest of Figure 4 to other spoken languages from CommonVoice: Spanish

(es), French (fr), Italian (it), Kyrgyz (ky), Dutch (nl), Russian (ru), Swedish (sv-SE), Turkish(tr), Tatar

(tt), and Mandarin (zh-TW)

Figure 31: Comparison of pruning techniques on H2L & CSR with 1h of Spanish (es) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + es). (Center) Pruning CSR (xlsr + es). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on es.

Figure 32: Comparison of pruning techniques on H2L & CSR with 1h of French (fr) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + fr). (Center) Pruning CSR (xlsr + fr). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on fr.

Figure 33: Comparison of pruning techniques on H2L & CSR with 1h of Italian (it) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + it). (Center) Pruning CSR (xlsr + it). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on it.

34

Figure 34: Comparison of pruning techniques on H2L & CSR with 1h of Kyrgyz (ky) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + ky). (Center) Pruning CSR (xlsr + ky). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on ky.

Figure 35: Comparison of pruning techniques on H2L & CSR with 1h of Dutch (nl) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + nl). (Center) Pruning CSR (xlsr + nl). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on nl.

Figure 36: Comparison of pruning techniques on H2L & CSR with 1h of Russian (ru) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + ru). (Center) Pruning CSR (xlsr + ru). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on ru.

35

Figure 37: Comparison of pruning techniques on H2L & CSR with 1h of Swedish (sv-SE) ASR
finetuning. (Left) Pruning H2L (wav2vec2-base + sv-SE). (Center) Pruning CSR (xlsr + sv-SE).
(Right) Pruning jointly-finetuned wav2vec2-base and xlsr on sv-SE.

Figure 38: Comparison of pruning techniques on H2L & CSR with 1h of Turkish (tr) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + tr). (Center) Pruning CSR (xlsr + tr). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on tr.

Figure 39: Comparison of pruning techniques on H2L & CSR with 1h of Tatar (tt) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + tt). (Center) Pruning CSR (xlsr + tt). (Right) Pruning
jointly-finetuned wav2vec2-base and xlsr on tt.

36

Figure 40: Comparison of pruning techniques on H2L & CSR with 1h of Mandarin (zh-TW) ASR
finetuning. (Left) Pruning H2L (wav2vec2-base + zh-TW). (Center) Pruning CSR (xlsr + zh-TW).
(Right) Pruning jointly-finetuned wav2vec2-base and xlsr on zh-TW.

37

15 wav2vec2 + PARP with Random Seeds and LM Decoding

We re-iterate the two reasons why we did not including LM decoding in our main results. First, we
isolate the effect of pruning on ASR. Note that the standard LM (either 4-gram/transformer) used in
the wav2vec series are also trained on Librispeech (text-corpus) [6, 4]. Therefore, the LMs can easily
recover errors made by the acoustic model. Secondly, note that the 4-gram/transformer LM decoding
hyper-parameters are carefully searched via Bayesian optimization14 in the wav2vec series. Such
optimization procedure would be quite expensive to run for just one model, let alone thousands of
pruned models produced in this work.

We provide two sets of results to validate our claim that applying PARP on wav2vec2 reduces the
downstream ASR:

• The first result is the impact of random seeds. We finetune wav2vec2-base with 10min data
at 10% sparsity with PARP at 8 additional seeds. Table 5 is the result with Viterbi decoding
without LM. We can see that at different seed values, pruned wav2vec2-base all converged
to similar WERs, which is ⇠10% WER reductions compared to a full wav2vec2-base.

• The second result is pruned wav2vec2-base with the official 4-gram/transformer LM
decoding. The pruned wav2vec-base is finetuned on the 10min Librispeech split and
pruned at 10% sparsity with PARP. Since we do not have the compute resource to replicate
1500 beam 4-gram decoding and 500 beam transformer-LM decoding used in the original
paper [6], this experiment is based on a more moderate beam size. Similar to [6], decoding
hyper-parameters are searched via Ax on the dev-other Librispeech subset over 128 trials.
As shown in Table 6, the performance gain over the full wav2vec2-base reduces with LM
decoding, but we still observe a performance improvement at 10% sparsity with PARP.

Table 5: Pruning wav2vec-base with PARP at different trainnig seeds. Setting is on Librispeech
10min without LM decoding.

Method seed test-clean/test-other

Full wav2vec2-base 2447 49.3/53.2

wav2vec2-base + 10% PARP

2447 38.04/44.33
0 37.01/43.02
1 37.82/43.66
2 37.59/43.55
3 37.57/43.29
5 37.48/44.10
6 37.87/43.55
7 37.65/43.53
8 38.22/43.91

Table 6: Decode pruned wav2vec-base with official 4-gram/transformer LMs. Setting is on Lib-
rispeech 10min.

Method decoding algorithm beam size test-clean/test-other

Full wav2vec2-base
viterbi (no LM) 49.3/53.2

4-gram LM 5 27.82/32.02
transformer LM 5 27.16/32.68

wav2vec2-base + 10% PARP averaged
viterbi (no LM) 37.69/43.66

4-gram LM 5 25.17/32.13
transformer LM 5 25.45/32.46

14
https://github.com/facebook/Ax

38

https://github.com/facebook/Ax

16 wav2vec2 Cross-Task Mask Transfer on SUPERB

We extend experiments in Section 4.3 to downstream tasks other than ASR, i.e. extend the trans-
ferability of pruning masks across speech tasks. We selected three drastically different target tasks
from SUPERB [120]: Phone Recognition with 10h Librispeech data (in PER), Automatic Speaker
Verification on VoxCeleb (in EER), and Slot Filling on audio SNIPS (in slot type F1/slot value CER).
PER/EER/CER are lower the better, and F1 is higher the better. The experiment procedure 15 is as
follows:

1. Finetune wav2vec2 for a source task in SUPERB.
2. Prune the finetuned model and obtain an OMP mask for each task.
3. Apply the OMP mask at wav2vec2 pre-trained initializations and finetune for a target task in

SUPERB with PARP.

Table 7 is the wav2vec-base cross-task transfer result in SUPERB. We did learning rate grid search
over {1.0⇥ 10�3, 1.0⇥ 10�4, 1.0⇥ 10�5, 2.0⇥ 10�5, 3.0⇥ 10�5, 1.0⇥ 10�6, 1.0⇥ 10�7}, and
presented the best number. Note that different from SUPERB’s default setup, we make the upstream
wav2vec2 jointly finetunable for PARP. Therefore, the hyper-parameters for each task finetuning are
not optimized, and the results here have to be taken with a grain of salt.

Table 7: Cross-task mask transfer for wav2vec-base at 50% sparsity.

Source task Target task 1: Target task 2: Target task 3: Slot Filling
Phone Recog (in PER) Speaker Verification (in EER) (in slot type F1/slot value CER)

10h Librispeech ASR 0.0567 0.1230 0.7635/0.4432
1h Librispeech ASR 0.0567 0.1316 0.7563/0.4470
10min Librispeech ASR 0.0576 0.1399 0.7452/0.4596

10h Phone Recog 0.0471 0.1392 0.7575/0.4468
1h Phone Recog 0.0483 0.1138 0.7508/0.4537
10min Phone Recog 0.0535 0.1224 0.7519/0.4596

Intent Classification 0.0617 0.1165 0.7490/0.4621
Slot Filling 0.0601 0.1097 0.7708/0.4327

Keyword Spotting 0.0656 0.1303 0.7490/0.4661

Speaker Verification 0.0790 0.1131 0.7497/0.4654
Speaker ID 0.0677 0.1271 0.7581/0.4559
Speaker Diarization 0.0756 0.1104 0.7449/0.4623

We first see that indeed the more similar source and target tasks are, the performance are better. For
instance, source subnetwork obtained from speaker related task perform better than those obtained
from ASR/keyword spotting on speaker verification. For another, source subnetwork obtained from
ASR/phone recognition perform better than those obtained from speaker related task on phone
recognition. We do note that the numbers are not off by too much, and the differences could be
potentially reduced via hyper-parameter tuning. This pilot study also suggests that subnetworks
transferability depends on task similarity. Lastly, this experiment does not contradict our main setting,
as we were primarily interested in cross-lingual transferability of subnetworks in Section 4.3.

15All experiments are run with SUPERB’s toolkit https://github.com/s3prl/s3prl.

39

https://github.com/s3prl/s3prl

17 Does Observation 1 generalize across Pre-Training Objectives?

Observation 1 states that:

For any sparsity, any amount of finetuning supervision, any pre-training model scale, and

any downstream spoken languages, the non-zero ASR pruning masks obtained from task-

agnostic subnetwork discovery has high IOUs with those obtained from task-aware subnetwork

discovery.

We provide analysis on whether Observation 1 holds across pre-training objectives, i.e. does pruning
masks from wav2vec2 have high similarity with those from hubert [55]? The setup follows that of
Section 16 and is based on the downstream tasks in SUPERB16:

1. Finetune wav2vec2 for all tasks in SUPERB.
2. Prune the finetuned models and obtain an OMP mask for each task.
3. Finetune hubert for all tasks in SUPERB
4. Prune the finetuned models and obtain an OMP mask for each task.
5. For each task in SUPERB and at a fixed sparsity, calculate the mask IOU between wav2vec2

and hubert.

Table 8 is the mask IOUs at 50% sparsity between wav2vec-base and hubert-base on tasks in
SUPERB. The table indicates that while Observation 1 holds separately for wav2vec2 (contrastive
pre-training) and hubert (mask-predict pre-training), it does not generalize across pre-training
method give the close to random mask IOUs (c.f. last row of Table 8). Therefore,

Observation 1 holds true conditioned on the same speech SSL pre-training objective.

Table 8: Mask IOU between wav2vec-base and hubert-base at 50% sparsity.

target task mask IOU between wav2vec-base and hubert-base

10h Librispeech ASR 0.3472
1h Librispeech ASR 0.3473
10min Librispeech ASR 0.3473

10h Phone Recog 0.3473
1h Phone Recog 0.3473
10min Phone Recog 0.3473

Intent Classification 0.3473
Slot Filling 0.3472

Keyword Spotting 0.3473

Speaker Verification 0.3473
Speaker ID 0.3473
Speaker Diarization 0.3472

Random Pruning 0.3473

This finding is perhaps not so surprising, see prior work on similarity analysis between contextualized
speech [24] and word [113] representations. They suggest that different pre-trained models’ contex-
tualized representations have low similarities, e.g. BERT v.s. XLNet. We stress that this does not
invalidate PARP. As long as Observation 1 holds, PARP’s step 2 should make learnable adjustments to
the initial mask given the high overlaps between pruning masks.

16For this set of experiments, we used the same optimization method (Adam with constant 1.0⇥10�5 learning
rate) for finetuning wav2vec-base and hubert-base.

40

18 Pruned Weights Localization Across Layers

The wav2vec series [6, 4, 55, 53] is known to have more valuable contextualized representations
towards the middle of the network for downstream ASR. We examine whether previous observa-
tions holds true for pruning, that weights in middle layers are pruned less. To understand such a
phenomenon, we calculated the distributions of the pruned weights/neurons across each layer, and an
example is shown in Table 9.

Table 9: wav2vec-base finetuned for Spanish (H2L setting) pruned at 50% sparsity with OMP.

layer 1 2 3 4 5 6 7 8 9 10 11 12

sparsity (%) 53.52 52.45 49.24 47.90 46.51 46.84 45.97 45.58 45.96 47.96 52.54 65.53

Table 9 shows that indeed bottom and higher layers of wav2vec2-base are pruned more, while the
middle layers are pruned less. We observe similar pruned weight distributions across spoken languages
(10 languages) and sparsities (10%, 20%, 30%, . . . , 90%). See the rest of the sparsity distribution in
the Figures below. This analysis suggests that regardless of spoken languages, intermediate layers’
neurons are more valuable than lower and higher-level layers, manifested by the layer’s sparsity ratio.

Figure 41: Sparsity over layers for wav2vec-base finetuned for Spanish es at 10% sparsity.

Figure 42: Sparsity over layers for wav2vec-base finetuned for Spanish es at 20% sparsity.

Figure 43: Sparsity over layers for wav2vec-base finetuned for Spanish es at 30% sparsity.

Figure 44: Sparsity over layers for wav2vec-base finetuned for Spanish es at 40% sparsity.

Figure 45: Sparsity over layers for wav2vec-base finetuned for Spanish es at 50% sparsity.

41

Figure 46: Sparsity over layers for wav2vec-base finetuned for Spanish es at 60% sparsity.

Figure 47: Sparsity over layers for wav2vec-base finetuned for Spanish es at 70% sparsity.

Figure 48: Sparsity over layers for wav2vec-base finetuned for Spanish es at 80% sparsity.

Figure 49: Sparsity over layers for wav2vec-base finetuned for Spanish es at 90% sparsity.

Figure 50: Sparsity over layers for wav2vec-base finetuned for French fr at 10% sparsity.

Figure 51: Sparsity over layers for wav2vec-base finetuned for French fr at 20% sparsity.

Figure 52: Sparsity over layers for wav2vec-base finetuned for French fr at 30% sparsity.

Figure 53: Sparsity over layers for wav2vec-base finetuned for French fr at 40% sparsity.

42

Figure 54: Sparsity over layers for wav2vec-base finetuned for French fr at 50% sparsity.

Figure 55: Sparsity over layers for wav2vec-base finetuned for French fr at 60% sparsity.

Figure 56: Sparsity over layers for wav2vec-base finetuned for French fr at 70% sparsity.

Figure 57: Sparsity over layers for wav2vec-base finetuned for French fr at 80% sparsity.

Figure 58: Sparsity over layers for wav2vec-base finetuned for French fr at 90% sparsity.

Figure 59: Sparsity over layers for wav2vec-base finetuned for Italian it at 10% sparsity.

Figure 60: Sparsity over layers for wav2vec-base finetuned for Italian it at 20% sparsity.

Figure 61: Sparsity over layers for wav2vec-base finetuned for Italian it at 30% sparsity.

43

Figure 62: Sparsity over layers for wav2vec-base finetuned for Italian it at 40% sparsity.

Figure 63: Sparsity over layers for wav2vec-base finetuned for Italian it at 50% sparsity.

Figure 64: Sparsity over layers for wav2vec-base finetuned for Italian it at 60% sparsity.

Figure 65: Sparsity over layers for wav2vec-base finetuned for Italian it at 70% sparsity.

Figure 66: Sparsity over layers for wav2vec-base finetuned for Italian it at 80% sparsity.

Figure 67: Sparsity over layers for wav2vec-base finetuned for Italian it at 90% sparsity.

Figure 68: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 10% sparsity.

Figure 69: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 20% sparsity.

44

Figure 70: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 30% sparsity.

Figure 71: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 40% sparsity.

Figure 72: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 50% sparsity.

Figure 73: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 60% sparsity.

Figure 74: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 70% sparsity.

Figure 75: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 80% sparsity.

Figure 76: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 90% sparsity.

Figure 77: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 10% sparsity.

45

Figure 78: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 20% sparsity.

Figure 79: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 30% sparsity.

Figure 80: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 40% sparsity.

Figure 81: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 50% sparsity.

Figure 82: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 60% sparsity.

Figure 83: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 70% sparsity.

Figure 84: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 80% sparsity.

Figure 85: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 90% sparsity.

46

Figure 86: Sparsity over layers for wav2vec-base finetuned for Russian ru at 10% sparsity.

Figure 87: Sparsity over layers for wav2vec-base finetuned for Russian ru at 20% sparsity.

Figure 88: Sparsity over layers for wav2vec-base finetuned for Russian ru at 30% sparsity.

Figure 89: Sparsity over layers for wav2vec-base finetuned for Russian ru at 40% sparsity.

Figure 90: Sparsity over layers for wav2vec-base finetuned for Russian ru at 50% sparsity.

Figure 91: Sparsity over layers for wav2vec-base finetuned for Russian ru at 60% sparsity.

Figure 92: Sparsity over layers for wav2vec-base finetuned for Russian ru at 70% sparsity.

Figure 93: Sparsity over layers for wav2vec-base finetuned for Russian ru at 80% sparsity.

47

Figure 94: Sparsity over layers for wav2vec-base finetuned for Russian ru at 90% sparsity.

Figure 95: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 10% sparsity.

Figure 96: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 20% sparsity.

Figure 97: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 30% sparsity.

Figure 98: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 40% sparsity.

Figure 99: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 50% sparsity.

Figure 100: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 60% sparsity.

Figure 101: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 70% sparsity.

48

Figure 102: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 80% sparsity.

Figure 103: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 90% sparsity.

Figure 104: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 10% sparsity.

Figure 105: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 20% sparsity.

Figure 106: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 30% sparsity.

Figure 107: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 40% sparsity.

Figure 108: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 50% sparsity.

Figure 109: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 60% sparsity.

49

Figure 110: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 70% sparsity.

Figure 111: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 80% sparsity.

Figure 112: Sparsity over layers for wav2vec-base finetuned for Turkish tr at 90% sparsity.

Figure 113: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 10% sparsity.

Figure 114: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 20% sparsity.

Figure 115: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 30% sparsity.

Figure 116: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 40% sparsity.

Figure 117: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 50% sparsity.

50

Figure 118: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 60% sparsity.

Figure 119: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 70% sparsity.

Figure 120: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 80% sparsity.

Figure 121: Sparsity over layers for wav2vec-base finetuned for Tatar tt at 90% sparsity.

Figure 122: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 10% sparsity.

Figure 123: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 20% sparsity.

Figure 124: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 30% sparsity.

Figure 125: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 40% sparsity.

51

Figure 126: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 50% sparsity.

Figure 127: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 60% sparsity.

Figure 128: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 70% sparsity.

Figure 129: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 80% sparsity.

Figure 130: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 90% sparsity.

52

19 Experimental Limitations

Below, we list several limiting factors of our experimental designs:

1. Experiments are on contrastive pre-trained models only. It is unclear whether the results
would generalize to pre-trained models with other objectives, such as mask prediction
(HuBERT) or autoregressive prediction (APC), etc.

2. Although standard, our experiments are on relatively large pre-trained models (number of
parameter is 90M for wav2vec2-base and 315M for wav2vec2-large and xlsr. It would
be interesting to investigate if small pre-trained models can also be pruned and whether
Observation 1 holds for them.

3. Our wav2vec2-base and wav2vec2-large are both pre-trained on Librispeech 960 hours.
Another lack of study is the effect of pre-training data selections – what happens if pre-
training and fine-tuning data are from different sources?

4. Our fine-tuning dataset (Librispeech and CommonVoice) are both read speech. Experiments
on conversational (e.g. telephone) speech should be investigated.

5. In addition, though opposite to our motivation, it is unclear is the results hold for high-
resource languages (e.g. 100h⇠1000h of fine-tuning data).

6. Our ASR experiments are based on self-supervised pre-trained models. It remains to be
studied on applying PARP to E2E ASR without self-supervised pre-training.

7. Lastly, we note that this study is scientific by nature. Observation 1 emerges after our initial
pilot study, and it motivates the central idea of PARP. We will leave it to follow-up work
to test whether such pruning method is effective in more realistic settings (e.g. noisy data,
limited bandwidth, etc).

53

	Introduction
	Preliminaries
	Problem Formulation
	Pruning Targets and Settings
	Subnetwork Discovery in Pre-trained SSL

	Method
	Algorithm
	Obtaining and Adjusting the Initial Subnetwork
	PARP-Progressive (PARP-P)

	Experiments and Analysis
	Comparing PARP, OMP, and IMP on LSR, H2L, and CSR
	How Important is the Initial Subnetwork (Step 1) in PARP?
	Are Pruning Masks Transferrable across Spoken Languages?
	Discovering a Single Subnetwork for 10 Spoken Languages
	Does PARP work on Pre-trained BERT/XLNet?
	Implications

	Related Work
	Conclusions
	NeurIPS Paper Checklist
	Model Details
	Model and Pruning Configurations
	Finetuning Hyper-Parameters
	PARP Hyper-Parameters
	Implementation

	Experimental Setup for LSR, H2L, and CSR
	How important is the IMP rewinding starting point?
	OMP Masks Overlap in H2L and CSR
	OMP Masks Overlap in H2L
	OMP Masks Overlap in CSR

	xlsr Cross-Lingual Mask Transfer
	Details of Task Transfer Results on Pre-trained BERT
	Full H2L and CSR Pruning Results
	wav2vec2 + PARP with Random Seeds and LM Decoding
	wav2vec2 Cross-Task Mask Transfer on SUPERB
	Does Observation 1 generalize across Pre-Training Objectives?
	Pruned Weights Localization Across Layers
	Experimental Limitations

