
COCKPIT: A Practical Debugging Tool
for the Training of Deep Neural Networks

Supplementary Material

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In Section 5 we detail the

additional costs of each instrument, also showing that two of them come with a
large overhead (more details and how it can be mitigated in Appendix E.2). Section 6
acknowledges that while we believe this tool to be an important step, it is understandably
incomplete.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] The
paper proposes an algorithmic debugging tool that is of a foundational nature. Ethical
questions are thus not sufficiently prominent in this work to warrant a dedicated
discussion section. In general, we believe, this work will have an overall positive
impact as it can help shed light into the black-box that is deep learning. As a longer-
term side-effect of this work, this could help the explainability and interpretability of
neural networks.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] All
experimental results, as well as the complete code base to reproduce them can be
found at the linked GitHub repository at https://github.com/fsschneider/
cockpit-experiments. The COCKPIT package is available open source at
https://github.com/f-dangel/cockpit.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All training details are given at https://github.com/
fsschneider/cockpit-experiments. If not stated otherwise, we use the
defaults suggested by the DEEPOBS benchmark suite which are summarized in Ap-
pendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] whenever applicable, we report error bars (e.g. left
subplot of Figure 6 shows error bars from averages over ten random seeds).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] listed in Appendix E

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We make extensive

use of both the BACKPACK [12] and the DEEPOBS [39] packages. Both are cited
throughout the text. Whenever applicable, we also cited the used data sets and models.
We explicitly mention the authors of the used histogram code in Appendix E.3 and
have asked them for permissions.

14

https://github.com/fsschneider/cockpit-experiments
https://github.com/fsschneider/cockpit-experiments
https://github.com/f-dangel/cockpit
https://github.com/fsschneider/cockpit-experiments
https://github.com/fsschneider/cockpit-experiments

(b) Did you mention the license of the assets? [Yes] The library has been released open
source under the MIT License. COCKPIT’s GitHub repository includes the full license.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
The full library can be found at https://github.com/f-dangel/cockpit.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identi-
fiable information or offensive content? [N/A] No new data was collected with our
experiments relying on established and published data sets such as MNIST [26].

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Code example

One design principle of COCKPIT is its easy integration with conventional PYTORCH training loops.
Figure 7 shows a working example of a standard training loop with COCKPIT integration. More
examples and tutorials are described in COCKPIT’s documentation. COCKPIT’s syntax is inspired
by BACKPACK: It can be used interchangeably with the library responsible for most back-end
computations. Changes to the code are straightforward:

• Importing (Lines 5, 7 and 8): Besides importing COCKPIT we also need to import
BACKPACK which is required for extending (parts of) the model (see next step).

• Extending (Lines 11 and 12): When defining the model and the loss function, we need
to extend both of them using BACKPACK. This is as trivial as wrapping them in the
extend() function provided by BACKPACK and lets BACKPACK know that additional
quantities (such as the individual gradients) should be computed for them. Note, that while
applying BACKPACK is easy, it currently does not support all possible model architectures
and layer types. Specifically, batch norm layers are not supported since using them results
in ill-defined individual gradients.

• Individual losses (Line 13): For the Alpha quantity, COCKPIT also requires the individual
loss values (to estimate the variance of the loss estimate). This can be computed cheaply but
is not usually part of a conventional training loop. Creating this loss is done analogously to
creating any other loss, with the only exception of setting reduction="none". Since
we don’t differentiate this loss, we don’t need to extend it.

• Cockpit configuration (Line 16 and 17): Initializing the COCKPIT requires passing them
(extended) model parameters as well as a list of quantities that should be tracked. Table 1
provides an overview of all possible quantities. In this example, we use one of the pre-
defined configurations offered by COCKPIT. Separately, we initialize the plotting part of
COCKPIT. We deliberately detached the visualization from the tracking to allow greater
flexibility.

• Quantity computation (Line 27 and 38): Performing the training is very similar to a regular
training loop, with the only difference being that the backward pass should be surrounded
by the COCKPIT context (with cockpit():). Additionally to the global_step we
also pass a few additional information to the COCKPIT that are computed anyway and can be
re-used by the COCKPIT, such as the batch size, the individual losses, or the optimizer itself.
After the backward pass (when the context is left) all COCKPIT quantities are automatically
computed.

• Logging and visualizing (Line 46 and 47): At any point during the training, here we do it at
the end, we can write all quantities to a log file. We can use this log file, or alternatively the
COCKPIT directly, to visualize all quantities which would result in a status screen similar to
Figure 2.

15

https://github.com/f-dangel/cockpit

1 """Example: Training Loop using Cockpit."""
2

3 import torch
4 from _utils_examples import cnn, fmnist_data, get_logpath
5 from backpack import extend
6 from cockpit import Cockpit, CockpitPlotter
7 from cockpit.utils.configuration import configuration as config
8

9 fmnist_data = fmnist_data()
10 model = extend(cnn())
11 loss_fn = extend(torch.nn.CrossEntropyLoss(reduction="mean"))
12 losses_fn = torch.nn.CrossEntropyLoss(reduction="none")
13 opt = torch.optim.SGD(model.parameters(), lr=1e-2)
14

15 cockpit = Cockpit(model.parameters(), quantities=config("full"))
16 plotter = CockpitPlotter()
17

18 max_steps, global_step = 50, 0
19 for inputs, labels in iter(fmnist_data):
20 opt.zero_grad()
21

22 outputs = model(inputs)
23 loss = loss_fn(outputs, labels)
24 losses = losses_fn(outputs, labels)
25

26 with cockpit(
27 global_step,
28 info={
29 "batch_size": inputs.shape[0],
30 "individual_losses": losses,
31 "loss": loss,
32 "optimizer": opt,
33 },
34):
35 loss.backward(
36 create_graph=cockpit.create_graph(global_step),
37)
38

39 opt.step()
40 global_step += 1
41

42 if global_step >= max_steps:
43 break
44

45 cockpit.write(get_logpath())
46 plotter.plot(get_logpath())

Figure 7: Complete training loop with COCKPIT in PYTORCH. Line changes are highlighted in
light orange (❚).

16

B COCKPIT instruments overview

Table 2 lists all quantities available in the first public release of COCKPIT. If necessary, we provide
references to their mathematical definition. This table contains additional quantities, compared to
Table 1 in the main text. To improve the presentation of this work, we decided to not describe every
quantity available in COCKPIT in the main part and instead focus on the investigated metrics. Custom
quantities can be added easily without having to understand the inner-workings.

Table 2: Overview of all COCKPIT quantities with a short description and, if necessary, a reference
to mathematical definition.

Name Description Math

Loss Mini-batch training loss at current iteration, LB(θ) (1)
Parameters Parameter values θt at the current iteration -
Distance L2 distance from initialization ∥θt − θ0∥2 -
UpdateSize Update size of the current iteration ∥θt+1 − θt∥2
GradNorm Mini-batch gradient norm ∥gB(θ)∥2 -
Time Time of the current iteration

(e.g. used in benchmark of Appendix E)
-

Alpha Normalized step on a noisy quadratic interpolation between two
iterates θt,θt+1

(9)

CABS Adaptive batch size for SGD, optimizes expected objective gain
per cost, adapted from [4]

(11)

EarlyStopping Evidence-based early stopping criterion for SGD,
proposed in [29]

(13d)

GradHist1d Histogram of individual gradient elements, {gn(θj)}j=1,...,D
n∈B (14)

GradHist2d Histogram of weights and individual gradient elements,
{(θj , gn(θj))}j=1,...,D

n∈B

(15)

NormTest Normalized fluctuations of the residual norms ∥gB − gn∥,
proposed in [9]

(18c)

InnerTest Normalized fluctuations of gn’s parallel components along gB,
proposed in [7]

(21c)

OrthoTest Normalized fluctuations of gn’s orthogonal components along gB,
proposed in [7]

(24b)

HessMaxEV Maximum Hessian eigenvalue, λmax(HB(θ)), inspired by [50] (25)
HessTrace Exact or approximate Hessian trace, Tr(HB(θ)), inspired by [50] -
TICDiag Relation between (diagonal) curvature and gradient noise,

inspired by [43]
(28)

TICTrace Relation between curvature and gradient noise trace,
inspired by [43]

(27)

MeanGSNR Average gradient signal-to-noise-ratio (GSNR), inspired by [27] (30b)

17

C Mathematical details

In this section, we want to provide the mathematical background for each instrument described in
Table 2. This complements the more informal description presented in Section 2 in the main text,
which focused more on the expressiveness of the individual quantities. We will start by setting up the
necessary notation in addition to the one introduced in Section 2.

C.1 Additional notation

Population properties: The population risk LP (θ) ∈ R and its variance Λ(θ) ∈ R are given by

LP (θ) = E(x,y)∼P [ℓ(f(θ,x),y)] =

∫
ℓ(f(θ,x),y)P (x,y) dx dy , (3a)

ΛP (θ) = Var(x,y)∼P [ℓ(f(θ,x),y)] =

∫
(ℓ(f(θ,x),y)− LP (θ))

2
P (x,y) dx dy . (3b)

The population gradient gP (θ) ∈ RD and its variance ΣP (θ) ∈ RD×D are given by

gP (θ) = E(x,y)∼P [∇θℓ(f(θ,x),y)] =

∫
∇θℓ(f(θ,x),y)P (x,y) dx dy , (4a)

ΣP (θ) = Var(x,y)∼P [∇θℓ(f(θ,x),y)]

=

∫
(∇θℓ(f(θ,x),y)− gP (θ)) (∇θℓ(f(θ,x),y)− gP (θ))

⊤
P (x,y) dx dy .

(4b)

Empirical approximations: Let S denote a set of samples drawn i.i.d. from P , i.e. S =
{(xi,yi) | i = 1, . . . , |S|}. With a slight abuse of notation the empirical risk approximated with S is

LS(θ) =
1

|S|
∑
n∈S

ℓn(θ) (5a)

(later, S will represent either a mini-batch B, or the train set D). The empirical risk gradient
gS(θ) ∈ RD on S is

gS(θ) = ∇θLS(θ) =
1

|S|
∑
n∈S
∇θℓn(θ) =

1

|S|
∑
n∈S

gn(θ) , (5b)

with individual gradients gn(θ) = ∇θℓn(θ) ∈ RD implied by a sample n. Population risk and
gradient variances ΛP (θ),ΣP (θ) can be empirically estimated on S with the sample variances
Λ̂S(θ) ∈ R, Σ̂S(θ) ∈ RD×D, given by

ΛP (θ) ≈
1

|S| − 1

∑
n∈S

(ℓn(θ)− LS(θ))
2
:= Λ̂S(θ) , (6a)

ΣP (θ) ≈
1

|S| − 1

∑
n∈S

(gn(θ)− gS(θ)) (gn(θ)− gS(θ))
⊤
:= Σ̂S(θ)

≈ 1

|S| − 1

[(∑
n∈S

gn(θ)gn(θ)
⊤

)
− |S|gS(θ)gS(θ)⊤

]
.

(6b)

Often, gradient elements are assumed independent and hence their variance is diagonal (⊙2 denotes
element-wise square),

diag(ΣP (θ)) ≈
1

|S| − 1

∑
n∈S

(gn(θ)− gS(θ))
⊙2

= diag
(
Σ̂S(θ)

)
∈ RD . (7)

Slicing: To avoid confusion between θt (parameter at iteration t) and θj (j-th parameter entry), we
denote the latter as [θ]j .

18

θt θt+1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
os

s

Understepping: α < 0

θt θt+1

Minimizing: α ≈ 0

θt θt+1

Overshooting: α > 0

Figure 8: Motivational sketch for the α quantity. In each iteration of the optimizer we observe
the loss function at two positions θt and θt+1 (shown in ●). The black lines (—) show the observed
slope at this position, which we can get from projecting the gradients onto the current step direction
θt+1 − θt. Note, that all four observations (two loss and two slope values) are noisy, due to being
computed on a mini-batch. With access to the individual losses and gradients (some samples shown
in ●/—), we can estimate their noise level and build a noise-informed quadratic fit (—). Using this
fit, we determine whether the optimizer minimizes the local univariate loss (middle plot), or whether
we understep (left plot) or overshoot (right plot) the minimum.

C.2 Normalized Step Length (Alpha)

Motivation: The goal of the α-quantity is to estimate and quantify the effect that a selected learning
rate has on the optimizer’s steps. Let’s consider the step that the optimizer takes at training iteration t.
This parameter update from θt to θt+1 happens in a one-dimensional space, defined by the update
direction θt+1 − θt = st. The update direction depends on the update rule of the optimizer, e.g. for
SGD with learning rate η it is simply st = −ηgBt(θt).

We build a noise-informed univariate quadratic approximation along this update step (θt → θt+1)
based on the two noisy loss function observations at θt and θt+1 and the two noisy slope observation
at these two points. Examining this quadratic fit, we are able to determine where on this parabola
our optimizer steps. Standardizing this, we express a step to the minimum of the loss in the update
direction as α = 0. Analogously, steps that end short of this minimum result in α < 0, and a step
over the minimum in α > 0. These three different scenarios are illustrated in Figure 8 also showing
the underlying observations that would lead to them. Figure 1 shows the distribution of α-values for
two very different optimization trajectories.

Noisy observations: In order to build an approximation for the loss function in the update direction,
we leverage the four observations of the function (and its derivative) that are available in each iteration.
Due to the stochasticity of deep learning optimization, we also take into account the noise-level of
all observations by estimating them. The first two observations are the mini-batch training losses
LBt

(θt),LBt+1
(θt+1) at point θt and θt+1, which are computed in every standard training loop. The

mini-batch losses are averages over individual losses,

LBt
(θt) = EBt

[ℓ(θt)] =
1

|Bt|
∑
n∈Bt

ℓn(θt) ,

LBt+1
(θt+1) = EBt+1

[ℓ(θt+1)] =
1

|Bt+1|
∑

n∈Bt+1

ℓn(θt+1) ,

and using these individual losses, we can also compute the variances to estimate the noise-level of
our loss observation,

VarBt
[ℓ(θt)] =

(
1

Bt

∑
n∈Bt

ℓn(θt)
2

)
−
(

1

Bt

∑
n∈Bt

ℓn(θt)

)2

,

VarBt+1 [ℓ(θt+1)] =

 1

|Bt+1|
∑

n∈Bt+1

ℓn(θt+1)
2

−
 1

|Bt+1|
∑

n∈Bt+1

ℓn(θt+1)

2

.

19

Similarly, we proceed with the slope in the update direction. To compute the slope of the loss function
in the direction of the optimizer’s update st, we project the current gradient along this update direction

EBt

[
s⊤t g(θt)

∥st∥2
]
=

1

|Bt|
∑
n∈Bt

s⊤t gn(θt)

∥st∥2
,

EBt+1

[
s⊤t g(θt+1)

∥st∥2
]
=

1

|Bt+1|
∑

n∈Bt+1

s⊤t gn(θt+1)

∥st∥2
.

Just like before, we can also compute the variance of this slope, by leveraging individual gradients,

VarBt

[
s⊤t g(θt)

∥st∥2
]
=

1

|Bt|
∑
n∈Bt

(
s⊤t gn(θt)

∥st∥2
)2

−
(

1

|Bt|
∑
n∈Bt

s⊤t gn(θt)

∥st∥2

)2

,

VarBt+1

[
s⊤t g(θt+1)

∥st∥2
]
=

1

|Bt+1|
∑

n∈Bt+1

(
s⊤t gn(θt+1)

∥st∥2
)2

−

 1

|Bt+1|
∑

n∈Bt+1

s⊤t gn(θt+1)

∥st∥2

2

.

Quadratic fit & normalization: Using our (noisy) observations, we are now ready to build an
approximation for the loss as a function of the step size, which we will denote as f(τ). We assume a
quadratic function for f , which follows recent reports for the loss landscape of neural networks [49],
i.e. a function f(τ) = w0 + w1τ + w2τ

2 parameterized by w ∈ R3. We further assume a Gaussian
likelihood of the form

p
(
f̃ |w,Φ

)
= N

(
f̃ ;Φ⊤w,Λ

)
(8)

for observations f̃ of the loss and its slope. The observation matrix Φ and the noise matrix of the
observations Λ are

Φ =

 1 1 0 0
τ1 τ2 1 1
τ21 τ22 2τ1 2τ2

 , Λ =

σf̃1

0 0 0
0 σf̃2

0 0
0 0 σf̃ ′

1
0

0 0 0 σf̃ ′
2

 ,

where τ denotes the position and σ denotes the noise-level estimate of the observation. The maximum
likelihood solution of Equation (8) for the parameters of our quadratic fit is given by

w =
(
ΦΛ−1Φ⊤)−1

ΦΛ−1f̃ . (9)

Once we have the quadratic fit of the univariate loss function in the update direction, we normalize
the scales such that the resulting α-value expresses the effective step taken by the optimizer sketched
in Figure 8.

Usage: The α-quantity is related to recent line search approaches [28; 45]. However, instead of
searching for an acceptable step by repeated attempts, we instead report the effect of the current step
size selection. This could, for example, be used to disentangle the two optimization runs in Figure 1.
Additionally, this information could also be used to automatically adapt the learning rate during
the training process. But, as discussed in Section 3.3, it isn’t trivial what the “correct” decision is,
as it might depend on the optimization problem, the training phase, and other factors. Having this
α-quantity can, however, provide more insight into what kind of steps are used in well-tuned runs
with traditional optimizers such as SGD.

C.3 CABS criterion: Coupling adaptive batch sizes with learning rates (CABS)

The CABS criterion, proposed by Balles et al. [4], can be used to adapt the mini-batch size during
training with SGD. It relies on the gradient noise and approximately optimizes the objective’s
expected gain per cost. The adaptation rule is (with learning rate η)

|B| ← η
Tr(ΣP (θ))

LP (θ)
, (10)

20

and the practical implementation approximates LP (θ) ≈ LB(θ),Tr(ΣP (θ)) ≈ |B|−1
|B| Tr(Σ̂B(θ))

(compare equations (10, 22) and first paragraph of Section 4 in [4]). This yields the quantity computed
in cockpit’s CABS instrument,

|B| ← η

1
|B|
∑D

j=1

∑
n∈B [gn(θ)− gB(θ)]

2
j

LB(θ)
. (11)

Usage: The CABS criterion suggests a batch size which is optimal under certain assumptions. This
suggestion can support practitioners in the batch size selection for their deep learning task.

C.4 Early-stopping criterion for SGD (EarlyStopping)

The empirical risk LD(θ), and the mini-batch loss LB(θ) are only estimators of the target objective
LP (θ). Mahsereci et al. [29] motivate p(gB,D(θ) | gP (θ) = 0) as a measure for detecting noise in
the finite data sets B,D due to sampling from P . They propose an evidence-based (EB) criterion
for early stopping the training procedure based on mini-batch statistics, and model p(gB(θ)) with a
sampled diagonal variance approximation (compare Equation (7)),

p(gB(θ)) ≈
D∏

j=1

N

[gP (θ)]j ;

[
Σ̂B(θ)

]
j,j

|B|

 . (12)

Their SGD stopping criterion is

2

D

[
log p(gB(θ))− EgB(θ)∼p(gB(θ)) [log p(gB(θ))]

]
> 0 , (13a)

and translates into

1− |B|
D

D∑
j=1

[gB(θ)]
2
j[

Σ̂B(θ)
]
j,j

> 0 , (13b)

1− |B|
D

D∑
d=1

[gB(θ)]
2
d

1
|B|−1

∑
n∈B [gn(θ)− gB(θ)]

2
d

> 0 , (13c)

1− |B|(|B| − 1)

D

D∑
d=1

[gB(θ)]
2
d(∑

n∈B [gn(θ)]
2
d

)
− |B| [gB(θ)]2d

> 0 . (13d)

COCKPIT’s EarlyStopping quantity computes the left-hand side of Equation (13d).

Usage: The EarlyStopping quantity of COCKPIT can inform the practitioner that training is
about to be completed and the model might be at risk of overfitting.

C.5 Individual gradient element histograms (GradHist1d, GradHist2d)

For the |B| × D individual gradient elements, COCKPIT’s GradHist1d instrument displays a
histogram of

{gn(θj)}n∈B,j=1,...,D . (14)

COCKPIT’s GradHist2d instrument displays a two-dimensional histogram of the |B| ×D tuples

{(θj , gn(θj))}n∈B,j=1,...,D (15)

and the marginalized one-dimensional histograms over the parameter and gradient axes.

Usage: Sections 3.1 and 3.2 provide use cases (identifying data pre-processing issues and vanishing
gradients) for both the gradient histogram as well as its layer-wise extension.

21

C.6 Gradient tests (NormTest, InnerTest, OrthoTest)

Bollapragada et al. [7] and Byrd et al. [9] propose batch size adaptation schemes based on the
gradient noise. They formulate geometric constraints between population and mini-batch gradient
and accessible approximations that can be probed to decide whether the mini-batch size should be
increased. Because mini-batches are i.i.d. from P , it holds that

E [gB(θ)] = gP (θ), (16a)

E
[
gB(θ)

⊤gP (θ)
]
= ∥gP (θ)∥2. (16b)

The above works propose enforcing other weaker similarity in expectation during optimization. These
geometric constraints reduce to basic vector geometry (see Figure 9 (a) for an overview of the relevant
vectors). We recall their formulation here for consistency and derive the practical versions, which
can be computed from training observables and are used in COCKPIT (consult Figure 9 (b) for the
visualization).

(a)

gP

gB
gB − gP

projgP
(gB)

gB − projgP
(gB)

(b)

θnorm2θinner

2νortho

Figure 9: Conceptual sketch for gradient tests. (a) Relevant vectors to formulate the geometric
constraints between population and mini-batch gradient probed by the gradient tests. (b) Gradient
test visualization in COCKPIT.

Usage: All three gradient tests describe the noise level of the gradients. Bollapragada et al. [7]
and Byrd et al. [9] adapt the batch size so that the proposed geometric constraints are fulfilled.
Practitioners can use the combined gradient test plot, i.e. top center plot in Figure 2, to monitor
gradient noise during training and adjust hyperparameters such as the batch size.

C.6.1 Norm test (NormTest)

The norm test [9] constrains the residual norm ∥gB(θ)− gP (θ)∥, rescaled by ∥gP (θ)∥. This gives
rise to a standardized ball of radius θnorm ∈ (0,∞) around the population gradient, where the mini-
batch gradient should reside. Byrd et al. [9] set θnorm = 0.9 in their experiments and increase the
batch size if (in the practical version, see below) the following constraint is not fulfilled

E

[
∥gB(θ)− gP (θ)∥2

∥gP (θ)∥2

]
≤ θ2norm . (17a)

Instead of taking the expectation over mini-batches, Byrd et al. [9] note that the above will be satisfied
if

1

|B|E
[
∥gn(θ)− gP (θ)∥2

∥gP (θ)∥2

]
≤ θ2norm . (17b)

They propose a practical form of this test,

1

|B|(|B| − 1)

∑
n∈B ∥gn(θ)− gB(θ)∥2

∥gB(θ)∥2
≤ θ2norm , (18a)

22

which can be computed from mini-batch statistics. Rearranging

∑
n∈B
∥gn(θ)− gB(θ)∥2 =

(∑
n∈B
∥gn(θ)∥2

)
− |B| ∥gB(θ)∥2 , (18b)

we arrive at

1

|B|(|B| − 1)

[∑
n∈B ∥gn(θ)∥

2

∥gB(θ)∥2
− |B|

]
≤ θ2norm (18c)

that leverages the norm of both the mini-batch and the individual gradients, which can be aggregated
over parameters during a backward pass. COCKPIT’s NormTest corresponds to the maximum
radius θnorm for which the above inequality holds.

C.6.2 Inner product test (InnerTest)

The inner product test [7] constrains the projection of gB(θ) onto gP (θ) (compare Figure 9 (a)),

projgP (θ) (gB(θ)) =
gB(θ)

⊤gP (θ)

∥gP (θ)∥2
gP (θ) , (19)

rescaled by ∥gP (θ)∥. This restricts the mini-batch gradient to reside in a standardized band of relative
width θinner ∈ (0,∞) around the population risk gradient. Bollapragada et al. [7] use θinner = 0.9 (in
the practical version, see below) to adapt the batch size if the parallel component’s variance does not
satisfy the condition

Var

(
gB(θ)

⊤gP (θ)

∥gP (θ)∥2

)
= E

(gB(θ)
⊤gP (θ)

∥gP (θ)∥2
− 1

)2
 ≤ θ2inner (20a)

(note that by Equation (16) we have E
[
gB(θ)⊤gP (θ)

∥gP (θ)∥2

]
= 1). Bollapragada et al. [7] bound Equa-

tion (20a) by the individual gradient variance,

1

|B|Var
(
gn(θ)

⊤gP (θ)

∥gP (θ)∥2

)
=

1

|B|E

(gn(θ)
⊤gP (θ)

∥gP (θ)∥2
− 1

)2
 ≤ θ2inner . (20b)

They then propose a practical form of Equation (20b), which uses the mini-batch sample variance,

1

|B|Var
(
gn(θ)

⊤gB(θ)

∥gB(θ)∥2

)
=

1

|B|(|B| − 1)

∑
n∈B

(
gn(θ)

⊤gB(θ)

∥gB(θ)∥2
− 1

)2
 ≤ θ2inner . (21a)

Expanding

∑
n∈B

(
gn(θ)

⊤gB(θ)

∥gB(θ)∥2
− 1

)2

=

∑
n∈B

(
gn(θ)

⊤gB(θ)
)2

∥gB(θ)∥4
− |B| (21b)

and inserting Equation (21b) into Equation (21a) yields

1

|B|(|B| − 1)

[∑
n∈B

(
gn(θ)

⊤gB(θ)
)2

∥gB(θ)∥4
− |B|

]
≤ θ2inner . (21c)

It relies on pairwise scalar products between individual gradients, which can be aggregated over
layers during backpropagation. COCKPIT’s InnerTest quantity computes the maximum band
width θinner that satisfies Equation (21c).

23

C.6.3 Orthogonality test (OrthoTest)

In contrast to the inner product test (Appendix C.6.2) which constrains the projection (Equation (19)),
the orthogonality test [7] constrains the orthogonal part (see Figure 9 (a))

gB(θ)− projgP (θ) (gB(θ)) , (22)

rescaled by ∥gP (θ)∥. This restricts the mini-batch gradient to a standardized band of relative width
νortho ∈ (0,∞) parallel to the population gradient. Bollapragada et al. [7] use ν = tan(80◦) ≈ 5.84
(in the practical version, see below) to adapt the batch size if the following condition is violated,

E

[∥∥∥∥gB(θ)− projgP (θ) (gB(θ))

∥gP (θ)∥

∥∥∥∥2
]
≤ ν2ortho . (23a)

Expanding the norm, and inserting Equation (19), this simplifies to

E

[∥∥∥∥ gB(θ)

∥gP (θ)∥
− gB(θ)

⊤gP (θ)

∥gP (θ)∥2
gP (θ)

∥gP (θ)∥

∥∥∥∥2
]
≤ ν2ortho ,

E

[
∥gB(θ)∥2
∥gP (θ)∥2

−
(
gB(θ)

⊤gP (θ)
)2

∥gP (θ)∥4

]
≤ ν2ortho .

(23b)

Bollapragada et al. [7] bound this inequality using individual gradients instead,

1

|B|E
[∥∥∥∥ gn(θ)

∥gP (θ)∥2
− gn(θ)

⊤gP (θ)

∥gP (θ)∥2
gP (θ)

∥gP (θ)∥

∥∥∥∥2
]
≤ ν2ortho . (23c)

They propose the practical form

1

|B|(|B| − 1)
E

[∥∥∥∥ gn(θ)

∥gB(θ)∥
− gn(θ)

⊤gB(θ)

∥gB(θ)∥2
gB(θ)

∥gB(θ)∥

∥∥∥∥2
]
≤ ν2ortho , (24a)

which simplifies to

1

|B|(|B| − 1)

∑
n∈B

(
∥gn(θ)∥2
∥gB(θ)∥2

−
(
gn(θ)

⊤gB(θ)
)2

∥gB(θ)∥4

)
≤ ν2ortho . (24b)

It relies on pairwise scalar products between individual gradients which can be aggregated over layers
during a backward pass.COCKPIT’s OrthTest quantity computes the maximum band width νortho
which satisfies Equation (24b).

Relation to acute angle test: Recently, a novel “acute angle test” was proposed by Bahamou
& Goldfarb [3]. While the theoretical constraint between gB(θ) and gP (θ) differs from the or-
thogonality test, the practical versions coincide. Hence, we do not incorporate the acute angle
here.

C.7 Hessian maximum eigenvalue (HessMaxEV)

The Hessian’s maximum eigenvalue λmax(HB(θ)) is computed with an iterative eigensolver from
Hessian-vector products through PYTORCH’s automatic differentiation [34]. Like Yao et al. [50], we
employ power iterations with similar default stopping parameters (stop after at most 100 iterations, or
if the iterate does converged with a relative and absolute tolerance of 10−3, 10−6, respectively) to
compute λmax(HB(θ)) through the HessMaxEV quantity in COCKPIT.

In principle, more sophisticated eigensolvers (for example Arnoldi’s method) could be applied
to converge in fewer iterations or compute eigenvalues other than the leading ones. Warsa et al.
[46] empirically demonstrate that the FLOP ratio between power iteration and implicitly restarted
Arnoldi method can reach values larger than 100. While we can use such a beneficial method on a
CPU through scipy.sparse.linalg.eigsh we are restricted to the GPU-compatible power
iteration for GPU training. We expect that extending the support of popular machine learning libraries
like PYTORCH for such iterative eigensolvers on GPUs can help to save computation time.

λmax(HB(θ)) = max
∥v∥=1

∥HB(θ)v∥ = max
v∈RD

v⊤HB(θ)v

v⊤v
. (25)

24

https://github.com/amirgholami/PyHessian/blob/0f7e0f63a0f132998608013351ba19955fc9d861/pyhessian/hessian.py#L111-L158
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html

Usage: The Hessian’s maximum eigenvalue describes the loss surface’s sharpest direction and thus
provides an understanding of the current loss landscape. Additionally, in convex optimization, the
largest Hessian eigenvalue crucially determines the appropriate step size [38]. In Section 4, we can
observe that although training seems stuck in the very first few iterations progress is visible when
looking at the maximum Hessian eigenvalue.

C.8 Hessian trace (HessTrace)

In comparison to Yao et al. [50], who leverage Hessian-vector products [34] to estimate the Hessian
trace, we compute the exact value Tr(HB(θ)) with the HessTrace quantity in COCKPIT by
aggregating the output of BACKPACK’s DiagHessian extension, which computes the diagonal
entries of HB(θ). Alternatively, the trace can also be estimated from the generalized Gauss-Newton
matrix, or an MC-sampled approximation thereof.

Usage: The Hessian trace equals the sum of the eigenvalues and thus provides a notion of “average
curvature” of the current loss landscape. It has long been theorized and discussed that curvature and
generalization performance may be linked [21, e.g.].

C.9 Takeuchi Information Criterion (TIC) (TICDiag, TICTrace)

Recent work by Thomas et al. [43] suggests that optimizer convergence speed and generalization is
mainly influenced by curvature and gradient noise; and hence their interaction is crucial to understand
the generalization and optimization behavior of deep neural networks. They reinvestigate the Takeuchi
Information criterion [42], an estimator for the generalization gap in overparameterized maximum
likelihood estimation. At a local minimum θ⋆, the generalization gap is estimated by the TIC

1

|D| Tr
(
HP (θ

⋆)−1CP (θ
⋆)
)
, (26)

where HP (θ
⋆) is the population Hessian and CP (θ

⋆) is the gradient’s uncentered second moment,

CP (θ
⋆) =

∫
∇θℓ(f(θ

⋆,x),y) (∇θℓ(f(θ
⋆,x),y))

⊤
P (x,y) dx dy.

Both matrices are inaccessible in practice. In their experiments, Thomas et al. [43] propose the
approximation Tr(C)/Tr(H) for Tr(H−1C). They also replace the Hessian by the Fisher as it is
easier to compute. With these practical simplifications, they investigate the TIC of trained neural
networks where the curvature and noise matrix are evaluated on a large data set.

The TIC provided in COCKPIT differs from this setting, since by design we want to observe quantities
during training, while avoiding additional model predictions. Also, BACKPACK provides access to
the Hessian; hence we don’t need to use the Fisher. We propose the following two approximations of
the TIC from a mini-batch:

• TICTrace: Uses the approximation of Thomas et al. [43] which replaces the matrix-
product trace by the product of traces,

Tr (CB(θ))

Tr (HB(θ))
=

1
|B|
∑

n∈B∥gn(θ)∥2

Tr (HB(θ))
. (27)

• TICDiag: Uses a diagonal approximation of the Hessian, which is cheap to invert,

Tr
(
diag (HB(θ))

−1
CB(θ)

)
=

1

|B|
D∑

j=1

[HB(θ)]
−1
j,j

[∑
n∈B

gn(θ)
⊙2

]
j

. (28)

Usage: The TIC is a proxy for the model’s generalization gap, see Thomas et al. [43].

25

https://docs.backpack.pt/en/master/extensions.html#backpack.extensions.DiagHessian

C.10 Gradient signal-to-noise-ratio (MeanGSNR)

The gradient signal-to-noise-ratio GSNR([θ]j) ∈ R for a single parameter [θ]j is defined as

GSNR([θ]j) =
E(x,y)∼P

[
[∇θℓ(f(θ,x),y)]j

]2
Var(x,y)∼P

[
[∇θℓ(f(θ,x),y)]j

] =
[gP (θ)]

2
j

[ΣP (θ)]j,j
. (29)

Liu et al. [27] use it to explain generalization properties of models in the early training phase. We
apply their estimation to mini-batches,

GSNR([θ]j) ≈
[gB(θ)]

2
j

|B|−1
|B|

[
Σ̂B(θ)

]
j,j

=
[gB(θ)]

2
j

1
|B|

(∑
n∈B [gn(θ)]

2
j

)
− [gB(θ)]

2
j

. (30a)

Inspired by Liu et al. [27], COCKPIT’s MeanGSNR computes the average GSNR over all parameters,

1

D

D∑
j=1

GSNR([θ]j) . (30b)

Usage: The GSNR describes the gradient noise level which is influenced, among other things,
by the batch size. Using the GSNR, perhaps in combination with the gradient tests or the CABS
criterion could provide practitioners a clearer picture of suitable batch sizes for their particular
problem. As shown by Liu et al. [27], the GSNR is also linked to generalization of neural networks.

D Additional experiments

In this section, we present additional experiments and use cases that showcase COCKPIT’s utility.
Appendix D.1 shows that COCKPIT is able to scale to larger data sets by running the experiment
with incorrectly scaled data (see Section 3.1) on IMAGENET instead of CIFAR-10. Appendix D.2
provides another concrete use case similar to Figure 1: detecting regularization during training.

D.1 Incorrectly scaled data for IMAGENET

We repeat the experiment of Section 3.1 on the IMAGENET [13] data set instead of CIFAR-10. We
also use a larger neural network model, switching from 3C3D to VGG16 [40]. This demonstrates
that COCKPIT is able to scale to both larger models and data sets. The input size of the images is
almost fifty times larger (224× 224 instead of 32× 32). The model size increased by roughly a factor
of 150 (VGG16 for IMAGENET has roughly 138 million parameters, 3C3D has less than a million).

Similar to the example shown in the main text, the gradients are affected by the scaling introduced
via the input images, albeit less drastically (see Figure 10). Due to the gradient scaling, default
optimization hyperparameters might not work well anymore for the model using the raw input data.

D.2 Detecting implicit regularization of the optimizer

In non-convex optimization, optimizers can converge to local minima with different properties. Here,
we illustrate this by investigating the effect of sub-sampling noise on a simple task from [30; 18].

We generate synthetic data D = {(xn, yn) ∈ R× R}N=100
n=1 for a regression task with x ∼ N (0; 1)

with noisy observations y = 1.4x + ϵ where ϵ ∼ N (0; 1). The model is a scalar network with
parameters θ = (w1 w2)

⊤ ∈ R2, initialized at θ0 = (0.1 1.7)
⊤, that produces predictions via

f(θ, x) = w2w1x. We seek to minimize the mean squared error

LD(θ) =
1

N

N∑
n=1

(f(θ, xn)− yn)
2

and compare SGD (|B| = 95) with GD (|B| = N = 100) at a learning rate of 0.1 (see Figure 11).

We observe that the loss of both SGD and GD is almost identical. Using a noisy gradient regularizes
the Hessian’s maximum eigenvalue though. It decreases in later stages where the loss curve suggests
that training has converged. This regularization effect constitutes an important phenomenon that
cannot be observed by monitoring only the loss.

26

100 104 108

−1

0

1

G
ra

di
en

tE
le

m
en

t

(a) Normalized Data

100 104 108

−1

0

1

G
ra

di
en

tE
le

m
en

t

(b) Raw Data

Figure 10: Same inputs, different gradients on IMAGENET. This is structurally the same plot as
Figure 3, but using IMAGENET and VGG16. (a) normalized ([0, 1]) and (b) raw ([0, 255]) images
look identical in auto-scaled front-ends like MATPLOTLIB’s imshow. The gradient distribution on
the VGG16 model, however, is affected by this scaling.

100 101 102 103 104 105
0.6

0.8

1

Iteration

M
in

i-
B

at
ch

L
os

s

SGD
GD

100 101 102 103 104 105
4

5

6

Iteration

M
ax

.H
es

si
an

ei
ge

nv
al

ue

SGD
GD

Figure 11: Observing implicit regularization of the optimizer with COCKPIT through a compar-
ison of SGD and GD on a synthetic problem inspired by [30; 18] (details in the text). Left: The
mini-batch loss of both optimizers looks similar. Right: Noise due to mini-batching regularizes the
Hessian’s maximum eigenvalue in stages where the loss suggests that training has converged.

27

E Implementation details and additional benchmarks

In this section, we provide more details about our implementation (Appendix E.1) to access the
desired quantities with as little overhead as possible. Additionally, we present more benchmarks for
individual instruments (Appendix E.2.1) and COCKPIT configurations (Appendix E.2.2). These are
similar but extended versions of the ones presented in Figures 6a and 6b in the main text. Lastly,
we benchmark different implementations of computing the two-dimensional gradient histogram
(Appendix E.3), identifying a computational bottleneck for its current GPU implementation.

Hardware details: Throughout this paper, we conducted benchmarks on the following setup

• CPU: Intel Core i7-8700K CPU @ 3.70 GHz × 12 (32 GB)
• GPU: NVIDIA GeForce RTX 2080 Ti (11 GB)

Test problem details: The experiments in this paper rely mostly on optimization problems provided
by the DEEPOBS benchmark suite [39]. If not stated otherwise, we use the default training details
suggested by DEEPOBS, that are summarized below. For more details see the original paper.

• Quadratic Deep: A stochastic quadratic problem with an eigenspectrum similar to what
has been reported for neural nets. Default batch size 128, default number of epochs 100.

• MNIST Log. Reg.: Multinomial logistic regression on MNIST [26]. Default batch size
128, default number of epochs 50.

• MNIST MLP: Multi-layer perceptron neural network on MNIST. Default batch size 128,
default number of epochs 100.

• FASHION-MNIST MLP: Multi-layer perceptron neural network on FASHION-MNIST
[48]. Default batch size 128, default number of epochs 100.

• FASHION-MNIST 2C2D: A two convolutional and two dense layered neural network on
FASHION-MNIST. Default batch size 128, default number of epochs 100.

• CIFAR-10 3C3D: A three convolutional and three dense layered neural network on
CIFAR-10 [25]. Default batch size 128, default number of epochs 100.

• CIFAR-100 ALL-CNN-C: All Convolutional Neural Network C (ALL-CNN-C [41]) on
CIFAR-100 [25]. Default batch size 256, default number of epochs 350.

• SVHN 3C3D: A three convolutional and three dense layered neural network on SVHN
[32]. Default batch size 128, default number of epochs 100.

E.1 Hooks & Memory benchmarks

To improve memory consumption, we compact information during the backward pass by adding
hooks to the neural network’s layers. These are executed after BACKPACK extensions and have
access to the quantities computed therein. They compress information to what is requested by a
quantity and free the memory occupied by BACKPACK buffers. Such savings primarily depend
on the parameter distribution over layers, and are bigger for more balanced architectures (compare
Figure 12).

Example: Say, we want to compute a histogram over the |B| × D individual gradient ele-
ments of a network. Suppose that |B| = 128 and the model is DEEPOBS’s CIFAR-10 3C3D
test problem with 895, 210 parameters. Given that every parameter is stored in single precision,
the model requires 895, 210 × 4Bytes ≈ 3.41MB. Storing the individual gradients will require
128× 895, 210× 4Bytes ≈ 437MB (for larger networks this quickly exceeds the available memory
as the individual gradients occupy |B| times the model size). If instead, the layer-wise individual
gradients are condensed into histograms of negligible size and immediately freed afterwards during
backpropagation, the maximum memory overhead reduces to storing the individual gradients of the
largest layer. For our example, the largest layer has 589, 824 parameters, and the associated individual
gradients will require 128 × 589, 824 × 4Bytes ≈ 288MB, saving roughly 149MB of RAM. In
practice, we observe these expected savings, see Figure 12c.

28

(a) FASHION-MNIST 2C2D

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1,000

2,000

3,000

M
em

or
y

[M
B

] expensive: 3725± 9 MB
optimized: 3671± 3 MB
baseline: 563± 12 MB

(b) MNIST MLP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1,000

1,500

M
em

or
y

[M
B

] expensive: 1469± 0 MB
optimized: 1201± 0 MB
baseline: 435± 1 MB

(c) CIFAR-10 3C3D

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

500

1,000

1,500

M
em

or
y

[M
B

] expensive: 1515± 27 MB
optimized: 1361± 1 MB
baseline: 845± 2 MB

(d) CIFAR-100 ALL-CNN-C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1,000

2,000

3,000

Time [s]

M
em

or
y

[M
B

] expensive: 3232± 32 MB
optimized: 2601± 23 MB
baseline: 1957± 12 MB

Figure 12: Memory consumption and savings with hooks during one forward-backward step on a
CPU for different DEEPOBS problems. We compare three settings; i) without COCKPIT (baseline);
ii) COCKPIT with GradHist1d with BACKPACK (expensive); iii) COCKPIT with GradHist1d
with BACKPACK and additional hooks (optimized). Peak memory consumptions are highlighted by
horizontal dashed bars and shown in the legend. Shaded areas, if visible, fill two standard deviations
above and below the mean value, all of them result from ten independent runs. Dotted lines indicate
individual runs. Our optimized approach allows to free obsolete tensors during backpropagation
and thereby reduces memory consumption. From top to bottom: the effect is less pronounced
for architectures that concentrate the majority of parameters in a single layer ((a) 3, 274, 634 total,
3, 211, 264 largest layer) and increases for more balanced networks ((b) 1, 336, 610 total, 784, 000
largest layer, (c): 895, 210 total, 589, 824 largest layer).

29

E.2 Additional run time benchmarks

E.2.1 Individual instrument overhead

To estimate the computational overhead for individual instruments, we run COCKPIT with that
instrument for 32 iterations, tracking at every step. Training proceeds with the default batch size
specified by the DEEPOBS problem and uses SGD with learning rate 10−3. We measure the time
between iterations 1 and 32, and average for the overhead per step. Every such estimate is repeated
over 10 random seeds to obtain mean and error bars as reported in Figure 6a.

Note that this protocol does not include initial overhead for setting up data loading and also does
not include the time for evaluating train/test loss on a larger data set, which is usually done by
practitioners. Hence, we even expect the shown overheads to be smaller in a conventional training
loop which includes the above steps.

Individual overhead on GPU versus CPU: Figure 13 and Figure 14 show the individual overhead
for four different DEEPOBS problems on GPU and CPU, respectively. The left part of Figure 13
(c) corresponds to Figure 6a. Right panels show the expensive quantities, which we omitted in the
main text as they were expected to be expensive due to their computational work (HessMaxEV)
or bottlenecks in the implementation (GradHist2d, see Appendix E.3 for details). We see that
they are in many cases equally or more expensive than computing all other instruments. Another
expected feature of the GPU-to-CPU comparison is that parallelism on the CPU is significantly less
pronounced. Hence, we observe an increased overhead for all quantities that contain non-linear
transformations and contractions of the high-dimensional individual gradients, or require additional
backpropagations (curvature).

E.2.2 Configuration overhead

For the estimation of different COCKPIT configuration overheads, we use almost the same setting as
described above, training for 512 iterations and tracking only every specified interval.

Configuration overhead on GPU versus CPU: Figure 15 and Figure 16 show the configuration
overhead for four different DEEPOBS problems. The bottom left part of Figure 15 corresponds to
Figure 6b. In general, we observe that increased parallelism can be exploited on a GPU, leading to
smaller overheads in comparison to a CPU.

COCKPIT can even scale to significantly larger problems, such as a RESNET-50 on IMAGENET-like
data. Figure 17 shows the computational overhead for different tracking intervals on such a large-scale
problem. Using the economy configuration, we can achieve our self-imposed goal of at most doubling
the run time even when tracking every fourth step. More extensive configurations (such as the full
set) would indeed have almost prohibitively large costs associated. However, these costs could be
dramatically reduced when one decides to only inspect a part of the network using COCKPIT. Note,
individual gradients are not properly defined when using batch norm, therefore, we replaced these
batch norm layers with identity layers when using the RESNET-50.

30

(a) Computational overhead for MNIST Log. Reg. (GPU)

Base-
line

Loss Grad
Norm

Dis-
tance

Update
Size

Norm
Test

Grad
Hist1d

Inner
Test

Ortho
Test

Hess
Trace

TIC
Diag

Alpha
0

1

2

3

R
un

Ti
m

e
O

ve
rh

ea
d

Base-
line

HessMaxEV Grad
Hist2d

0

2

4

6

(b) Computational overhead for MNIST MLP (GPU)

Base-
line

Loss Grad
Norm

Dis-
tance

Update
Size

Hess
Trace

Norm
Test

Ortho
Test

Inner
Test

TIC
Diag

Alpha Grad
Hist1d

0

1

2

3

R
un

Ti
m

e
O

ve
rh

ea
d

Base-
line

HessMaxEV Grad
Hist2d

0

25

50

75

100

(c) Computational overhead for CIFAR-10 3C3D (GPU)

Base-
line

Loss Dis-
tance

Update
Size

Grad
Norm

Norm
Test

Alpha Inner
Test

Ortho
Test

Grad
Hist1d

Hess
Trace

TIC
Diag

0

1

2

3

R
un

Ti
m

e
O

ve
rh

ea
d

Base-
line

HessMaxEV Grad
Hist2d

0

5

10

(d) Computational overhead for FASHION-MNIST 2C2D (GPU)

Base-
line

Loss Grad
Norm

Update
Size

Dis-
tance

Norm
Test

Alpha Ortho
Test

Inner
Test

Hess
Trace

Grad
Hist1d

TIC
Diag

0

2

4

R
un

Ti
m

e
O

ve
rh

ea
d

Base-
line

HessMaxEV Grad
Hist2d

0

50

100

150

200

Figure 13: Individual overhead of COCKPIT’s instruments on GPU for four different problems.
All run times are shown as multiples of the baseline without tracking. Expensive quantities are
displayed in separate panels on the right. Experimental details in the text.

31

(a) Computational overhead for MNIST Log. Reg. (CPU)

Base-
line

Loss Grad
Norm

Dis-
tance

Update
Size

Hess
Trace

Norm
Test

Inner
Test

Ortho
Test

Alpha TIC
Diag

Grad
Hist1d

0

1

2

3

R
un

Ti
m

e
O

ve
rh

ea
d

Base-
line

HessMaxEV Grad
Hist2d

0

1

2

3

(b) Computational overhead for MNIST MLP (CPU)

Base-
line

Loss Grad
Norm

Dis-
tance

Update
Size

Hess
Trace

Ortho
Test

Inner
Test

Alpha Norm
Test

TIC
Diag

Grad
Hist1d

0

10

20

30

40

R
un

Ti
m

e
O

ve
rh

ea
d

Base-
line

HessMaxEV Grad
Hist2d

0

50

100

(c) Computational overhead for CIFAR-10 3C3D (CPU)

Base-
line

Loss Dis-
tance

Grad
Norm

Update
Size

Norm
Test

Ortho
Test

Alpha Inner
Test

Grad
Hist1d

Hess
Trace

TIC
Diag

0

2

4

6

8

R
un

Ti
m

e
O

ve
rh

ea
d

Base-
line

Grad
Hist2d

HessMaxEV
0

20

40

60

80

(d) Computational overhead for FASHION-MNIST 2C2D (CPU)

Base-
line

Loss Grad
Norm

Dis-
tance

Update
Size

Inner
Test

Ortho
Test

Alpha Norm
Test

Hess
Trace

TIC
Diag

Grad
Hist1d

0

5

10

15

20

R
un

Ti
m

e
O

ve
rh

ea
d

Base-
line

Grad
Hist2d

HessMaxEV
0

50

100

Figure 14: Individual overhead of COCKPIT’s instruments on CPU for four different problems.
All run times are shown as multiples of the baseline without tracking. Expensive quantities are
displayed in separate panels on the right. Experimental details in the text.

32

(a) MNIST Log. Reg. (GPU)

1 4 16 64 256
Track Interval

baseline

economy

business

full

C
on

fig
ur

at
io

n

1 1 1 1 1

1.4 1.1 1 1 1

1.5 1.2 1 1 1

11 3.5 1.7 1.2 1.1

(b) MNIST MLP (GPU)

1 4 16 64 256
Track Interval

baseline

economy

business

full

C
on

fig
ur

at
io

n

1 1 1 1 1

4.3 1.9 1.3 1.1 1

5 2.1 1.3 1.1 1

1.4e+02 36 9.7 3.2 1.6

(c) CIFAR-10 3C3D (GPU)

1 4 16 64 256
Track Interval

baseline

economy

business

full

C
on

fig
ur

at
io

n

1 0.99 0.99 1 1

1.5 1.2 1 1 1

2 1.3 1.1 1 1

21 6 2.2 1.3 1.1

(d) FASHION-MNIST 2C2D (GPU)

1 4 16 64 256
Track Interval

baseline

economy

business

full

C
on

fig
ur

at
io

n

1 1 1 1 1

32 2.6 1.4 1.1 1

10 3.5 1.6 1.1 1.1

2.5e+02 68 16 4.8 2

Figure 15: Overhead of COCKPIT configurations on GPU for four different problems with
varying tracking interval. Color bar is the same as in Figure 6.

(a) MNIST Log. Reg. (CPU)

1 4 16 64 256
Track Interval

baseline

economy

business

full

C
on

fig
ur

at
io

n

1 1 1 1 1

1.7 1.2 1.1 1 1

1.9 1.2 1.1 1 1

4.6 1.9 1.2 1.1 1

(b) MNIST MLP (CPU)

1 4 16 64 256
Track Interval

baseline

economy

business

full

C
on

fig
ur

at
io

n

1 1 1 1 1

63 18 5.2 2.1 1.3

72 20 5.8 2.2 1.3

2.6e+02 67 18 5.1 2

(c) CIFAR-10 3C3D (CPU)

1 4 16 64 256
Track Interval

baseline

economy

business

full

C
on

fig
ur

at
io

n

1 1 1 1 1

5.7 2.4 1.3 1.1 1

12 4.1 1.8 1.2 1

1e+02 26 7.2 2.5 1.3

(d) FASHION-MNIST 2C2D (GPU)

1 4 16 64 256
Track Interval

baseline

economy

business

full

C
on

fig
ur

at
io

n

1 1 1 1 1

35 10 3.3 1.6 1.1

50 14 4.2 1.8 1.2

2.7e+02 69 18 5.1 1.9

Figure 16: Overhead of COCKPIT configurations on CPU for four different problems with
varying tracking interval. Color bar is the same as in Figure 6.

33

1 4 16 64 256
Track Interval

baseline

economy

C
on

fig
ur

at
io

n

1 1 1 1 1

3.7 1.9 1.2 1.1 1

Figure 17: Overhead of COCKPIT configurations on GPU for RESNET-50 on IMAGENET.
COCKPIT’s instruments scale efficiently even to very large problems (here: 1000 classes,
(3, 224, 224)-sized inputs, and a batch size of 64. For individual gradients to be defined, we re-
placed the batch norm layers of the RESNET-50 model with identities.) Color bar is the same as in
Figure 6.

34

(a) GPU

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Histogram Balance b

R
un

Ti
m

e
[s

]

PYTORCH (COCKPIT)
PYTORCH (third party)

(b) CPU

0 0.2 0.4 0.6 0.8 1
100

100.5

Histogram Balance b

R
un

Ti
m

e
[s

]

PYTORCH (COCKPIT)
PYTORCH (third party)
NUMPY (single thread)

Figure 18: Performance of two-dimensional histogram GPU implementations depends on the
data. (a) Run time for two different GPU implementations with histograms of different imbalance.
COCKPIT’s implementation outperforms the third party solution by more than one order of magnitude
in the deep learning regime (b ≪ 1). (b) On CPU, performance is robust to histogram balance.
The run time difference between NUMPY and PYTORCH is due to multi-threading. Data has the
same size as DEEPOBS’s CIFAR-10 3C3D problem (D = 895, 210, |B| = 128). Curves represent
averages over 10 independent runs. Error bars are omitted to improve legibility.

E.3 Performance of two-dimensional histograms:

Both one- and two-dimensional histograms require |B| ×D elements be accessed, and hence perform
similarly. However, we observed different behavior on GPU and decided to omit the two-dimensional
histogram’s run time in the main text. As explained here, this performance lack is not fundamental,
but a shortcoming of the GPU implementation. PYTORCH provides built-in functionality for com-
puting one-dimensional histograms at the time of writing, but is not yet featuring multi-dimensional
histograms. We experimented with three implementations:

• PYTORCH (third party): A third party implementation7 under review for being integrated
into PYTORCH8. It relies on torch.bincount, which uses atomicAdds that represent
a bottleneck for histograms where most counts are contained in one bin.9 This occurs often
for over-parameterized deep models, as most of the gradient elements are zero.

• PYTORCH (COCKPIT): Our implementation uses a suggested workaround, computes bin
indices and scatters the counts into their associated bins with torch.Tensor.put_.
This circumvents atomicAdds, but has poor memory locality.

• NUMPY: The single-threaded numpy.histogram2d serves as baseline, but does not run
on GPUs.

To demonstrate the strong performance dependence on the data, we generate data from a uniform
distribution over [0, b]× [0, b], where b ∈ (0, 1) parametrizes the histogram’s balance, and compute
two-dimensional histograms on [0, 1]× [0, 1]. Figure 18 (a) shows a clear increase in run time of both
GPU implementations for more imbalanced histograms. Note that even though our implementation
outperforms the third party by more than one order of magnitude in the deep neural network regime
(b ≪ 1), it is still considerably slower than a one-dimensional histogram (see Figure 13 (c)), and
even slower on GPU than on CPU (Figure 18 (b)). As expected, the CPU implementations do not
significantly depend on the data (Figure 18 (b)). The performance difference between PYTORCH and
NUMPY is likely due to multi-threading versus single-threading.

Although a carefully engineered histogram GPU implementation is currently not available, we think
it will reduce the computational overhead to that of a one-dimensional histogram in future releases.

7Permission granted by the authors of github.com/miranov25/.../histogramdd_pytorch.py.
8See https://github.com/pytorch/pytorch/pull/44485.
9See https://discuss.pytorch.org/t/torch-bincount-1000x-slower-on-cuda/42654

35

https://github.com/miranov25/RootInteractive/blob/7019e4c2b9f291551aeeb8677a969cfcfde690d1/RootInteractive/Tools/Histograms/histogramdd_pytorch.py
https://github.com/pytorch/pytorch/pull/44485
https://discuss.pytorch.org/t/torch-bincount-1000x-slower-on-cuda/42654

F COCKPIT view of convex stochastic problems

Figure 19: Screenshot of COCKPIT’s full view for convex DEEPOBS problems. Top COCKPIT
shows training on a noisy quadratic loss function. Bottom shows training on logistic regression on
MNIST. Figure and labels are not meant to be legible. It is evident, that there is a fundamental
difference in the optimization process, compared to training deep networks, i.e. Figure 2. This is, for
example, visible when comparing the gradient norms, which converge to zero for convex problems
but not for deep learning.

36

