
A Proofs

We start by recalling the standard PAC upper-bound for the sample complexity of learning in the
realizable case.
Lemma 1. For every hypothesis class H of VC-dimension d we have that for every ✏, � 2 (0, 1)H is

PAC-learnable using the FindConsistent algorithm with sample complexity:

d log(1/✏) + log(1/�)

✏
.

Lemma 2. For every i 2 N, for every h1, . . . , hi�1 2 H, and for every � 2 (0, 1): if m =
⌦(d + log(1/�)) then with probability 1 � � every function h 2 H that is consistent with S ⇠

EQD(Maj(h1, . . . , hi�1),m) satisfies the following:

Px⇠D[Maj(h1, . . . , hi�1)(x) 6= g(x) ^ h(x) 6= g(x)]


1

16
Px⇠D[Maj(h1, . . . , hi�1)(x) 6= g(x)].

In words, the lemma states that if we get m samples and take any function in the hypothesis class
that is consistent with those samples, this function will be incorrect at most on a fraction 1/16 of
the error set of our current estimate. Note that the required "independence" of new functions in our
boosting-like algorithm is partially satisfied by this statement.

Proof. Let i 2 N, h1, . . . , hi�1 : X �! {�1,+1}. Note that EQD(Maj(h1, . . . , hi�1),m) generates
m i.i.d. samples from the distribution D|Maj(h1,...,hi�1) 6=g. Then Lemma 1 guarantees that if m =
⌦(d+log(1/�)) then with probability 1�� every h 2 H that is consistent with m i.i.d. samples from
D|Maj(h1,...,hi�1) 6=g has error at most 1

16 on D|Maj(h1,...,hi�1) 6=g . This is equivalent to the statement of
the Lemma.

Lemma 3. For every ✏
0
2 (0, 1), i 2 [t], h1, . . . , hi�1 : X �! {�1,+1}, and v 2 [B✏0 ] \ 2Z+ 1 if:

Px⇠D[Voteg(h1, . . . , hi�1)(x) = �v]

�
1

B4
✏0
R(Maj(h1, . . . , hi�1))

then for m = ⌦((d+ log(1/�))B4
✏0) we have that with probability 1� � every function h 2 H that

is consistent with EQD(h
0
,m), where h

0 := Maj(h1, . . . , hi�1) � [Vote(h1, . . . , hi�1) 2 {v,�v}]
satisfies the following:

Px⇠D[Voteg(h1, . . . , hi�1)(x) = �v ^ h(x) 6= g(x)]


1

16
Px⇠D[Voteg(h1, . . . , hi�1)(x) = �v]

Recall that our classifier is based on a sequence of classifiers. Each of these classifiers casts a vote.
Those votes are tallied and possibly clipped. The final classifier looks at the sign of the vote count.
We can think of the vote count as the "confidence" we have in the particular decision. Consider all the
points in the feature space that have a particular vote count. Assume that this vote count is negative
(correct decision) and that this particular vote count has a large probability mass. The lemma then
states the following. If we get m further samples and take any function in the hypothesis class that is
consistent with those samples, then this function will be incorrect at most on a fraction 1/16 of the
points with this particular vote count.

Proof. Let i 2 [t], v 2 [B✏0 ]\ 2Z+1 and S ⇠ EQD(h
0
,m). We will show that with high probability

the following holds:

|{x 2 S : Voteg(h1, . . . , hi�1)(x) = �v}| �
m

8B4
✏0

.

Let Xi be a Bernoulli random variable that is equal to 1 if and only if the i-th sample from S belongs
to the region Voteg(h1, . . . , hi�1)(x) = �v. These random variables are independent and each has
success probability p, which we claim is at least:

PD[Voteg(h1, . . . , hi�1)(x) = �v]

R(Maj(h1, . . . , hi�1)) + PD[Voteg(h1, . . . , hi�1)(x) = �v]
.
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Figure 2: Visualization of the process.

To see that this is true note that for every x 2 X such that Voteg(h1, . . . , hi�1)(x) = �v we have by
definition of Voteg and Maj that Maj(h1, . . . , hi�1) = g(x). Recall that h0 = Maj(h1, . . . , hi�1)�
[Vote(h1, . . . , hi�1) 2 {v,�v}], which means that for every x such that Voteg(h1, . . . , hi�1)(x) =
�v we have also that h0(x) 6= g(x), which means that x is misclassified by h

0. By assumption we
have then that

p �
1⇣

1 + 1
B4

✏0

⌘
B4

✏0

�
1

2B4
✏0

.

We introduce the notation a ⇡�,↵ b to denote a 2 [(1� �)b� ↵, (1 + �)b+ ↵]. By the Chernoff-
Hoeffding bound we get that there exists a universal constant � such that for all 0 < � 

1
2 , 0 < ↵:

P
m

i=1 Xi

m
⇡�,↵ p with probability 1� 2e��k↵� .

Setting � := 1
2 ,↵ := 1

8B4
✏0

we get that:

mX

i=1

Xi �
m

8B4
✏0

with probability 1� 2e
� �m

16B4
✏0 .

Now observe that conditioned on a sample x 2 S being such that Voteg(h1, . . . , hi�1)(x) = �v we
know that x is distributed according to D|Voteg(h1,...,hi�1)(x)=�v. Thus Lemma 1 guarantees that ifP

m

i=1 Xi � O(d+ log(1/�)) then with probability 1� � any function consistent with S has error
at most 1

16 on D|Voteg(h1,...,hi�1)(x)=�v. So if m = ⌦((d+ log(1/�))B4
✏0) then by the union bound

over the two failure events we get the result.

Next we define an abstract process on odd integers. This process will emulate how a collection
of the following probabilities evolves throughout the execution of the algorithm. For iteration t

of the algorithm, and a vote value i 2 2Z + 1 we think that pt
i

(which is defined below) is equal
to Px⇠D[Voteg(h1, . . . , hi�1)(x) = i]. The two properties defined in Definition 4 correspond to
Lemma 2 and Lemma 3.
Definition 4 (Process on 2Z+1). For every ✏ 2 (0, 1) we define a process on I✏ := 2Z+1\[�B✏, B✏].
For simplicity we introduce the notation I

+
✏

:= I✏ \ (Z > 0), I�
✏

:= I✏ \ (Z < 0). For every i 2 I✏

and t 2 N, there is a value p
t

i
associated with a point i at time step t. The process starts from an

initial configuration {p
1
i
}i2I✏ , such that

P
i2I✏

p
1
i
= 1. For step t 2 N and for every i 2 I✏ the

weight p
t

i
is split into two parts: a part of p

t

i
moves to i� 2 and the remaining part moves to i+ 2.

More precisely, this is done in the following manner:

• At every step t at least
15
16

P
i2I

+
✏
p
t

i
of the mass, i.e., at least

15
16 of the mass on I

+
✏

, moves

down.
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• At every step t and for every i 2 I
+
✏

, if

p
t

i
�

1

B4
✏

X

i2I
+
✏

p
t

i

then at most
1
16p

t

i
of the weight from p

t

i
moves to i+ 2.

If some mass moved to �B✏ � 2 or B✏ + 2 then it is moved back to �B✏ and B✏, respectively.

According to Definition 4, as long as there is any "substantial" mass on a position i < 0, at least
15/16 of this mass has to move two positions down and at most 1/16 can move two positions up.
Moreover 15/16 of the mass on i > 0 has to move down. It is therefore intuitively not surprising that
we expect less and less mass to be found on the positive part and the process continues. Lemma 4
makes this intuition quantitative.

Before proving the next Lemma, which gives guarantees on the converges of the process defined
in Definition 4, we refer the reader to Figure 2. This figure represent in a visual way the rules of
the process. The values {pi}i2I✏ are arranged on a line, each pi corresponds to one rectangle. The
horizontal dashed line represents the threshold at which the second property from Definition 4 is
triggered. The left/right arrows and the values next to them represent how much mass is moved to the
left and to the right from a given position.

Lemma 4. Let ✏ 2
�
0, 1

32

�
and consider an initial configuration {p

1
i
}i2I✏ such that

P
i2I✏

p
1
i
= 1.

Then after t = O(B3
✏
) steps of the process

X

i2I
+
✏

p
t

i
 64 · ✏ ·B3

✏
.

To get the final result it is enough to to take the union bound over the failure events of Lemma 2 and 3
and then apply Lemma 4.

Note. Optimizing the power on log(1/✏) in the query upper-bound was not our priority. We focused
on simplicity of the algorithm and clarity of the proof. We believe that one can improve the analysis
to get a tighter bound. We also think that one would have to come up with a new algorithm to prove
that the query complexity of the EQ-model belongs to o(d · log2(1/✏)).

Proof. For t 2 N, let {pt
i
}i2I✏ be the configuration resulting from running the process for t steps.

We define two metrics that will measure the progress of the process:

Wt :=
X

i2I
�
✏

2i · pt
i
+
X

i2I
+
✏

p
t

i
, and

Mt :=

P
i2I

+
✏
i · p

t

iP
i2I

+
✏
pt
i

.

The first metric Wt is a weighted average of these masses, where more weight is put on positions that
are "to the left." The second metric Mt is just the expected value of the position of all the weight on
the positive part.

Let t 2 N. We analyze the evolution from {p
t

i
}i2I✏ to {p

t+1
i

}i2I✏ . First note that by definition:
X

i2I
+
✏

p
t

i
 Wt 

X

i2I✏

p
t

i
 1. (2)

Observe that Wt is linear in the {p
t

i
}’s. This means that we can analyze the contribution of each

weight separately. Let us therefore analyze how the contribution from p
t

i
to W changes as t increases

to t+ 1. For every t 2 N, any index i 2 I✏ belongs to one of the following types:
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Type 1. i 2 I
�
✏
\ {�B✏}, p

t

i
�

1
B4

✏

P
j2I

+
✏
p
t

j
: By definition the contribution of pt

i
to Wt is equal

to 2i · pt
i
. At step t+ 1, p of the mass moves to i� 2 and p

t

i
� p moves to i+ 2. By the rules of the

process (Definition 4) p �
15
16p

t

i
. Hence the contribution of this mass to Wt+1 is at most

2i�2
· p+min(2i+2

, 1) · (pt
i
� p)

 2i�2
·
15

16
p
t

i
+ 2i+2

·
1

16
p
t

i

 2i�2
· p

t

i
·

✓
15

16
+ 1

◆


1

2
· 2i · pt

i
. (3)

This means that the contribution to W decreases by a multiplicative factor of at least 2.

Type 2. i 2 I
�
✏
\ {�B✏}, p

t

i
<

1
B4

✏

P
j2I

+
✏
p
t

j
: As in the previous case the contribution of pt

i
to Wt

is equal to 2i · pt
i
. By the rules of the process 0  p  p

t

i
of the mass moves to i � 2 and p

t

i
� p

moves to i+ 2. Thus the contribution of this mass to Wt+1 is at most:

2i�2
· p+min

�
2i+2

, 1
�
· (pt

i
� p)  p

t

i
. (4)

This means that the contribution to W increases additively by at most p
t

i
.

Type 3. i = �B✏: The contribution of pt
i

to Wt is equal to 2�B✏ · p
t

i
. By the rules of the process

p  p
t

i
of the mass of pt

i
moves to i+2 = �B✏ +2. Thus the contribution of this mass to Wt+1 is at

most:

2�B✏ · (pt�B✏
� p) + 2�B✏+2

· p

 2�B✏+2
· p

t

�B✏

 2✏2

 2✏, (5)

where the second to last inequality follows from the fact that pt�B✏
 1 and that B✏ = 2dlog(1/✏)e+1.

This means that the contribution to W increases additively by at most 2✏.

Type 4. i 2 I
+
✏

: The contribution of pt
i

to Wt is equal to p
t

i
. By the rules of the process p  p

t

i
of

the mass moves to i � 2 and p
t

i
� p of the mass moves to i + 2 (or stays at i if i = B✏). Thus the

contribution of this mass to Wt+1 is at most:

min
�
2i�2

, 1
�
· p+ 1 · (pt

i
� p)  p

t

i
. (6)

This means that the contribution to W decreases.

Observe that the contribution to W can increase only for Type 2 and 3. Moreover, note that the total
amount of mass that can be in Type 2 is at most B✏ ·

1
B4

✏

P
j2I

+
✏
p
t

j


1
B3

✏

P
j2I

+
✏
p
t

j
. Thus combining

the observations for the 4 Types we get that:

Wt+1  Wt + 2✏+
1

B3
✏

X

j2I
+
✏

p
t

j
.

Combined with the left-most inequality in (2), we get

Wt+1 

✓
1 +

1

B3
✏

◆
Wt + 2✏. (7)

Now we analyze the evolution of W from time t to time t+ 1 depending on how much mass moves
from �1 to +1 and vice versa. Let 0  �+,�  p

t
1, 0  ��,+  p

t
�1 be the amount of mass that is

moved from +1 to �1 and from �1 to +1, respectively. We consider the following cases:
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Case 1. ��,+ �
1

2B✏
·
P

j2I
+
✏
p
t

j
: We will show that if Wt � 16✏B✏, then Wt+1 

⇣
1� 1

9B✏

⌘
Wt.

First, observe that if p
t
�1 <

1
B4

✏

P
i2I

+
✏
p
t

i
then p

t
�1 <

1
2B✏

·
P

j2I
+
✏
p
t

j
 ��,+. This means

that there is not enough mass on �1 to satisfy the assumption of this case. Thus we know that
p
t
�1 �

1
B4

✏

P
i2I

+
✏
p
t

i
. By the rules of the process only 1

16 of pt�1 can potentially move to +1. This
implies that pt�1 � 16��,+ �

16
2B✏

·
P

j2I
+
✏
p
t

j
. Using the properties of Type 1 we know that the

contribution of pt�1 to W goes down by at least a factor 2.

Let us now look at the evolution of the contribution of
P

i2I
+
✏
p
t

i
. We know from Type 4 that for this

type the contribution does not increase.

Since we know that pt�1 �
8
B✏

·
P

j2I
+
✏
p
t

j
, the total contribution of all the weight on {�1} [ I

+
✏

goes down by a factor of at least
2
B✏

+ 1
4
B✏

+ 1
 1�

1

B✏

,

where we used that ✏ < 1
32 .

It remains to include the contributions of the mass at I�
✏
\ {�1}. We know from the properties of

Type 1, 2, and 3 that for those the contribution decreases by a factor 2 with the exception of very
"small" masses and the mass at the left-hand side boundary. Since 1

2  1� 1
B✏

we get:

Wt+1 

✓
1�

1

B✏

◆
·Wt +

1

B3
✏

X

j2I
+
✏

p
t

j
+ 2✏



✓
1�

1

B✏

+
1

B3
✏

◆
·Wt + 2✏, (8)

where in the last inequality we used the left-most inequality from (2).

To get the claimed bound, observe that if Wt � 16✏B✏, then by (8) we get that

Wt+1 

✓
1�

1

9B✏

◆
Wt. (9)

Case 2. �+,� �
1

2B✏
·
P

j2I
+
✏
p
t

j
: We will show that if Wt � 16✏B✏, then Wt+1 

⇣
1� 1

9B✏

⌘
Wt.

First, observe that the contribution of pt1 to W decreases by at least 1
4B✏

·
P

j2I
+
✏
p
t

j
. This is true

since at least 1
2B✏

·
P

j2I
+
✏
p
t

j
of the mass was moved from position +1 which is weighted by 1 to

position �1 which is weighted by 1
2 .

Let us now look at the evolution of the contribution of I+
✏
\ {+1}. We know from Type 4 that for this

type the contribution does not increase.

Since we know that the contribution of pt1 decreased by at least 1
4B✏

·
P

j2I
+
✏
p
t

j
the total contribution

of all the weight in I
+
✏

goes down by a factor of at least

1�
1

4B✏

.

It remains to include the contributions of the mass at I�
✏

. We know from the properties of Type 1,
2, and 3 that for those the contribution decreases by a factor 2 with the exception of very "small"
masses and the mass at the left-hand side boundary. Since 1

2  1� 1
4B✏

we get:

Wt+1 

✓
1�

1

4B✏

◆
·Wt +

1

B3
✏

X

j2I
+
✏

p
t

j
+ 2✏



✓
1�

1

4B✏

+
1

B3
✏

◆
·Wt + 2✏ (10)
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where in the last inequality we used the left-most inequality from (2).

To get the claimed bound, observe that if Wt � 16✏B✏ then by (10) we get that

Wt+1 

✓
1�

1

9B✏

◆
Wt. (11)

Case 3. ��,+, �+,� <
1

2B✏
·
P

j2I
+
✏
p
t

j
: We will show that Mt+1  Mt � 1.

For simplicity we introduce notation µt := Mt ·
P

j2I
+
✏
p
t

j
. First let’s analyze what happens when

��,+ = 0. By the rules of the process at least 15
16

P
j2I

+
✏
j · p

t

j
of the mass on I

+
✏

moves down. This
and the assumption that �+,� <

1
2B✏

·
P

j2I
+
✏
p
t

j
gives the following two bounds:

µt+1  µt +

✓
�2 ·

15

16
+ 2 ·

1

16

◆
·

X

j2I
+
✏

p
t

j
+

1

2B✏

·

X

j2I
+
✏

p
t

j

 µt +

✓
1

2B✏

�
7

4

◆
·

X

j2I
+
✏

p
t

j

and
X

j2I
+
✏

p
t+1
j

�

X

j2I
+
✏

p
t

j
�

1

2B✏

·

X

j2I
+
✏

p
t

j

=

✓
1�

1

2B✏

◆ X

j2I
+
✏

p
t

j

Combining the two bounds we get:

Mt+1 =
µt+1P

j2I
+
✏
p
t+1
j



µt +
⇣

1
2B✏

�
7
4

⌘
·
P

j2I
+
✏
p
t

j

⇣
1� 1

2B✏

⌘P
j2I

+
✏
pt
j

=
2B✏

2B✏ � 1

 
µtP

j2I
+
✏
pt
j

�
7

4

!
+

1

2B✏ � 1

=
2B✏

2B✏ � 1

✓
Mt �

7

4

◆
+

1

2B✏ � 1

 Mt � 1 (12)

where in the last equality we used the definition of µt. In the last inequality we used the fact that
Mt  B✏. Note that if ��,+ 6= 0 then Mt+1 can only decrease as Mt+1 2 [1, B✏] and the mass that
comes from �1 to +1 arrives at 1. Thus by (12) we get that in Case 3:

Mt+1  Mt � 1. (13)

Merging Cases 1, 2 and 3. First, observe that Cases 1, 2 and 3 cover all potential values of ��,+

and �+,�. Then note that by (7) if Wt � 10✏B3
✏

then:

Wt+1 

✓
1 +

12

10B3
✏

◆
Wt (14)

Combining (9), (11), (13) and (14) we get that if Wt � max(10✏B3
✏
, 16✏B✏) = 10✏B3

✏
then either

Wt decreases by a multiplicative factor
⇣
1� 1

9B✏

⌘
or Mt decreases by an additive 1 and Wt increases

by at most a multiplicative factor of
⇣
1 + 12

10B3
✏

⌘
. If on the other hand Wt < 10✏B3

✏
then we have by

the definition of W that Wt+1  4Wt, as each amount of mass can increase it’s contribution by at
most a multiplicative factor of 4.
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As Mt 2 [1, B✏] it means that in every consecutive B✏ steps rule (9)/(11) is triggered at least once.
Thus we have that:

Wt+B✏  max

 ✓
1 +

12

10B3
✏

◆B✏
✓
1�

1

9B✏

◆
Wt,

40✏B3
✏

✓
1 +

12

10B3
✏

◆B✏
!

 max
⇣
e

12
10B2

✏ · e
� 1

9B✏ ·Wt, 64✏B
3
✏

⌘

 max
⇣
e
� 1

81B✏ ·Wt, 64✏B
3
✏

⌘
. (15)

where in the first inequality we used that either for all t 2 [t, t+B✏] we have that Wt � 10✏B3
✏

or
there exists t0 2 [t, t+B✏] such that Wt0 < 10✏B3

✏
. The two terms govern the first and the second

case respectively. If Wt0 < 10✏B3
✏

then W grows by a multiplicative factor of at most 4 in every step
until it reaches at most 40✏B3

✏
and then it grows at most by a multiplicative factor of 1 + 12

10B3
✏

per
step. In the last inequality we used that ✏ < 1

32 and that B✏ = 2dlog(1/✏)e+ 1.

By the right-most inequality of (2) we get that W0  1, which by using (15) implies that after
t = O(B3

✏
) steps Wt  64✏B3

✏
, which by the left-most inequality of (2) gives:

X

i2I
+
✏

p
t

i
 64✏B3

✏
.

Now we are ready to prove the main theorem of the paper.
Theorem 1. There exists a learning algorithm (Algorithm 1) such that for every ✏ 2

�
0, 1

32

�
, � 2

(0, 1), every hypothesis class H of VC-dimension d, for every distribution D the algorithm invoked

with parameters ✏, �,H EQ-learns H asking

O((d+ log(1/�)) log9(1/✏)) queries.

Proof. Observe that the number of queries q asked by the algorithm is upper bounded by:
q  t · (B✏0 + 1) ·m

 O
�
B

3
✏0 ·B✏0 · (d+ log(B4

✏0) + log(1/�)) ·B4
✏0
�

 O
�
(d+ log(B4

✏0) + log(1/�))B8
✏0
�

.
Note that

B✏0  O

✓
log

✓
log(1/✏)

✏

◆◆
 O(log(1/✏)).

Thus combining the two bounds we get an upper bound for the number of queries:

q  O((d+ log log(1/✏) + log(1/�)) log8(1/✏))

 O((d+ log(1/�)) log9(1/✏)).

Now we prove the correctness of the algorithm. First observe that by the definition of m and the union
bound over O(B4

✏0) many events we know that success events of Lemmas 2 and 3 hold when lemmas
are applied to functions of the form Maj(h1, . . . , hi�1),Voteg(h1, . . . , hi�1), where h1, . . . , ht are
functions constructed throughout the algorithm. Observe then that if for every i 2 I✏0 , j 2 [t]�
t = O

�
B

3
✏0

��
we define:

p
j

i
:= Px⇠D[Voteg(h1, . . . , hj)(x) = i],

then {{p
j

i
}i2I✏0 }j2[t] satisfies the rules of the process on 2Z + 1 with parameter ✏0 (Definition 4).

Lemma 2 is responsible for the first property and Lemma 3 is responsible for the second property.
Thus we can apply Lemma 4 to {{p

j

i
}i2I✏0 }j2[t] to get that at the end of the process we have:
X

i2I
+
✏0

p
t

i
 64 · ✏0 ·B3

✏0  ✏,
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where in the last inequality we used the assumption that ✏ < 1
32 . To conclude observe that:

X

i2I
+
✏0

p
t

i
=
X

i2I
+
✏0

Px⇠D[Voteg(h1, . . . , ht)(x) = i]

= R(Maj(h1, . . . , ht)).

We conclude by showing that Corollary 1 is a simple consequence of Theorem 1.
Corollary 1. For every feature space X , for every ✏ 2

�
0, 1

32

�
, for every d 2 N, for every hypothesis

class H on X of VC-dimension d there exists a learning algorithm L such that for every distribution

D, for every ground truth h 2 H, for every adversary A the following holds. When L interacts with

A as described in Definition 3 then with probability 2/3 at least one of the two properties holds:

• L, after O(d · polylog(1/✏)) rounds of interaction with A, returns a function f such that

RD,h(f)  ✏,

• there exists t 2 [O(d · polylog(1/✏))] such that at the interaction round t a function ft was

presented to A and A(ft, EXD) 6= EQD(ft).

Moreover, throughout the interaction only O(polylog(1/✏)) different functions are presented to A.

Proof. Let X be a feature space, ✏ 2 (0, 1
32 ), H be a hypothesis class of VC-dimension d. We will

show that EQ-learner (Algorithm 1) satisfies the conditions of the corollary.

Assume that the EQ-learner is run with parameters ✏, � = 1/3,H and every call to EQD replaced
by an interaction with A. This setup satisfies the requirements of the adversarial learning game
(Definition 3). Now there are two possible scenarios. First scenario is that throughout the run of the
algorithm, for all functions ft that L presents to A we have that A(ft, EXD) = EQD(ft). Then
Theorem 1 guarantees that with probability 2/3 the first statement of the corollary is true. The other
scenario is that there exists ft that L presented to A such that A(ft, EXD) 6= EQD(ft). This implies
the second statement of the corollary.

What is left is to observe that the EQ-learner queries the EQD only for O(polylog(1/✏)) many
different functions. This is true as the number of different functions sent to EQD is upper-bounded
by t · (B✏0 + 1)  O(polylog(1/✏)), where parameters t and B✏0 are defined in the algorithm.

B Experiments

To find adversarial examples for standard adversarial training and on-manifold adversarial training
we used the attack from Madry et al. [2018]. When performing on-manifold adversarial training the
search for perturbation is done in the latent space. The perturbations were bounded in the `1 norm in
both cases.

For training we use classifiers with three convolutional layers (4 × 4 kernels; stride 2; 16, 32, 64
channels), each followed by ReLU activations and batch normalization, and two fully connected
layers. The networks are trained using ADAM Kingma and Ba [2014], with learning rate 0.01
(decayed by 0.95 per epoch), weight decay 0.0001 and batch size 100, for 20 epochs. For further
details we refer the reader to Stutz et al. [2019]. We used the Google cluster for our experiments. It
took 3 days to run.

Looking at the figures in Stutz et al. [2019] one might wonder why in some situations, in their
language, the on-learned-manifold attack success rate is smaller than the test error. After all, the
adversary always has the option of not perturbing the input. Hence, the test error is a lower bound
on the attack success rate. One way this can happen is when the autoencoder maps an incorrectly
classified input to a correctly classified one. More formally the autoencoder works as follows. An
input x is mapped to the latent space to produce z = enc(x). Then the attacker tries to find a
perturbation � in the latent space such that L(dec(z + �), y), where y is the label of x, is maximized.
Let f be the attacked classifier. Then it might happen that f(x) 6= y but f(dec(enc(x))) = y. In this
case it is a priori nontrivial to find a perturbation � such that f(dec(enc(x) + �)) 6= y.
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