
Meta Internal Learning : Supplementary material

Raphael Bensadoun∗

The School of Computer Science
Tel Aviv University

Shir Gur
The School of Computer Science

Tel Aviv University

Tomer Galanti
The School of Computer Science

Tel Aviv University

Lior Wolf
The School of Computer Science

Tel Aviv University

Figure 1: Interpolation in the space of generative networks: Interpolating at different scales and
different interpolation coefficients creates a wide gamut of intermediate options between the two
generated images.

∗Corresponding author - bensadoun@mail.tau.ac.il

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Contents

1 Theoretical Analysis 3

1.1 Shared Discriminator . 3

1.2 Shared Feature Extractor . 4

1.3 Our Method . 4

2 Training 5

2.1 Architecture . 5

2.2 Progressive training . 6

2.3 Optimization . 6

2.4 Number of iterations . 7

2.5 GPU usage for training models . 7

3 Training with a pretrained image encoder 7

4 Single-Image Generation 7

5 Editing, Harmonization and Animation 20

6 Interpolation 22

7 Feedforward modeling 27

2

1 Theoretical Analysis

1.1 Shared Discriminator

In this section, we consider the case where the model has two main components: a hyper-generator
gi(z, I) = gi(z; f

i
g(I; θfg)) along with a standard discriminator di(u) = di(u; θd) that is shared

among all samples I . In this setting, the adversarial objective function is defined as:

Ladv(gi, di) := EI

{

E
z1:i

di(uÎ,i)− E
ui,I

di(uI,i)
}

(1)

The following proposition shows that if the expected (with respect to the distribution of I) distance
between the distributions DÎ,i and Di is small, then, the loss function Ladv(gi, di) tends to be small.

For this purpose, we assume that C is closed under multiplication by positive scalars (i.e., αd ∈ C for
all d ∈ C and α > 0). This is a technical assumption that holds for any set of neural networks, with a
linear top-layer.

Proposition 1. Let gi(z, I) := gi(z; f
i
g(I; θfg)) be a hyper-generator and di ∈ C a shared discrim-

inator at scale i. Let Di be the distribution of u ∼ DI,i, where I ∼ DI . Assume that C is closed
under multiplication by positive scalars. Then,

Ladv(gi, di) ≤ ∥di∥L · EI [WC1(DÎ,i,Di)] (2)

In particular, maxdi∈C1 Ladv(gi, di) ≤ EI [WC(DÎ,i,Di)].

Proof. Let α := ∥di∥L, uI,i ∼ DI,i (conditioned on a fixed I) and let u ∼ Di be a random variable.
We can write:

L(gi, di) ≤ max
d′

i
∈Cα

L(gi, d
′
i)

= max
d′

i
∈Cα

E
I

{

E
z1:i

d′i(uÎ,i)− E
uI,i

d′i(uI,i)

}

= max
d′

i
∈Cα

{

E
I1

E
z1:i

d′i(uÎ,i)− E
I2

E
uI,i

d′i(uI,i)

}

= max
d′

i
∈Cα

{

E
I1

E
z1:i

d′i(uÎ,i)− E
u
d′i(u)

}

= max
d′

i
∈Cα

E
I

{

E
z1:i

d′i(uÎ,i)− E
u
d′i(u)

}

,

where I1, I2 ∼ DI are two i.i.d. random variables. We note that for any real-valued function f , we
have: maxx Ey[f(x, y)] ≤ Ey[maxx f(x, y)]. Therefore,

L(gi, di) ≤E
I
max
d′

i
∈Cα

{

E
z1:i

d′i(uÎ,i)− E
u
d′i(u)

}

(3)

We note that any function d ∈ C1 can be translated into a function αd ∈ Cα and vice versa since
C = α · C. In particular, Cα = α · C1. Hence, we have:

L(gi, di) ≤E
I
max
d′

i
∈C1

{

E
z1:i

α · d′i(uÎ,i)− E
u
α · d′i(u)

}

=αE
I
[WC1(DÎ,i,Di)],

(4)

which proves the claim.

This proposition shows that a hyper-generator gi(·, I) that generates samples Îi whose patches are
similar to Di would minimize the loss function Ladv(gi, di), even though the generated samples are
not conditioned on the image I . Therefore, minimizing the adversarial loss with a shared discriminator

does not guarantee that gi(·, I) would generate samples Îi that are similar to Ii, which is undesirable.

3

1.2 Shared Feature Extractor

We note that as a strategy one could reduce the number of trainable parameters in the whole model,
by restricting fg and fd to share their encoding component e, as illustrated in Fig. ??. In this section,
we show two failing cases of this approach. First, we consider the case where θe is optimized to
minimize the objectives of both g and d. As a second case, we consider the case where θe is optimized
to minimize the objective of g.

Case 1 We first consider the case where the model is trained using GD, when fg and fd share

their representation function’s weights. Specifically, GD iteratively updates (θe, θ
i
pg
) to minimize

Ladv(gi, di) and updates (θe, θ
i
pd
) to maximize Ladv(gi, di) − λ1 · Llip(di). We denote this opti-

mization process by A. The following proposition shows that θe is trained to minimize Llip(di) only
and that A suffers from a wide span of undesirable equilibrium points.

Remark 1. Let gi(z, I) := gi(z; f
i
g(I; θfg)) and di(u, I) := di(u; f

i
d(I; θfd)) be the hyper-

generator and the hyper-discriminator, with an activation function σ that satisfies σ(0) = 0. Assume
that θeg = θed is shared among f i

g and f i
d. Then, A trains eg = ed to minimize Llip(di) only. In

addition, let (θe, θ
i
pg
, θipd

) be a set of parameters with Eg = Ed ≡ 0. Then, (θe, θ
i
pg
, θipd

) is an

equilibrium point of A.

Proof. We denote e = eg = ed. Let θe, θipg
and θipd

be the parameters of e, pg and pid. Each iteration

of GD updates the weights (θe, θ
i
pd
) of di with the following step: −µ

∂Ladv(gi,di)
∂(θe,θi

pd
) + µ

∂Llip(di)
∂(θe,θi

pd
) . On

the other hand, the GD step for the weights (θe, θ
i
pg
) of gi is +µ

∂Ladv(gi,di)
∂(θe,θi

pd
) . Therefore, since di

and gi share weights within their representation function e, its update is the sum of the two steps

−µ
∂Ladv(gi,di)

∂θe
and +λ1µ

∂Ladv(gi,di)
∂θe

and −µ
∂Llip(di)

∂θe
, which is simply −µ

∂Llip(di)
∂θe

. Therefore, e

is trained to minimize Llip(di) using GD.

To see why (θe, θ
i
pg
, θipd

) (with Eg ≡ 0) is an equilibrium point, we notice that di ≡ 0 is a global

minima of Llip(di). In particular, θe would not change when applying A. In addition, we note that

if Eg(I) = Ed(I) = 0, then, the outputs of Eg, Ed, f i
g, f i

d, gi and di are all zero, regardless of

the values of the weights θipg
, θipd

, because σ(0) = 0. Therefore, the gradients of Ladv(gi, di) with

respect to θipg
and θipd

are zero, and we conclude that θipg
and θipd

would not update as well.

Case 2 As an additional investigation, we consider the case where GD iteratively optimizes
(θe, θ

i
pg
) to minimize Ladv(gi, di), θ

i
pd

to maximize Ladv(gi, di) and (θe, θ
i
pg
) to minimize the loss

Llip(di). We denote this optimization process by B. The following proposition shows that this
procedure suffers from a wide span of undesirable equilibrium points.

Remark 2. Let gi(z, I) := gi(z; f
i
g(I; θfg)) and di(u, I) := di(u; f

i
d(I; θfd)) be a hyper-generator

and a hyper-discriminator, both with activation functions σ that satisfy σ(0) = 0. Then, any set of
parameters (θe = 0, θipg

, θipd
) is an equilibrium point of B.

Proof. We note that if θe = 0, then, since σ(0) = 0, the outputs of e, f i
g, f i

d, gi and di are all zero,

regardless of the values of the weights θipg
, θipd

. In particular, the gradients of Ladv(gi, di) with

respect to θipg
and θipd

are zero. In addition, the Lipschitz loss function is at its global minima for di,

and therefore, its gradient with respect to (θe, θ
i
pd
) is zero as well. Therefore, we conclude that any

possible step starting from (θe = 0, θipg
, θipd

) would not change the weights.

1.3 Our Method

Proposition 2. Assume that I ⊂ R
3×h×w is compact. Let ϵ > 0 be an approximation error. Let

gi(z, I) := gi(z; f
i
g(I; θfg)) be a hyper-generator and C a class of discriminators. Assume that S∗ is

continuous over I. Then, there is a large enough neural network f i
d (whose size depends on ϵ), such

4

that, the hyper-discriminator di(u, I) := di(u; f
i
d(I; θfd)) satisfies:

EIWC(DÎ,i,DI,i) =max
θfd

E
I

{

E
z1:i

di(uÎ,i; f
i
d(I))− E

uI,i

di(uI,i; f
i
d(I))

}

+ oϵ(1),

where the maximum is taken over the parameterizations θfd of fd, such that, di(·; f
i
d(I; θfd)) ∈ C1.

Proof. Let S1 be the set of functions S : I 7→ θI , where θI correspond to a discriminator di(·; θI) ∈
C1. Let Q be the set of parameters θfd , such that, di(·; f

i
d(I; θfd)) ∈ C1 for all I ∈ I. In particular,

for any θfd ∈ Q, we have: f i
d(I; θfd)) ∈ S1. Hence, we have:

E
I
WC(DÎ,i,DI,i) = max

S∈S1
E
I

{

E
z1:i

di(uÎ,i;S(I))− E
uI,i

di(uI,i;S(I))

}

≥max
θf∈Q

E
I

{

E
z1:i

di(uÎ,i; f
i
d(I))− E

uI,i

di(uI,i; f
i
d(I))

}

,

Next, we would like to prove the opposite direction. Let S∗ be a continuous maximizer of the
following objective (its existence is assumed in the proposition’s statement):

max
S∈S1

E
I

{

E
z1:i

di(uÎ,i;S(I))− E
uI,i

di(uI,i;S(I))

}

(5)

Since I is compact, by [1] there is a large enough neural network f i
d(·; θ

∗
fd
) (with sigmoid/tanh/ReLU

activation) that approximates the continuous function S∗ up to an approximation error ϵ (of our
choice) with respect to the L∞ norm, i.e., ∥f i

d(·; θ
∗
fd
)− S∗∥∞ ≤ ϵ.

Recall that DÎ,i and DI,i are supported by compact sets. In addition, since S∗ is continuous over a

compact set, S∗(I) is compact as well. Let U be a compact set that contains the union of the supports
of both DÎ,i and DI,i. Let V be a compact set that contains the union of S∗(I) and f i

d(I; θ
∗
fd
). Since

the discriminator di(u; θ
i
d) is a continuous function (a neural network with continuous activation

functions) with respect to both (u, θid), it is uniformly continuous over U × V . Therefore, we have:

sup
u∈U,I∈I

∣

∣

∣
d(u;S(I))− d(u; f i

d(I; θ
∗
fd
))
∣

∣

∣
= oϵ(1) (6)

In particular, we have:

max
S∈S1

E
I

{

E
z1:i

di(uÎ,i;S(I))− E
uI,i

di(uI,i;S(I))

}

=E
I

{

E
z1:i

di(uÎ,i;S
∗(I))− E

uI,i

di(uI,i;S
∗(I))

}

≤E
I

{

E
z1:i

di(uÎ,i; f
i
d(I; θ

∗
fd
))− E

uI,i

di(uI,i; f
i
d(I; θ

∗
fd
))

}

+ oϵ(1)

≤ max
θfd∈Q

E
I

{

E
z1:i

di(uÎ,i; f
i
d(I))− E

uI,i

di(u; f
i
d(I))

}

+ oϵ(1)

which completes the proof.

2 Training

2.1 Architecture

We use ResNet-34 for the hypernetworks of both the generator and discriminator, with an embedding
size of size 512. A multi-head dense linear layer is then applied and projects the image embedding
into the different convolutional blocks of the main network. The main networks, (i.e., the generator
and discriminator) share the same architecture and consist of 5 conv-blocks per scale of the form
Conv(3 x 3)-LeakyRelu with 64 kernels per block. For the generator, we hold a set of 10 linear heads
projections for each scale, where each projection outputs the weights (or the biases) of its respective

5

scale in the generator. For the discriminator, when training, only the current scale’s linear projections
are needed, thus we hold a single set of 10 linear head projections.
All LeakyReLU activations have a slope of 0.02 for negative values except when we use a classic
discriminator for single image training, for which we use a slope of 0.2. Additionally, the genera-
tor’s last conv-block activation at each scale is Tanh instead of ReLU and the discriminator’s last
convolutional block at each scale does not include any activation.

Differently from [3], but similarly to [2] we do not gradually increase the number of kernels during
training.

Grouped convolutions were used in order to perform parallel computations in the main network for
each image with its respective weights to speed up training.

2.2 Progressive training

We train with an initial noise of width s0 = 25 pixels, except when training on the 50-images dataset
and for the single mini-batch experiment (for which we use s0 = 28 and s0 = 27 respectively) such
that the dimensions of the initial noise are (⌈s0 ∗ ar⌉, s0) where ar is the aspect ratio of the image. If
trained with multiple images, the default aspect ratio used for training is 3/4.
In terms of sizes of the images processed at each scale, we progress in a geometrical way as [3] with
a scale factor of r = 0.6 i.e., at each scale i > 0 ,images of size si =

si−1

r
are processed. This results

in 7 scales for an image of size 256. Although we train in a progressive manner, our hypernetworks
receives as input (128,128) constant sized versions of the real images regardless of the current scale
processed. We progress from a scale to another at the end of the training of a current scale in the
generator by copying the weights of its 10 linear projections to the next scale’s projections and freeze
the current scale, for the discriminator, we simply copy the weights of its linear projections and can
safely delete its current set of linear projections from memory.

2.3 Optimization

The loss function is minimized using Adam optimizer with momentum parameters β1 = 0.5,
β2 = 0.999 and different learning rates for each training setting, which we decreased by a factor of
0.1 after 80% of the iterations. We used λ1 = 0.1 and λ2 = 50 for the coefficient of the gradient
penalty in WGAN and the reconstruction loss respectively, λ2 = 10 can also be used and yield
good results. We clip the gradient s.t it has a maximal L2 norm of 1 for both the generators and
discriminator. Batch sizes of 16 were used for all experiments involving a dataset of images.

lrg lrd

Single image 1e-5 5e-4
Single mini-batch 1e-5 1e-5
Dataset 5e-5 5e-5

Similarly to [3], we use MSE as the reconstruction loss, and at each iteration we multiply each noise
map zi for (i > 1), by the RMSE obtained. This results in zero-mean and MSE varianced gaussian
distributed noise maps and indicates the amount of details that need to be added at that scale for the
current batch. For the reconstruction, a single z01 fixed random noise is used for all the images.
For feedforward modeling and applications, we use this single fixed random noise, and we multiply
each scale’s intermediate noise map by the RMSE obtained at the last iteration of this same scale
during training.

6

2.4 Number of iterations

number of iterations by scale

Single image 1500-2000
Single mini-batch 2000
Places-50 4000
LSUN-50 5000
C250 20000
C500 30000
V500 25000
V2500 100000
V5000 150000

2.5 GPU usage for training models

GPU memory usage (256x256 resolution)

Single image 11GB
Single mini-batch 11GB-15GB
Datasets 22GB

At test time, the GPU memory usage is significantly reduced and requires 5GB. We trained all of
our single image models and baselines with a single 12GB GeForce RTX 2080. The other models
were trained on a single 32GB Tesla V100. Notice we compared the single and the dataset runtimes
in Table 1 in the main paper, by approximating the runtime on a GeForce, training until scale 5 on
GeForce RTX 2080 (until 12GB is out of memory) and by taking in account the difference in power
between the latter and V100 GPU.

3 Training with a pretrained image encoder

In this section, we consider training our method with a "frozen" pretrained ResNet34 i.e., optimizing
only the linear projections.

Our method uses single linear layer projections, which strongly restricts the expressiveness of our
network if the image encoder is “frozen”. We thus experimented with increasing the depth of these
projection networks.

Below are the results on Places-50 :

End-to-end (our setting) 1 layer 3 layer 5 layer

SIFID 0.05 0.26 0.14 0.17
mSIFID 0.07 0.56 0.23 0.27
Diversity 0.50 0.79 0.63 0.63

If the problem could be learned with a "small enough" depth, our method would benefit from even
faster training, at the cost of enlarging the model (and its consequences on inference time). Even
though the results are convincing (both visually and quantitatively) in favor of end-to-end training, we
prefer not to reject the hypothesis that proper hyper-parameter tuning and perhaps some adaptations
could lead to decent results with a frozen backbone.

4 Single-Image Generation

7

(a) (b)

Figure 2: Single-Image model architecture. (a) The complete hierarchical structure of generators
and discriminators. (b) The inner architecture of gi, consists of noise addition and residual connection.

Fig. 2 illustrates the single-image architecture with the internal skip connection, of [3], as we discuss
in section 2.

8

Figure 3: Places-50 real images : The dataset used in SinGAN

9

Figure 4: Places-50 image generation: Results of our model when training on a single image one by
one, similarly to previous methods.

10

Figure 5: Places-50 image generation: Results of our model when training on the 50 images
altogether as a dataset.

11

Figure 6: Places-50 image generation: Comparison between single image training and dataset
training.

12

Figure 7: Places-50 image generation: Comparison between different batch sizes when training in a
single mini-batch scheme. As can be seen, our method yields realistic results with any batch size.

13

Figure 8: Valley-500 image generation

14

Figure 9: Valley-2500 image generation

15

Figure 10: Valley-5000 image generation

16

Figure 11: LSUN-50 image generation: Comparison with baselines. Our approach yields signifi-
cantly more realistic results when trained on images with complex structures.

17

Figure 12: Churches-250 image generation: Comparison with baselines. Our approach often
succeed to create realistic and crisp images even when single image alternatives fail.

18

Figure 13: 50 randomly sampled images generation - CelebA dataset: Comparison with single
image alternatives, where we used the same initial noise size (of width 22) for all of the methods to
allow for a fair comparison. Even though our method generates more realistic images than baselines
by a notable margin, our results are still non-comparable to classic face generation (by standard GAN
and Flow-based models). Thus, we consider face datasets as a limitation of our approach.

19

5 Editing, Harmonization and Animation

Figure 15: Editing, Harmonization and Animation: Comparison with baselines. Our method
allows to efficiently train one unified model for all images and various tasks. Results were obtained
when training on these images along with Places-50 dataset.

20

Figure 14: Randomly sized image generation: Due to the fully convolutional architecture adopted,
all of our models are able to generate an image with an arbitrary size of aspect ratio by simply
changing the dimensions of the noise maps used. The results shown were obtained with single
mini-batch training and V500 dataset training.

21

6 Interpolation

We conducted an experiment to study the smoothness of our interpolations at different scales. We
estimated the slope of the generated images Hi(α), for a fixed set of random seeds, on a discrete

set of values α ∈ {0.1j}9j=1 as follows: si,j :=
∥Hi(αj+1)−Hi(αj)∥1

h×w·(αj+1−αj)
, where h× w is the size of the

images. As can be seen in Fig. 16, the interpolations at higher scales tend to be significantly smoother
than the interpolations at lower scales.

Figure 16: Smoothness rate of the interpolations. We plot the smoothness rate si,j (y-axis) as a
function of α (x-axis), averaged over 500 pairs of images A,B along with their standard deviations.

22

Figure 17: Interpolation - Places-50: Results show different generated images when injecting
through the first, middle and last scale of the model.

23

Figure 18: Interpolation - Valley-500: Results show different generated images when injecting
through the first, middle and last scale of the model.

24

Figure 19: Interpolation - Valley-2500: Results show different generated images when injecting
through the first, middle and last scale of the model.

25

Figure 20: Interpolation - Valley-5000: Results show different generated images when injecting
through the first, middle and last scale of the model.

26

7 Feedforward modeling

Figure 21: Feedforward modeling: Our meta learning approach allows us to feedforward an unseen
image through our model in a fraction of a second and generate coherent results. Results were
obtained using the 100 validation set from Valley category of Places dataset, when trained on the
train set of Valley-5000 (the whole category).

27

References

[1] B. Hanin and M. Sellke. Approximating continuous functions by relu nets of minimal width,
2017.

[2] T. Hinz, M. Fisher, O. Wang, and S. Wermter. Improved techniques for training single-image
gans, 2020.

[3] T. R. Shaham, T. Dekel, and T. Michaeli. Singan: Learning a generative model from a single
natural image. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 4570–4580, 2019.

28

	Theoretical Analysis
	Shared Discriminator
	Shared Feature Extractor
	Our Method

	Training
	Architecture
	Progressive training
	Optimization
	Number of iterations
	GPU usage for training models

	Training with a pretrained image encoder
	Single-Image Generation
	Editing, Harmonization and Animation
	Interpolation
	Feedforward modeling

