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A Appendix

A.1 Proofs of Theorems

We represent the adjacency matrix and the diagonal degree matrix of graph G by A and D respectively,
represent D+I and A+I by D̃ and Ã. Then we denote D̃−1Ã as a transition matrix P . Suppose P is
connected, which means the graph is connected, for any initial distribution π0, let

π̃(π0) = lim
k→∞

π0P
k, (1)

then according to [7], for any initial distribution π0

π̃(π0)i =
1

n

n∑
j=1

Pji, (2)

where π̃i denotes the ith component of π̃(π0), and n denotes the number of nodes in graph. If matrix
P is unconnected, we can divide P into connected blocks. Then for each blocks(denoted as Bg),
there always be

π̃(π0)i =
1

ng

∑
j∈Bg

Pji ∗
∑
j∈Bg

π0j , (3)

where ng is the number of nodes in Bg. To make the proof concise, we will assume matrix P
is connected, otherwise we can perform the same operation inside each block. Therefore, π̃ is
independent to π0, thus we replace π̃(π0) by π̃.
Definition A.1 (Local Mixing Time). The local mixing time (parameterized by ϵ) with an initial
distribution is defined as

T (π0, ϵ) = min{t : ||π̃ − π0P
t||2 < ϵ}, (4)

where "|| · ||2" symbols two-nor m.

In order to consider the impact of each node to the others separately, let π0 = ei, where ei is a one-hot
vector with the ith component equal to 1, and the other components equal to 0. According to [6] we
have lemma A.1.
Lemma A.1.

|(eiP t)j − π̃j | ≤

√
d̃j

d̃i
λt
2, (5)
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where λ2 is the second large eigenvalue of P and d̃i denotes the degree of node vi plus 1 (to include
itself).

d̃i = di + 1, d̃j = dj + 1,

Theorem A.2.

T (ei, ϵ) ≤ logλ2
(ϵ

√
d̃i

2m+ n
), (6)

where m and n denote the number of edges and nodes in graph G separately.

d̃i = di + 1,

Proof. [6] shows that when π0 = ei,

|(eiP t)j − π̃j | ≤

√
d̃j

d̃i
λt
2, (7)

where (eiP
t)j symbols the jth element of eiP t. We denote eiP

t as πi(t), then

||π̃ − πi(t)||22 =

n∑
j=1

(π̃j − πi(t)j)
2

≤

n∑
j=1

d̃j

d̃i
λ2t
2 =

2m+ n

d̃i
λ2t
2 ,

(8)

which means

||π̃ − πi(t)||2 ≤

√
2m+ n

d̃i
λt
2. (9)

Now let

ϵ =

√
2m+ n

d̃i
λt
2,

there exists

T (ei, ϵ) ≤ logλ2
(ϵ

√
d̃i

2m+ n
).

Next consider the real situation in SGC with n×m-dimension matrix X(0) as input, where n is the
number of nodes, m is the number of features. We apply P as the normalized adjacent matrix.(The
definition of P is the same as Ã in main text). In feature propagation we have

X(t) = P tX(0),

Now consider the hth feature of X , we define an n× n influence matrix

Ihij(t) =
∂X(t)ih
∂X(0)jh

, (10)

Because Ih(k) is independent to h, we replace Ih(k) by I(k), which can be formulated as

I(k) = Ih(k), ∀h ∈ {1, 2, .., f}, (11)

where f symbols the number of features of X .
Definition A.2 (Local Smoothing Iteration). The Local Smoothing Iteration (parameterized by ϵ)
is defined as

K(i, ϵ) = min{k : ||Ĩi − Ii(k)||2 < ϵ}. (12)
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According to Theorem A.2, there exists
Theorem A.3 (Theorem 3.1 in main text). When the normalized adjacent matrix is P ,

K(i, ϵ) ≤ logλ2
(ϵ

√
d̃i

2m+ n
). (13)

Proof. From equation (9) we can derive that

||eiP∞ − eiP
k||2 ≤

√
2m+ n

d̃i
λk
2 .

Because
Ii(k) = P k

i = eiP
k Ii(∞) = P∞

i = eiP
∞,

we have

||Ii(∞)− Ii(k)||2 ≤

√
2m+ n

d̃i
λk
2 .

Now let

ϵ =

√
2m+ n

d̃i
λk
2 ,

there exists

K(i, ϵ) ≤ logλ2
(ϵ

√
d̃i

2m+ n
).

Therefore, we expand Theorem A.3 to the propagation in SGC or our method. What is remarkable,
Theorem A.3 requires P , which is equal to D̃−1Ã as the normalized adjacent matrix.

From Theorem A.3 we can conclude that the node which has a lager degree may need more steps to
propagate. At the same time, we have another bond of local mixing time as following.
Theorem A.4. For each node vi in graph G, there always exits

T (ei, ϵ) ≤ max{T (ej , ϵ), j ∈ N(i)}+ 1. (14)

where N(i) is the set of node vi’s neighbours.

Proof.

∥|π̃ − eiP
t+1||2 =

1

|N(i)|
∑

j∈N(i)

||π̃ − ejP
t||2

≤ max
j∈N(i)

||π̃ − ejP
t||2.

(15)

Therefore, when
max
j∈N(i)

||π̃ − ejP
t||2 ≤ ϵ,

there exists
||π̃ − eiP

t+1||2 ≤ ϵ.

Thus we can derive that
T (ei, ϵ) ≤ max{T (ej , ϵ), j ∈ N(i)}+ 1.

As we extend Theorem A.2 to Theorem A.3, according to Theorem A.4, there always be
Theorem A.5 (Theorem 3.2 in main text). For each node vi in graph G, there always exits

K(i, ϵ) ≤ max{K(j, ϵ), j ∈ N(i)}+ 1. (16)
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Table 1: Results of different base models on PubMed.

Base Models Models Accuracy Gain

MLP

Base 72.7±0.6 -
+ NDLS-F 81.1±0.6 + 8.4
+ NDLS-L 81.1±0.6 + 8.4

+ NDLS (both) 81.4±0.4 + 8.7

RF

Base 74.4±0.2 -
+ NDLS-F 80.3±0.1 + 5.9
+ NDLS-L 80.0±0.2 + 5.6

+ NDLS (both) 80.5±0.4 + 6.1

XGB

Base 74.1±0.2 -
+ NDLS-F 81.0±0.3 + 6.9
+ NDLS-L 79.8±0.2 + 5.7

+ NDLS (both) 81.6±0.3 + 7.5

A.2 Results with More Base Models

Our proposed NDLS consists of three stages: (1) feature smoothing with NDLS (NDLS-F), (2) model
training with smoothed features, and (3) label smoothing with NDLS (NDLS-L). In stage (2), the
default option of the base model is a Multilayer Perceptron (MLP). Besides MLP, many other models
can also be used in stage (2) to generate soft labels. To verify it, here we replace the MLP in stage (2)
with popular machine learning models Random Forest [11] and XGBoost [4], and measure their node
classification performance on PubMed dataset. The experiment results are shown in Table 1 where
Random Forest and XGBoost are abbreviated as RF and XGB respectively.

Compared to the vanilla model, both Random Forest and XGBoost achieve significant performance
gain with the addition of our NDLS. With the help of NDLS, Random Forest and XGBoost
outperforms their base models by 6.1% and 7.5% respectively. From Table 1, we can observe
that both NDLS-F and NDLS-L can contribute great performance boost to the base model, where the
gains are at least 5%. When all equipped with both NDLS-F and NDLS-L, XGBoost beat the default
MLP, achieving a test accuracy of 81.6%. Although Random Forest – 80.5% – cannot outperform
the other two models, it is still a competitive model.

The above experiment demonstrates that the base model selection in stage (2) is rather flexible in our
NDLS. Both traditional machine learning methods and neural networks are promising candidates in
the proposed method.

A.3 Dataset Description

Cora, Citeseer, and Pubmed1 are three popular citation network datasets, and we follow the public
training/validation/test split in GCN [9]. In these three networks, papers from different topics are
considered as nodes, and the edges are citations among the papers. The node attributes are binary
word vectors, and class labels are the topics papers belong to.

Reddit is a social network dataset derived from the community structure of numerous Reddit posts.
It is a well-known inductive training dataset, and the training/validation/test split in our experiment is
the same as the one in GraphSAGE [8].

1https://github.com/tkipf/gcn/tree/master/gcn/data
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Table 2: URLs of baseline codes.

Type Baselines URLs

Coupled GCN https://github.com/rusty1s/pytorch_geometric
GAT https://github.com/rusty1s/pytorch_geometric

Decoupled

APPNP https://github.com/rusty1s/pytorch_geometric
PPRGo https://github.com/TUM-DAML/pprgo_pytorch

AP-GCN https://github.com/spindro/AP-GCN
DAGNN https://github.com/divelab/DeeperGNN

Sampling

GraphSAGE https://github.com/williamleif/GraphSAGE
GraphSAINT https://github.com/GraphSAINT/GraphSAINT

FastGCN https://github.com/matenure/FastGCN
Cluster-GCN https://github.com/benedekrozemberczki/ClusterGCN

Linear

SGC https://github.com/Tiiiger/SGC
SIGN https://github.com/twitter-research/sign
S2GC https://github.com/allenhaozhu/SSGC
GBP https://github.com/chennnM/GBP

Flickr originates from NUS-wide 2 and contains different types of images based on the descriptions
and common properties of online images. The public version of Reddit and Flickr provided by
GraphSAINT3 is used in our paper.

Industry is a short-form video graph, collected from a real-world mobile application from our
industrial cooperative enterprise. We sampled 1,000,000 users and videos from the app, and treat
these items as nodes. The edges in the generated bipartite graph represent that the user clicks the
short-form videos. Each user has 64 features and the target is to category these short-form videos
into 253 different classes.

ogbn-papers100M is a directed citation graph of 111 million papers indexed by MAG [16]. Among
its node set, approximately 1.5 million of them are arXiv papers, each of which is manually labeled
with one of arXiv’s subject areas. Currently, this dataset is much larger than any existing public node
classification datasets.

A.4 Compared Baselines

The main characteristic of all baselines are listed below:

• GCN [9]: GCN is a novel and efficient method for semi-supervised classification on
graph-structured data.

• GAT [15]: GAT leverages masked self-attention layers to specify different weights to
different nodes in a neighborhood, thus better represent graph information.

• JK-Net [18]: JK-Net is a flexible network embedding method that could gather different
neighborhood ranges to enable better structure-aware representation.

• APPNP [10]: APPNP uses the relationship between graph convolution networks (GCN)
and PageRank to derive improved node representations.

• AP-GCN [14]: AP-GCN uses a halting unit to decide a receptive range of a given node.

• DAGNN [12]: DAGNN proposes to decouple the representation transformation and
propagation, and show that deep graph neural networks without this entanglement can
leverage large receptive fields without suffering from performance deterioration.

• PPRGo [1]: utilizes an efficient approximation of information diffusion in GNNs resulting
in significant speed gains while maintaining state-of-the-art prediction performance.

2http://lms.comp.nus.edu.sg/research/NUS-WIDE.html
3https://github.com/GraphSAINT/GraphSAINT
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Table 3: Performance comparison between C&S and NDLS-L

Methods Cora Citeseer PubMed ogbn-papers100M
MLP+C&S 87.2 76.6 88.3 63.9

MLP+NDLS-L 88.1 78.3 88.5 64.6

• GraphSAGE [8]: GraphSAGE is an inductive framework that leverages node attribute
information to efficiently generate representations on previously unseen data.

• FastGCN [2]: FastGCN interprets graph convolutions as integral transforms of embedding
functions under probability measures.

• Cluster-GCN [5]: Cluster-GCN is a novel GCN algorithm that is suitable for SGD-based
training by exploiting the graph clustering structure.

• GraphSAINT [19]: GraphSAINT constructs mini-batches by sampling the training graph,
rather than the nodes or edges across GCN layers.

• SGC [17]: SGC simplifies GCN by removing nonlinearities and collapsing weight matrices
between consecutive layers.

• SIGN [13]: SIGN is an efficient and scalable graph embedding method that sidesteps graph
sampling in GCN and uses different local graph operators to support different tasks.

• S2GC [20]: S2GC uses a modified Markov Diffusion Kernel to derive a variant of GCN,
and it can be used as a trade-off of low-pass and high-pass filter which captures the global
and local contexts of each node.

• GBP [3]: GBP utilizes a localized bidirectional propagation process from both the feature
vectors and the training/testing nodes

Table 2 summarizes the github URLs of the compared baselines. Following the original paper, we
implement JK-Net by ourself since there is no official version available.

A.5 Implementation Details

Hyperparameter details. In stage (1), when computing the Local Smoothing Iteration, the maximal
value of k in equation (12) is set to 200 and the optimal ϵ value is get by means of a grid search
from {0.01, 0.03, 0.05}. In stage (2), we use a simple two-layer MLP to get the base prediction. The
hidden size is set to 64 in small datasets – Cora, Citeseer and Pubmed. While in larger datasets –
Flicker, Reddit, Industry and ogbn-papers100M, the hidden size is set to 256. As for the dropout
percentage and the learning rate, we use a grid search from {0.2, 0.4, 0.6, 0.8} and {0.1, 0.01, 0.001}
respectively. In stage (3), during the computation of the Local Smoothing Iteration, the maximal
value of k is set to 40. The optimal value of ϵ is obtained through the same process in stage (1).

Implementation environment. The experiments are conducted on a machine with Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20GHz, and a single NVIDIA TITAN RTX GPU with 24GB memory. The
operating system of the machine is Ubuntu 16.04. As for software versions, we use Python 3.6,
Pytorch 1.7.1 and CUDA 10.1.

A.6 Comparison and Combination with Correct&Smooth

Similar to our NDLS-L, Correct and Smooth (C&S) also applies post-processing on the model
prediction. Therefore, we compare NDLS-L with C&S below.

Adaptivity to node. C&S adopts a propagation scheme based on Personalized PageRank (PPR),
which always maintains certain input information to slow down the occurrence of over-smoothing.
The expected number of smoothing iterations is controlled by the restart probability, which is a
constant for all nodes. Therefore, C&S still falls into the routine of fixed smoothing iteration. Instead,
NDLS-L employs node-specific smoothing iterations. We compare each method’s performance
(test accuracy, %) under the same data split as in the C&S paper (60%/20%/20% on three citation
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Table 4: Performance comparison under varied label rate on the Cora dataset.

Methods 2% 5% 10% 20% 40% 60%
MLP+S 63.1 77.8 82.6 84.2 85.4 86.4

MLP+C&S 62.8 76.7 82.8 84.9 86.4 87.2
MLP+NDLS-L 77.4 83.9 85.3 86.5 87.6 88.1

Table 5: Performance comparison after combining the node-dependent idea with C&S.

Methods Cora Citeseer PubMed
MLP+C&S 76.7 70.8 76.5

MLP+C&S+nd 79.9 71.1 78.4

Table 6: Efficiency comparison on the PubMed dataset.

SGC S2GC GBP NDLS SIGN JK-Net DAGNN GCN ResGCN APPNP GAT
Time 1.00 1.19 1.20 1.50 1.59 11.42 14.39 20.43 20.49 28.88 33.23

Accuracy 78.9 79.9 80.6 81.4 79.5 78.8 80.5 79.3 78.6 80.1 79.0

networks, official split on ogbn-papers100M), and the experimental results in Table 3 show that
NDLS-L outperforms C&S in different datasets.

Sensitivity to label rate. During the “Correct” stage, C&S propagates uncertainties from the training
data across the graph to correct the base predictions. However, the uncertainties might not be accurate
when the number of training nodes is relatively small, thus even degrading the performance. To
confirm the above assumption, we conduct experiments on the Cora dataset under different label rates,
and the experimental results are provided in Table 4. As illustrated, the result of C&S drops much
faster than NDLS-L’s when the label rate decreases. What’s more, MLP+S (removing the “Correct”
stage) outperforms MLP+C&S when the label rate is low as expected.

Compared with C&S, NDLS is more general in terms of smoothing types. C&S can only smooth
label predictions. Instead, NDLS can smooth both node features and label predictions and combine
them to boost the model performance further.

Node Adaptive C&S. The node-dependent mechanism in our NDLS can easily be combined with
C&S. The two stages of C&S both contain a smoothing process using the personalized PageRank
matrix, where a coefficient controls the remaining percentage of the original node feature. Here, we
can precompute the smoothed node features after the same smoothing step yet under different values
like 0.1, 0.2, ..., 0.9. After that, we adopt the same strategy in our NDLS: for each node, we choose
the first in the ascending order that the distance from the smoothed node feature to the stationarity is
less than a tuned hyperparameter. By this means, the smoothing process in C&S can be carried out in
a node-dependent way.

We also evaluate the performance of C&S combined with the node-dependent idea (represented as
C&S+nd) on the three citation networks under official splits, and the experimental results in Table 5
show that C&S combined with NDLS consistently outperforms the original version of C&S.

A.7 Training Efficiency Study

we measure the training efficiency of the compared baselines on the widely used PubMed dataset.
Using the training time of SGC as the baseline, the relative training time and the corresponding test
accuracy of NDLS and the baseline methods are shown in Table 6. Compared with other baselines,
NDLS can get the highest test accuracy while maintaining competitive training efficiency.
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Table 7: Performance comparison on the ogbn-arxiv dataset.

MLP MLP+C&S GCN SGC SIGN DAGNN JK-Net S2GC GBP NDLS GAT
Accuracy 55.50 71.58 71.74 71.72 71.95 72.09 72.19 72.21 72.45 73.04 73.56

A.8 Experiments on ogbn-arxiv

We also conduct experiments on the ogbn-arxiv dataset. The experiment results (test accuracy, %) are
provided in Table 7. Although GAT outperforms NDLS on ogbn-arxiv dataset, it is hard to scale to
large graphs like ogbn-papers100M dataset. Note that MLP+C&S on the OGB leaderboard makes use
of not only the original node feature but also diffusion embeddings and spectral embeddings. Here
we remove the latter two embeddings for fairness, and the authentic MLP+C&S achieves 71.58% on
the ogbn-arxiv dataset.
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