Rate-Optimal Subspace Estimation on Random Graphs

Zhixin Zhou ${ }^{1}$, Fan Zhou ${ }^{2}$, Ping Li ${ }^{2}$, and Cun-Hui Zhang ${ }^{3}$
${ }^{1}$ Department of Management Sciences, City University of Hong Kong
${ }^{2}$ Cognitive Computing Lab, Baidu Research
${ }^{3}$ Department of Statistics, Rutgers University
${ }^{1}$ zhixzhou@cityu.edu.hk, ${ }^{2}$ \{zfyyde001, pingli98\}@gmail.com, ${ }^{3}$ cunhui@stat.rutgers.edu

A Proof of Theorem 1

For operator norm. Let $\hat{\mathbf{M}}$ be obtained from the last step of the algorithm, then by [16, Theorem 2.1], $\mathbf{A}_{\text {re }}$ satisfies

$$
\begin{equation*}
\mathbb{P}\left(\left\|\mathbf{A}_{\mathrm{re}}-\mathbf{M}\right\|_{\mathrm{op}} \lesssim \sqrt{n_{1} p}\right) \geq 1-n_{1}^{-1} \tag{16}
\end{equation*}
$$

By triangle inequality, we have

$$
\begin{equation*}
\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}} \leq\left\|\hat{\mathbf{M}}-\mathbf{A}_{\mathrm{re}}\right\|_{\mathrm{op}}+\left\|\mathbf{A}_{\mathrm{re}}-\mathbf{M}\right\|_{\mathrm{op}} \tag{17}
\end{equation*}
$$

Now it remains to find the upper bound for $\left\|\hat{\mathbf{M}}-\mathbf{A}_{\text {re }}\right\|_{\text {op }}$. We have

$$
\mathbf{A}_{\mathrm{re}}-\hat{\mathbf{M}}=\sum_{i=1}^{n_{2}} \sigma_{i}\left(\mathbf{A}_{\mathrm{re}}\right) \mathbf{U}_{i} \mathbf{V}_{i}^{\top}-\sum_{i=1}^{r^{\prime}} \sigma_{i}\left(\mathbf{A}_{\mathrm{re}}\right) \mathbf{U}_{i} \mathbf{V}_{i}^{\top}=\sum_{i=r^{\prime}+1}^{n_{2}} \sigma_{i}\left(\mathbf{A}_{\mathrm{re}}\right) \mathbf{U V}^{\top}
$$

Therefore, $\left\|\hat{\mathbf{M}}-\mathbf{A}_{\mathrm{re}}\right\|_{\mathrm{op}}=\sigma_{r^{\prime}+1}\left(\mathbf{A}_{\mathrm{re}}\right)$. Now it is sufficient to show that $\sigma_{r^{\prime}+1}\left(\mathbf{A}_{\mathrm{re}}\right) \lesssim \sqrt{n_{1} p}$ with high probability. Suppose $r^{\prime}=r$, then $\sigma_{r^{\prime}+1}(\mathbf{M})=0$. Suppose $r^{\prime}=\left\lfloor n_{2} p\right\rfloor$, then applying $\operatorname{tr}\left(\mathbf{M}^{\top} \mathbf{M}\right) \leq n_{1} n_{2} p^{2}$,

$$
\begin{equation*}
\sigma_{r^{\prime}+1}(\mathbf{M}) \leq \sqrt{\frac{\operatorname{tr}\left(\mathbf{M}^{\top} \mathbf{M}\right)}{r^{\prime}+1}} \leq \sqrt{\frac{\operatorname{tr}\left(\mathbf{M}^{\top} \mathbf{M}\right)}{n_{2} p}} \leq \sqrt{n_{1} p} \tag{18}
\end{equation*}
$$

By Weyl's inequality (Theorem 6), on the event $\left\|\mathbf{A}_{\mathrm{re}}-\mathbf{M}\right\|_{\mathrm{op}} \lesssim \sqrt{n_{1} p}$,

$$
\begin{equation*}
\sigma_{r^{\prime}+1}\left(\mathbf{A}_{\mathrm{re}}\right) \leq \sigma_{r^{\prime}+1}(\mathbf{M})+\left\|\mathbf{A}_{\mathrm{re}}-\mathbf{M}\right\|_{\mathrm{op}} \lesssim \sqrt{n_{1} p} \tag{19}
\end{equation*}
$$

with probability at least $1-n_{1}^{-1}$. This completes the proof for $\|\hat{\mathbf{M}}-\mathbf{M}\|_{\text {op }} \lesssim \sqrt{n_{1} p}$ with high probability. For $\|\hat{\mathbf{M}}-\mathbf{M}\|_{\text {op }} \lesssim \sqrt{n_{1} n_{2} p^{2}}$, it is sufficient to show that $\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}} \lesssim \sqrt{n_{1} n_{2} p^{2}}$. This will be proved as follows.

For Frobenius norm. Case 1: $r^{\prime}=r$. Since $\hat{\mathbf{M}}$ and \mathbf{M} has at most $\operatorname{rank} r, \operatorname{rank}(\hat{\mathbf{M}}-\mathbf{M}) \leq 2 r$. Thus,

$$
\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}} \leq \sqrt{2 r}\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}} \lesssim 2 \sqrt{2 n_{1} p r}
$$

which gives the desired result.
Case 2: $r^{\prime}=\left\lfloor n_{2} p\right\rfloor$. Let

$$
\mathcal{T}_{r^{\prime}}(\mathbf{M})=\sum_{i=1}^{r^{\prime}} \sigma_{i}(\mathbf{M}) \mathbf{U} \mathbf{V}^{\top}
$$

then by triangle inequality,

$$
\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}} \leq\left\|\hat{\mathbf{M}}-\mathcal{T}_{r^{\prime}}(\mathbf{M})\right\|_{\mathrm{F}}+\left\|\mathcal{T}_{r^{\prime}}(\mathbf{M})-\mathbf{M}\right\|_{\mathrm{F}}
$$

For the first term, on the event $\|\hat{\mathbf{M}}-\mathbf{M}\|_{\text {op }} \lesssim \sqrt{n_{1} p}$, the first term on the right hand side of the previous equation is bounded by

$$
\begin{aligned}
\left\|\hat{\mathbf{M}}-\mathcal{T}_{r^{\prime}}(\mathbf{M})\right\|_{\mathrm{F}} & \leq \sqrt{r^{\prime}}\left\|\hat{\mathbf{M}}-\mathcal{T}_{r^{\prime}}(\mathbf{M})\right\|_{\mathrm{op}} \\
& \leq \sqrt{n_{2} p}\left(\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}+\left\|\mathbf{M}-\mathcal{T}_{r^{\prime}}(\mathbf{M})\right\|_{\mathrm{op}}\right) \\
& \lesssim \sqrt{n_{2} p}\left(\sqrt{n_{1} p}+\sigma_{r^{\prime}+1}(\mathbf{M})\right) \\
& \lesssim \sqrt{n_{1} n_{2} p^{2}}
\end{aligned}
$$

where we have applied (18) in the last inequality. Now for the other term,

$$
\left\|\mathcal{T}_{r^{\prime}}(\mathbf{M})-\mathbf{M}\right\|_{\mathrm{F}} \leq 2\|\mathbf{M}\|_{\mathrm{F}} \leq 2 \sqrt{\operatorname{tr}\left(\mathbf{M}^{\top} \mathbf{M}\right)} \leq 2 \sqrt{n_{1} n_{2} p^{2}}
$$

Therefore, $\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}} \lesssim \sqrt{n_{1} n_{2} p^{2}}$ with probability at least $1-n_{1}^{-1}$.

B Proof of Theorem 2

We denote the output of Theorem 1 by $\hat{\mathbf{M}}_{1}$ and the output of Theorem 2 by $\hat{\mathbf{M}}_{2}$. We will prove the following result on the event $\left\|\mathbf{A}_{\mathrm{re}}-\mathbf{M}\right\|_{\mathrm{op}} \lesssim \sqrt{n_{1} p}$.
For operator norm. To prove $\left\|\hat{\mathbf{M}}_{2}-\mathbf{M}\right\|_{\text {op }} \lesssim \sqrt{n_{1} p}$, it is sufficient to show that $\left\|\hat{\mathbf{M}}_{1}-\hat{\mathbf{M}}_{2}\right\|_{\text {op }} \lesssim$ $\sqrt{n_{1} p}$. Using the definition of these two estimators,

$$
\left\|\hat{\mathbf{M}}_{1}-\hat{\mathbf{M}}_{2}\right\|_{\mathrm{op}}=\sigma_{r^{\prime}+1}\left(\mathbf{A}_{\mathrm{re}}\right)
$$

Then the proof is complete by applying (19). Now we need to show $\left\|\hat{\mathbf{M}}_{2}-\mathbf{M}\right\|_{\text {op }} \lesssim \sqrt{n_{1} n_{2} p^{2}}$. Since the operator norm is bounded by the Frobenius norm, we only need to prove $\left\|\hat{\mathbf{M}}_{2}-\mathbf{M}\right\|_{\mathrm{F}} \lesssim$ $\sqrt{n_{1} n_{2} p^{2}}$. See the following proof for this bound.
For Frobenius norm. Case 1: $r^{\prime}=r$. Applying (18), we have

$$
\left\|\hat{\mathbf{M}}_{1}-\hat{\mathbf{M}}_{2}\right\|_{\mathrm{F}} \leq \sigma_{r^{\prime}+1} r^{\prime} \lesssim \sqrt{n_{1} p r}
$$

Combining the result of Theorem 3, it shows $\left\|\hat{\mathbf{M}}_{2}-\mathbf{M}\right\|_{\mathrm{F}} \lesssim \sqrt{n_{1} p r}$.
Case 2: $r^{\prime}=\left\lfloor n_{2} p\right\rfloor$. Since the inequality $\left\|\hat{\mathbf{M}}_{2}-\mathbf{M}\right\|_{\text {op }} \lesssim \sqrt{n_{1} p}$ still holds, the proof is identical the Case 2 for Frobenius norm of the proof of Theorem 1.

C Proof of Theorem 3

Firstly, we will prove (7). The proof is an application of Fano's inequality. We assume $n_{1} \geq n_{2}$ without loss of generality in this proof. We first derive the packing number of the parameter space $\boldsymbol{\Theta}=\boldsymbol{\Theta}_{1}\left(n_{1}, n_{2}, p, r\right)$ equipped with Frobenius norm.
Lemma 1. For $p \in(0,1]$ and positive integers $n_{1}, n_{2} \geq r$, there exists a finite subset of the parameter space $\boldsymbol{\Theta}_{1}\left(n_{1}, n_{2}, p, r\right)$ satisfying
(a) The cardinality of this subset is at least $\exp \left(\frac{n_{1} r}{5}\right)$.
(b) For every \mathbf{M} and $\tilde{\mathbf{M}}$ in this subset, $\frac{\left(n_{1} p r\right) \wedge\left(n_{1} n_{2} p^{2}\right)}{5000} \leq\|\mathbf{M}-\tilde{\mathbf{M}}\|_{F}^{2} \leq \frac{n_{1} p r}{625}$.
(c) For every \mathbf{M} and $\tilde{\mathbf{M}}$ in this subset, $\mathbf{M}_{i j}=0$ if and only if $\tilde{\mathbf{M}}_{i j}=0$. That is, $\{(i, j)$: $\left.\mathbf{M}_{i j}=0\right\}=\left\{(i, j): \tilde{\mathbf{M}}_{i j}=0\right\}$
(d) For \mathbf{M} in this subset, if $\mathbf{M} \neq 0$, then $\mathbf{M}_{i j} \in\left[\frac{12 p}{25}, \frac{13 p}{25}\right]$.

Proof. Let us define random matrix

$$
\mathbf{M}=\frac{p}{2}\left(\mathbf{1}_{n_{1} \times\left(r\left\lfloor\frac{n_{2}}{r} \wedge \frac{1}{p}\right\rfloor\right)}, \mathbf{O}\right)+\frac{1}{50} p(\mathbf{U}, \ldots, \mathbf{U}, \mathbf{O})
$$

where $\mathbf{U} \in \mathbb{R}^{n_{1} \times r}$ with i.i.d. rademacher entries and \mathbf{U} is repeated $\left\lfloor\frac{n_{2}}{r} \wedge \frac{1}{p}\right\rfloor$ many times, and \mathbf{O} is a zero matrix with dimension $n_{1} \times\left(n_{2}-r\left\lfloor\frac{n_{2}}{r} \wedge \frac{1}{p}\right\rfloor\right)$. Let $\tilde{\mathbf{U}}$ be an independent copy of \mathbf{U}, and construct $\tilde{\mathbf{M}}$ by $\tilde{\mathbf{U}}$ as an independent copy of \mathbf{M}. In particular, $\mathbf{M}_{i j} \in\left\{0, \frac{12 p}{25}, \frac{13 p}{25}\right\}$, so condition (c) and (d) satisfied. Then $\|\mathbf{U}-\tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} \leq 4 n_{1} r$. Therefore,

$$
\|\mathbf{M}-\tilde{\mathbf{M}}\|_{\mathrm{F}}^{2}=\frac{1}{2500} p^{2}\left\lfloor\frac{n_{2}}{r} \wedge \frac{1}{p}\right\rfloor\|\mathbf{U}-\tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} \leq \frac{n_{1} p r}{625}
$$

Hence, the upper bound of condition (b) is satisfied. On the other hand, since $\frac{n_{2}}{r} \wedge \frac{1}{p} \geq 1,\left\lfloor\frac{n_{2}}{r} \wedge \frac{1}{p}\right\rfloor \geq$ $\frac{1}{2}\left(\frac{n_{2}}{r} \wedge \frac{1}{p}\right)$. Thus,

$$
\|\mathbf{M}-\tilde{\mathbf{M}}\|_{\mathrm{F}}^{2}=\frac{1}{2500} p^{2}\left\lfloor\frac{n_{2}}{r} \wedge \frac{1}{p}\right\rfloor\|\mathbf{U}-\tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} \geq \frac{1}{5000}\left(p \wedge \frac{n_{2} p^{2}}{r}\right)\|\mathbf{U}-\tilde{\mathbf{U}}\|_{\mathrm{F}}^{2}
$$

By Hoeffding's inequality,

$$
\begin{aligned}
\mathbb{P}\left(\|\mathbf{U}-\tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} \leq n_{1} r\right) & =\mathbb{P}\left(\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \sum_{j=1}^{r}\left(\varepsilon_{i j}-\tilde{\varepsilon}_{i j}\right)^{2} \leq r\right) \\
& =\mathbb{P}\left(\frac{1}{2} \sum_{i=1}^{n_{1}} \sum_{j=1}^{r}\left[\left(\varepsilon_{i j}-\tilde{\varepsilon}_{i j}\right)^{2}-2\right] \leq \frac{n_{1}(r-2 r)}{2}\right) \\
& \leq \exp \left(-\frac{n_{1} r}{2}\right)
\end{aligned}
$$

Suppose $\|\mathbf{U}-\tilde{\mathbf{U}}\|_{\mathbf{F}}^{2}>n_{1} r$, then $\|\mathbf{M}-\tilde{\mathbf{M}}\|_{\mathrm{F}}^{2}>\frac{\left(n_{1} p r\right) \wedge\left(n_{1} n_{2} p^{2}\right)}{5000}$ gives the lower bound of condition (b). Now we consider $N=e^{n_{1} r / 5}$ i.i.d. copies. Let $\mathbf{M}^{(m)}, m \in[N]$ be N independent copies of \mathbf{M}, then we have

$$
\begin{aligned}
\mathbb{P}\left(\min _{m, m^{\prime} \in[N]}\left\|\mathbf{M}^{(m)}-\mathbf{M}^{\left(m^{\prime}\right)}\right\|_{F}^{2}>\frac{\left(n_{1} p r\right) \wedge\left(n_{1} n_{2} p^{2}\right)}{5000}\right) & \geq 1-N^{2} \exp \left(-\frac{n_{1} r}{2}\right) \\
& \geq 1-\exp \left(-\frac{n_{1} r}{10}\right)
\end{aligned}
$$

Therefore, we can draw N i.i.d. copies of \mathbf{M} to fulfill the requirements in the lemma with positive probability.

Now we introduce the Fano's inequality. We will use the version provided by [24] in our proofs.
Lemma 2 (Fano's inequality). Assume $N \geq 3$ and suppose $\left\{\theta_{1}, \ldots, \theta_{N}\right\} \subset \Theta$ such that
(i) for all $1 \leq i<j \leq N, d\left(\theta_{i}, \theta_{j}\right) \geq 2 \alpha$, where d is a metric on Θ;
(ii) let P_{i} be the distribution with respect to parameter θ_{i}, then for all $i, j \in[N], P_{i}$ is absolutely continuous with respect to P_{j};
(iii) for all $i, j \in N$, the Kullback-Leibler divergence $D_{K L}\left(P_{i} \| P_{j}\right) \leq \beta \log (N-1)$ for some $0<\beta<1 / 8$.

Then

$$
\begin{equation*}
\inf _{\hat{\theta}} \sup _{\theta \in \Theta} \mathbb{P}(d(\hat{\theta}, \theta) \geq \alpha) \geq \frac{\sqrt{N-1}}{1+\sqrt{N-1}}\left(1-2 \beta-\sqrt{\frac{2 \beta}{\log (N-1)}}\right) \tag{20}
\end{equation*}
$$

Lemma 3. For random adjacency matrix model (1) with parameters $\mathbf{M}, \tilde{\mathbf{M}} \in[a, b]^{n_{1} \times n_{2}}$, their Kullback-Leibler divergence is upper bounded by

$$
D_{K L}\left(P_{\mathbf{M}} \| P_{\tilde{\mathbf{M}}}\right) \leq \frac{\|\mathbf{M}-\tilde{\mathbf{M}}\|_{F}^{2}}{a(1-b)}
$$

Proof. We firstly consider entrywise KL-divergence. For $p, q \in[a, b]$,

$$
\begin{aligned}
D_{\mathrm{KL}}(\operatorname{Ber}(p) \| \operatorname{Ber}(q)) & =p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} \\
& =p \log \left(1+\frac{p-q}{q}\right)+(1-p) \log \left(1-\frac{p-q}{1-q}\right) \\
& \leq p\left(\frac{p-q}{q}\right)+(1-p)\left(-\frac{p-q}{1-q}\right) \\
& =\frac{p(p-q)(1-q)-q(1-p)(p-q)}{q(1-q)} \\
& =\frac{(p-q)^{2}}{q(1-q)} \leq \frac{(p-q)^{2}}{a(1-b)}
\end{aligned}
$$

By independence of each entry, we have $D_{\mathrm{KL}}\left(P_{\mathbf{M}} \| P_{\tilde{\mathbf{M}}}\right) \leq \frac{\|\mathbf{M}-\tilde{\mathbf{M}}\|_{\mathrm{F}}^{2}}{a(1-b)}$.
Now we are ready to prove (7). Let Θ in Lemma 2 with $N=\exp \left(\frac{n_{1} r}{5}\right)$. For distinct $\mathbf{M}, \tilde{\mathbf{M}} \in \Theta$,

$$
D_{\mathrm{KL}}\left(P_{\mathbf{M}} \| P_{\tilde{\mathbf{M}}}\right) \leq \frac{\|\mathbf{M}-\tilde{\mathbf{M}}\|_{\mathrm{F}}^{2}}{\left(\frac{12}{25} p\right)\left(1-\frac{13}{25} p\right)} \leq \frac{n_{1} p r}{625\left(\frac{12}{25} p\right)\left(1-\frac{13}{25} p\right)} \leq \frac{n_{1} r}{144}
$$

Let $\beta=1 / 24$. For $n_{1} \geq 10, \log (N-1) \geq n_{1} r / 6$. Therefore,

$$
D_{\mathrm{KL}}\left(P_{\mathbf{M}} \| P_{\tilde{\mathrm{M}}}\right) \leq \frac{n_{1} r}{144} \leq \beta \log (N-1)
$$

On the other hand, the lower bound on the Frobenius norm satisfies

$$
\|\mathbf{M}-\tilde{\mathbf{M}}\|_{\mathrm{F}} \geq 2 \alpha:=\sqrt{\frac{\left(n_{1} p r\right) \wedge\left(n_{1} n_{2} p^{2}\right)}{5000}}
$$

and $D_{\mathrm{KL}}\left(P_{\mathbf{M}} \| P_{\tilde{\mathbf{M}}}\right) \leq \beta n_{1} r / 6$ for every pair of distinct elements \mathbf{M} and $\tilde{\mathbf{M}}$ in the subset. Then by (20) and straightforward algebra,

$$
\inf _{\hat{\mathbf{M}}} \sup _{i=1,2, \ldots N} \mathbb{P}\left(\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}}^{2} \geq \frac{\left(n_{1} p r\right) \wedge\left(n_{1} n_{2} p^{2}\right)}{20000}\right) \geq \frac{1}{2}
$$

To verify (6), it suffices to observe that

$$
\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}}^{2} \geq\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}^{2}
$$

for any $\hat{\mathbf{M}}$ and \mathbf{M} and consider a restriction on the submodel $\boldsymbol{\Theta}=\boldsymbol{\Theta}_{1}\left(n_{1}, n_{2}, p, 1\right)$.

D Proof of Theorem 4

Lemma 4 (Davis-Kahan theorem for eigenspaces). For symmetric matrices $\mathbf{M}, \hat{\mathbf{M}} \in \mathbb{R}^{n \times n}$, suppose $\mathbf{M}=\mathbf{U}_{1} \boldsymbol{\Lambda}_{1} \mathbf{U}_{1}^{\top}+\mathbf{U}_{2} \boldsymbol{\Lambda}_{2} \mathbf{U}_{2}^{\top}$ and $\hat{\mathbf{M}}=\hat{\mathbf{U}}_{1} \hat{\boldsymbol{\Lambda}}_{1} \hat{\mathbf{U}}_{1}^{\top}+\hat{\mathbf{U}}_{2} \hat{\mathbf{\Lambda}}_{2} \hat{\mathbf{U}}_{2}^{\top}$ where $\left(\mathbf{U}_{1}, \mathbf{U}_{2}\right),\left(\hat{\mathbf{U}}_{1}, \hat{\mathbf{U}}_{2}\right) \in$ $\mathbb{R}^{n_{1} \times n_{2}}$ are orthogonal. Suppose the singular values of $\boldsymbol{\Lambda}_{1}$ are contained in the interval $[a, b]$, and the singular values of $\hat{\boldsymbol{\Lambda}}_{2}$ are excluded from $(a-\delta, b+\delta)$, then

$$
\begin{equation*}
\left\|\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\| \leq \frac{\|\hat{\mathbf{M}}-\mathbf{M}\|+\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|}{\delta} \tag{21}
\end{equation*}
$$

for $\|\cdot\|$ is either Frobenius norm or operator norm.

Proof. Since $\mathbf{U}_{1}^{\top} \mathbf{U}_{1}=\mathbf{I}$ and $\mathbf{U}_{2}^{\top} \mathbf{U}_{1}=0$,

$$
\mathbf{M} \mathbf{U}_{1}=\left(\mathbf{U}_{1} \boldsymbol{\Lambda}_{1} \mathbf{U}_{1}^{\top}+\mathbf{U}_{2} \boldsymbol{\Lambda}_{2} \mathbf{U}_{2}^{\top}\right) \mathbf{U}_{1}=\mathbf{U}_{1} \boldsymbol{\Lambda}_{1}
$$

In the same way, we have $\hat{\mathbf{U}}_{2}^{\top} \hat{\mathbf{M}}=\hat{\boldsymbol{\Lambda}}_{2} \hat{\mathbf{U}}_{2}^{\top}$. It follows that

$$
\begin{equation*}
\hat{\mathbf{U}}_{2}^{\top}(\hat{\mathbf{M}}-\mathbf{M}) \mathbf{U}_{1}=\hat{\mathbf{U}}_{2}^{\top} \hat{\mathbf{M}} \mathbf{U}_{1}-\hat{\mathbf{U}}_{2}^{\top} \mathbf{M} \mathbf{U}_{1}^{\top}=\hat{\mathbf{\Lambda}}_{2} \hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}-\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1} \boldsymbol{\Lambda}_{1} \tag{22}
\end{equation*}
$$

Since \mathbf{U}_{1} and $\hat{\mathbf{U}}_{2}$ have orthonormal columns,

$$
\begin{equation*}
\left\|\left(\boldsymbol{\Lambda}_{2}-\hat{\boldsymbol{\Lambda}}_{2}\right) \hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\| \leq\left\|\boldsymbol{\Lambda}_{2}-\hat{\boldsymbol{\Lambda}}_{2}\right\|\left\|\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\|_{\mathrm{op}} \leq\left\|\boldsymbol{\Lambda}_{2}-\hat{\boldsymbol{\Lambda}}_{2}\right\| \tag{23}
\end{equation*}
$$

We combine (22) and (23), for any real number c,

$$
\begin{aligned}
\left\|\boldsymbol{\Lambda}_{2}-\hat{\boldsymbol{\Lambda}}_{2}\right\|+\left\|\hat{\mathbf{U}}_{2}(\hat{\mathbf{M}}-\mathbf{M}) \mathbf{U}_{1}\right\| & \geq\left\|\left(\boldsymbol{\Lambda}_{2}-\hat{\boldsymbol{\Lambda}}_{2}\right) \hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\|+\left\|\hat{\boldsymbol{\Lambda}}_{2} \hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}-\hat{\mathbf{U}}_{2} \mathbf{U}_{1} \boldsymbol{\Lambda}_{1}\right\| \\
& \geq\left\|\boldsymbol{\Lambda}_{2} \hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}-\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1} \boldsymbol{\Lambda}_{1}\right\| \\
& =\left\|\left(\boldsymbol{\Lambda}_{2}-c \mathbf{I}\right) \hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}-\hat{\mathbf{U}}_{2} \mathbf{U}_{1}\left(\boldsymbol{\Lambda}_{1}-c \mathbf{I}\right)\right\| \\
& \geq\left\|\left(\boldsymbol{\Lambda}_{2}-c \mathbf{I}\right) \hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\|-\left\|\hat{\mathbf{U}}_{2} \mathbf{U}_{1}\left(\boldsymbol{\Lambda}_{1}-c \mathbf{I}\right)\right\| .
\end{aligned}
$$

Now we let $c=(a+b) / 2$ and $r=(b-a) / 2$, then the eigenvalues of $\boldsymbol{\Lambda}_{1}-c \mathbf{I}$ are contained in $[-r, r]$ and the eigenvalues of $\hat{\boldsymbol{\Lambda}}_{2}-c \mathbf{I}$ are excluded from $(-r-\delta, r+\delta)$. Therefore,

$$
\left\|\left(\boldsymbol{\Lambda}_{2}-c \mathbf{I}\right) \hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\| \geq \frac{1}{\left\|\left(\boldsymbol{\Lambda}_{2}-c \mathbf{I}\right)^{-1}\right\|_{\mathrm{op}}}\left\|\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\| \geq(r+\delta)\left\|\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\|
$$

and

$$
\left\|\hat{\mathbf{U}}_{2} \mathbf{U}_{1}\left(\boldsymbol{\Lambda}_{1}-c \mathbf{I}\right)\right\| \leq\left\|\hat{\mathbf{U}}_{2} \mathbf{U}_{1}\right\|\left\|\boldsymbol{\Lambda}_{1}-c \mathbf{I}\right\|_{\mathrm{op}} \leq r\left\|\hat{\mathbf{U}}_{2} \mathbf{U}_{1}\right\| .
$$

Hence, we can conclude that

$$
\left\|\boldsymbol{\Lambda}_{2}-\hat{\boldsymbol{\Lambda}}_{2}\right\|+\left\|\hat{\mathbf{U}}_{2}(\hat{\mathbf{M}}-\mathbf{M}) \mathbf{U}_{1}\right\| \geq(r+\delta)\left\|\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\|-r\left\|\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\| \geq \delta\left\|\hat{\mathbf{U}}_{2}^{\top} \mathbf{U}_{1}\right\|
$$

$\left\|\hat{\mathbf{U}}_{2}(\hat{\mathbf{M}}-\mathbf{M}) \mathbf{U}_{1}\right\| \leq\left\|\hat{\mathbf{U}}_{2}(\hat{\mathbf{M}}-\mathbf{M})\left(\mathbf{U}_{1}, \mathbf{U}_{2}\right)\right\|=\left\|\hat{\mathbf{U}}_{2}(\hat{\mathbf{M}}-\mathbf{M})\right\|$, and similarly, $\left\|\hat{\mathbf{U}}_{2}(\hat{\mathbf{M}}-\mathbf{M})\right\| \leq$ $\|\hat{\mathbf{M}}-\mathbf{M}\|$. Hence (21) is obtained.

Corollary 1 (Wedin's Theorem). For real-valued matrices $\mathbf{M}, \hat{\mathbf{M}} \in \mathbb{R}^{n_{1} \times n_{2}}$, suppose that $\mathbf{M}=$ $\mathbf{U}_{1} \boldsymbol{\Lambda}_{1} \mathbf{V}_{1}^{\top}+\mathbf{U}_{2} \boldsymbol{\Lambda}_{2} \mathbf{V}_{2}^{\top}$ and $\hat{\mathbf{M}}=\hat{\mathbf{U}}_{1} \hat{\boldsymbol{\Lambda}}_{1} \hat{\mathbf{V}}_{1}^{\top}+\hat{\mathbf{U}}_{2} \hat{\boldsymbol{\Lambda}}_{2} \hat{\mathbf{V}}_{2}^{\top}$ are the singular value decompositions so that $\left(\mathbf{U}_{1}, \mathbf{U}_{2}\right),\left(\hat{\mathbf{U}}_{1}, \hat{\mathbf{U}}_{2}\right) \in \mathbb{R}^{n_{1} \times n_{1}},\left(\mathbf{V}_{1}, \mathbf{V}_{2}\right),\left(\hat{\mathbf{V}}_{1}, \hat{\mathbf{V}}_{2}\right) \in \mathbb{R}^{n_{2} \times n_{2}}$ are orthogonal, and $\boldsymbol{\Lambda}_{1}, \boldsymbol{\Lambda}_{2}$ are diagonal. Suppose

$$
0 \leq \min \left(\operatorname{diag}\left(\boldsymbol{\Lambda}_{1}\right)\right) \leq \max \left(\operatorname{diag}\left(\boldsymbol{\Lambda}_{1}\right)\right) \leq a<a+\delta \leq \min \left(\operatorname{diag}\left(\boldsymbol{\Lambda}_{2}\right)\right)
$$

and $\mathbf{\Lambda}_{2}$ and $\hat{\mathbf{\Lambda}}_{2}$ contain top-r singular values of \mathbf{M} of $\hat{\mathbf{M}}$ respectively, then

$$
\begin{equation*}
\max \left(\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top}\right\|,\left\|\mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}\right\|\right) \leq \frac{2\|\hat{\mathbf{M}}-\mathbf{M}\|}{\delta} \tag{24}
\end{equation*}
$$

for $\|\cdot\|$ is either Frobenius norm or operator norm.
Proof. We consider the symmetric dilation of \mathbf{M}, given by

$$
\mathbf{M}^{\dagger}=\left(\begin{array}{cc}
0 & \mathbf{M} \tag{25}\\
\mathbf{M}^{\top} & 0
\end{array}\right)
$$

By Lemma 2(a) of [28], we let

$$
\mathbf{W}_{1}=\left(\begin{array}{cc}
\mathbf{U}_{1} & \mathbf{U}_{1} \\
\mathbf{V}_{1} & -\mathbf{V}_{1}
\end{array}\right), \quad \mathbf{W}_{2}=\left(\begin{array}{cc}
\mathbf{U}_{2} & \mathbf{U}_{2} \\
\mathbf{V}_{2} & -\mathbf{V}_{2}
\end{array}\right), \quad \boldsymbol{\Sigma}_{1}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{1} & 0 \\
0 & -\boldsymbol{\Lambda}_{1}
\end{array}\right), \quad \boldsymbol{\Sigma}_{2}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{2} & 0 \\
0 & -\boldsymbol{\Lambda}_{2},
\end{array}\right)
$$

then we have the decomposition

$$
\mathbf{M}^{\dagger}=\frac{1}{2}\left[\mathbf{W}_{1} \boldsymbol{\Sigma}_{1} \mathbf{W}^{\top}+\mathbf{W}_{2} \boldsymbol{\Sigma}_{2} \mathbf{W}_{2}\right]
$$

and similarly,

$$
\hat{\mathbf{M}}^{\dagger}=\frac{1}{2}\left[\hat{\mathbf{W}}_{1} \hat{\boldsymbol{\Sigma}}_{1} \hat{\mathbf{W}}^{\top}+\hat{\mathbf{W}}_{2} \hat{\boldsymbol{\Sigma}}_{2} \hat{\mathbf{W}}_{2}\right]
$$

where
$\hat{\mathbf{W}}_{1}=\left(\begin{array}{cc}\hat{\mathbf{U}}_{1} & \hat{\mathbf{U}}_{1} \\ \hat{\mathbf{V}}_{1} & -\hat{\mathbf{V}}_{1}\end{array}\right), \quad \hat{\mathbf{W}}_{2}=\left(\begin{array}{cc}\hat{\mathbf{U}}_{2} & \hat{\mathbf{U}}_{2} \\ \hat{\mathbf{V}}_{2} & -\hat{\mathbf{V}}_{2}\end{array}\right), \quad \hat{\boldsymbol{\Sigma}}_{1}=\left(\begin{array}{cc}\hat{\boldsymbol{\Lambda}}_{1} & 0 \\ 0 & -\hat{\boldsymbol{\Lambda}}_{1}\end{array}\right), \quad \hat{\boldsymbol{\Sigma}}_{2}=\left(\begin{array}{cc}\hat{\boldsymbol{\Lambda}}_{2} & 0 \\ 0 & -\hat{\boldsymbol{\Lambda}}_{2}\end{array}\right)$,
It is easy to check that $\left\|\hat{\mathbf{M}}^{\dagger}-\mathbf{M}^{\dagger}\right\|_{\text {op }} \leq\|\hat{\mathbf{M}}-\mathbf{M}\|_{\text {op }}$ and $\left\|\hat{\boldsymbol{\Sigma}}_{2}-\boldsymbol{\Sigma}_{2}\right\|_{\text {op }} \leq\|\hat{\boldsymbol{\Lambda}}-\boldsymbol{\Lambda}\|_{\text {op }}$. Since $\boldsymbol{\Lambda}_{2}$ has eigenvalues contained in $[0, a]$, the eigenvalues of $\boldsymbol{\Sigma}_{2}$ are contained in $[-a, a]$. By Lemma 4,

$$
\left\|\mathbf{W}_{1}^{\top} \mathbf{W}_{2}\right\|_{\mathrm{op}} \leq \frac{\left\|\hat{\mathbf{M}}^{\dagger}-\mathbf{M}^{\dagger}\right\|_{\mathrm{op}}+\left\|\hat{\boldsymbol{\Sigma}}_{2}-\boldsymbol{\Sigma}_{2}\right\|_{\mathrm{op}}}{\delta}=\frac{\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}+\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|_{\mathrm{op}}}{\delta}
$$

By Lemma 1 of [4],

$$
\begin{aligned}
\left\|\mathbf{W}_{1}^{\top} \mathbf{W}_{2}\right\|_{\mathrm{op}} & \geq \frac{1}{2}\left\|\mathbf{W}_{2} \mathbf{W}_{2}^{\top}-\hat{\mathbf{W}}_{2} \hat{\mathbf{W}}_{2}^{\top}\right\|_{\mathrm{op}} \\
& =\left\|\left(\begin{array}{cc}
\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top} & 0 \\
0 & \mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}
\end{array}\right)\right\|_{\mathrm{op}} \\
& =\max \left(\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top}\right\|_{\mathrm{op}},\left\|\mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}\right\|_{\mathrm{op}}\right)
\end{aligned}
$$

Hence we obtain

$$
\max \left(\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top}\right\|_{\mathrm{op}},\left\|\mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}\right\|_{\mathrm{op}}\right) \leq \frac{\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}+\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|_{\mathrm{op}}}{\delta}
$$

By Corollary 2, the right hand side is upper bounded by $2\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}} / \delta$. This proves (24) for operator norm. For Frobenius norm, we have $\left\|\hat{\mathbf{M}}^{\dagger}-\mathbf{M}^{\dagger}\right\|_{\mathrm{F}} \leq \sqrt{2}\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}}$ and $\left\|\hat{\boldsymbol{\Sigma}}_{2}-\boldsymbol{\Sigma}_{2}\right\|_{\mathrm{F}} \leq$ $\sqrt{2}\|\hat{\boldsymbol{\Lambda}}-\boldsymbol{\Lambda}\|_{\mathrm{F}}$. By Lemma 4,

$$
\left\|\mathbf{W}_{1}^{\top} \mathbf{W}_{2}\right\|_{\mathrm{F}} \leq \frac{\left\|\hat{\mathbf{M}}^{\dagger}-\mathbf{M}^{\dagger}\right\|_{\mathrm{F}}+\left\|\hat{\boldsymbol{\Sigma}}_{2}-\boldsymbol{\Sigma}_{2}\right\|_{\mathrm{F}}}{\delta}=\frac{\sqrt{2}\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}}+\sqrt{2}\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|_{\mathrm{F}}}{\delta}
$$

By Wielandt-Hoffman Theorem [22], $\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|_{\mathrm{F}} \leq\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}}$. Therefore, the right hand side is upper bounded by $2 \sqrt{2}\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}} / \delta$. By Lemma 1 of [4] again,

$$
\begin{aligned}
\left\|\mathbf{W}_{1}^{\top} \mathbf{W}_{2}\right\|_{\mathrm{F}} & =\frac{1}{\sqrt{2}}\left\|\mathbf{W}_{2} \mathbf{W}_{2}^{\top}-\hat{\mathbf{W}}_{2} \hat{\mathbf{W}}_{2}^{\top}\right\|_{\mathrm{F}} \\
& =\sqrt{2}\left\|\left(\begin{array}{cc}
\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top} & 0 \\
0 & \mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}
\end{array}\right)\right\|_{\mathrm{F}} \\
& =\sqrt{2\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top}\right\|_{\mathrm{F}}^{2}+2\left\|\mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}\right\|_{\mathrm{F}}^{2}} \\
& \geq \sqrt{2} \max \left(\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top}\right\|_{\mathrm{F}},\left\|\mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}\right\|_{\mathrm{F}}\right)
\end{aligned}
$$

This completes the proof of (24).
Theorem 6 (Weyl's inequality, Corollary III. 2.6 of [1]). Suppose \mathbf{A} and \mathbf{B} are $n \times n$ real symmetric matrices and let $\sigma_{1}(A) \geq \sigma_{2}(A) \geq \ldots, \geq \sigma_{n}(\mathbf{A})$ and $\sigma_{1}(\mathbf{B}) \geq \sigma_{2}(\mathbf{B}) \geq \ldots, \geq \sigma_{n}(\mathbf{B})$ be the eigenvalues of \mathbf{A} and \mathbf{B} respectively, then

$$
\begin{equation*}
\max _{i=1, \ldots, n}\left|\sigma_{i}(\mathbf{A})-\sigma_{i}(\mathbf{B})\right| \leq\|\mathbf{A}-\mathbf{B}\|_{o p} \tag{26}
\end{equation*}
$$

Corollary 2. Suppose \mathbf{A} and \mathbf{B} are not necessarily symmetric and $\sigma_{i}(\mathbf{A})$ and $\sigma_{i}(\mathbf{B})$ are singular values, the inequality (26) still holds.

Proof. We consider the symmetric dilation (25) of \mathbf{A} and \mathbf{B}, denoted by \mathbf{A}^{\dagger} and \mathbf{B}^{\dagger} respectively. Then \mathbf{A}^{\dagger} has eigenvalues $\sigma_{1}(\mathbf{A}) \geq \sigma_{2}(\mathbf{A}) \geq \cdots \geq \sigma_{n}(\mathbf{A}) \geq 0 \geq-\sigma_{n}(\mathbf{A}) \geq \cdots \geq-\sigma_{2}(\mathbf{A}) \geq$ $-\sigma_{1}(\mathbf{A})$. The eigenvalues of \mathbf{B}^{\dagger} are similar. Then we apply the fact that $\|\mathbf{A}-\mathbf{B}\|_{\mathrm{op}}=\left\|\mathbf{A}^{\dagger}-\mathbf{B}^{\dagger}\right\|_{\mathrm{op}}$ and Weyl's inequality to obtain the result.

Now we are ready to prove Theorem 4. Let $\mathbf{M}=\mathbf{U}_{1} \boldsymbol{\Lambda}_{1} \mathbf{V}_{1}^{\top}+\mathbf{U}_{2} \boldsymbol{\Lambda}_{2} \mathbf{V}_{2}^{\top}$ and $\hat{\mathbf{M}}=$ $\hat{\mathbf{U}}_{1} \hat{\boldsymbol{\Lambda}}_{1} \hat{\mathbf{V}}_{1}^{\top}+\hat{\mathbf{U}}_{2} \hat{\boldsymbol{\Lambda}}_{2} \hat{\mathbf{V}}_{2}^{\top}$ be singular value decompositions of \mathbf{M} and $\hat{\mathbf{M}}$ respectively, where $\operatorname{diag}\left(\boldsymbol{\Lambda}_{2}\right)=\left(\sigma_{1}(\mathbf{M}), \ldots, \sigma_{r}(\mathbf{M})\right)$ and $\operatorname{diag}\left(\hat{\boldsymbol{\Lambda}}_{2}\right)=\left(\sigma_{1}(\hat{\mathbf{M}}), \ldots, \sigma_{r}(\hat{\mathbf{M}})\right)$ contains top- r singular values. By Corollary 2, we have

$$
\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|_{\mathrm{op}} \leq\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}
$$

By Corollary 1,

$$
\begin{aligned}
\max \left(\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top}\right\|_{\mathrm{op}},\left\|\mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}\right\|_{\mathrm{op}}\right) & \leq \frac{\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}+\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|_{\mathrm{op}}}{\sigma} \\
& \leq \frac{2\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}}{\sigma}
\end{aligned}
$$

Now we apply Theorem 2.1 of [16],

$$
\mathbb{P}\left(\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}} \lesssim \sqrt{n_{1} p}\right) \geq 1-n^{-1}
$$

On the event of $\|\hat{\mathbf{M}}-\mathbf{M}\|_{\text {op }} \lesssim \sqrt{n_{1} p}$, we have

$$
\begin{aligned}
\max \left(\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top}\right\|_{\mathrm{op}},\left\|\mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}\right\|_{\mathrm{op}}\right) & \leq \frac{2\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}}{\sigma} \\
& \lesssim \frac{\sqrt{n_{1} p}}{\sigma}
\end{aligned}
$$

For Frobenius norm, we have that $\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|_{\mathrm{F}} \leq \sqrt{r}\left\|\hat{\boldsymbol{\Lambda}}_{2}-\boldsymbol{\Lambda}_{2}\right\|_{\mathrm{op}}$ $\leq \sqrt{r}\|\hat{\mathbf{M}}-\mathbf{M}\|_{\text {op }}$ by Corollary 2 ,

$$
\begin{aligned}
\max \left(\left\|\mathbf{U}_{2} \mathbf{U}_{2}^{\top}-\hat{\mathbf{U}}_{2} \hat{\mathbf{U}}_{2}^{\top}\right\|_{\mathrm{F}},\left\|\mathbf{V}_{2} \mathbf{V}_{2}^{\top}-\hat{\mathbf{V}}_{2} \hat{\mathbf{V}}_{2}^{\top}\right\|_{\mathrm{F}}\right) & \leq \frac{\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{F}}+\left\|\hat{\mathbf{\Lambda}}_{2}-\boldsymbol{\Lambda}\right\|_{\mathrm{F}}}{\sigma} \\
& \leq \frac{2 \sqrt{r}\|\hat{\mathbf{M}}-\mathbf{M}\|_{\mathrm{op}}}{\sigma} \\
& \lesssim \frac{\sqrt{n_{1} p r}}{\sigma}
\end{aligned}
$$

E Proof of Theorem 5

We firstly consider the case $r>1$. Let integer $k_{2} \geq 1, \sigma>0$ and $\mu \in(0,1)$ be given by

$$
\begin{equation*}
k_{2}=\left\lceil(10 / p)^{2} \sigma_{*}^{2} / n_{1}\right\rceil, \sigma^{2}=n_{1} k_{2}(p / 10)^{2}, \mu^{2}=\min \left\{21 /\left(2 k_{2} p\right), 0.1\right\} / 2 \tag{27}
\end{equation*}
$$

Clearly $\sigma_{*} \leq \sigma \leq \sqrt{2} \sigma_{*}$. As $r \sigma_{*}^{2} \leq n_{1} n_{2} p^{2} / C_{0}, k_{2} \leq 200 n_{2} /\left(r C_{0}\right) \leq\left(n_{2}-1\right) /(2 r-2)$ for sufficiently large C_{0}. This allows the following construction. Let $\mathbf{H} \in[-\sqrt{3}, \sqrt{3}]^{n_{1} \times(r-1)}$ such that $\left(\mathbf{H}, \mathbf{1}_{n_{1}}\right)^{\top}\left(\mathbf{H}, \mathbf{1}_{n_{1}}\right) / n_{1}=\mathbf{I}_{r}$. Let $\mathbf{U}_{i}, i=1, \ldots, N$, be distinct matrices in $\{-1,1\}^{n_{1} \times(r-1)}$, with $N=2^{n_{1}(r-1)}, \mathbf{W}_{i}=\sqrt{1-\mu^{2}} \mathbf{H}+\mu \mathbf{U}_{i}$ with $0<\mu<1$, and

$$
\begin{equation*}
\mathbf{M}_{i}=\frac{p}{2} \mathbf{1}_{n_{1} \times n_{2}}+\frac{p}{10}\left(\mathbf{W}_{i},-\mathbf{W}_{i}, \ldots, \mathbf{W}_{i},-\mathbf{W}_{i}, \mathbf{O}\right) \tag{28}
\end{equation*}
$$

where $\left(\mathbf{W}_{i},-\mathbf{W}_{i}\right)$ is repeated k_{2} times. As $\left\|\mathbf{W}_{i}\right\|_{\infty} \leq \sqrt{\left(1-\mu^{2}\right) 3}+\mu \leq 2, \mathbf{M}_{i} \in$ $[0.3 p, 0.7 p]^{n_{1} \times n_{2}}$. Let $\mathbf{P}_{i}=\mathbf{P}_{\mathbf{M}_{i}}=\mathbf{M}_{i} \mathbf{M}_{i}^{\dagger} \in \mathbb{R}^{n_{1} \times n_{1}}$ be the orthogonal projection to the column space of \mathbf{M}_{i} and $\mathbf{X}_{i}=\left(\mathbf{W}_{i}, \mathbf{1}_{n_{1}}\right)=\left(\sqrt{1-\mu^{2}} \mathbf{H}+\mu \mathbf{U}_{i}, \mathbf{1}_{n_{1}}\right) \in \mathbb{R}^{n_{1} \times r}$. When rank $\left(\mathbf{X}_{i}\right)=r, \mathbf{X}_{i}$ has the same column space as \mathbf{M}_{i} and $\mathbf{P}_{i}=\mathbf{X}_{i}\left(\mathbf{X}_{i}^{\top} \mathbf{X}_{i}\right)^{-1} \mathbf{X}_{i}^{\top}$. Let

$$
\mathbf{V}_{i, j}=\left(\begin{array}{c|c}
\mathbf{U}_{i}^{\top} \mathbf{U}_{j} / n_{1} & \mathbf{0} \\
\hline \mathbf{0}^{\top} & 1
\end{array}\right), \quad \boldsymbol{\Delta}_{i}=\frac{\mu}{n_{1}}\left(\begin{array}{c|c}
\sqrt{1-\mu^{2}} \mathbf{U}_{i}^{\top} \mathbf{H} & \mathbf{U}_{i}^{\top} \mathbf{1}_{n_{1}} \\
\hline \mathbf{0}^{\top} & 0
\end{array}\right)
$$

and $\boldsymbol{\Delta}_{i, j}=\boldsymbol{\Delta}_{i}+\boldsymbol{\Delta}_{j}^{\top}+\mu^{2}\left(\mathbf{V}_{i, i}-\mathbf{I}_{r}\right) I_{\{i=j\}}$. By algebra, we have

$$
n_{1}^{-1} \mathbf{X}_{i}^{\top} \mathbf{X}_{j}= \begin{cases}\mathbf{I}_{r}+\boldsymbol{\Delta}_{i, j}+\mu^{2}\left(\mathbf{V}_{i, j}-\mathbf{I}_{r}\right), & i \neq j \tag{29}\\ \mathbf{I}_{r}+\boldsymbol{\Delta}_{i, i}, & i=j\end{cases}
$$

Thus, $\operatorname{rank}\left(\mathbf{X}_{i}\right)=r$ when $\left\|\boldsymbol{\Delta}_{i, i}\right\|_{\mathrm{op}}<1$. Let $\sigma_{r}(\cdot)$ denote the r-th largest singular value. We have

$$
\sigma_{r}\left(\mathbf{M}_{i}\right) \geq(p / 10) \sqrt{n_{1} 2 k_{2}\left(1-2 \mu^{2} \Delta_{i}^{\prime}-\mu^{2} \Delta_{i}^{\prime \prime}-(1+1 / 92) \mu^{4}\left(\Delta_{i}^{\prime \prime \prime}\right)^{2}\right)_{+}}
$$

by Lemma 6, where $\Delta_{i}^{\prime}=\left\|\mathbf{U}_{i}^{\top} \mathbf{H} /\left(n_{1} \mu\right)\right\|_{\mathrm{op}}, \Delta_{i}^{\prime \prime}=\left\|\mathbf{U}_{i}^{\top} \mathbf{U}_{i} / n_{1}-\mathbf{I}_{r-1}\right\|_{\mathrm{op}}$, and $\Delta_{i}^{\prime \prime \prime}=$ $\left\|\mathbf{U}_{i}^{\top} \mathbf{1}_{n_{1}} /\left(n_{1} \mu\right)\right\|_{2}$.
Let ε_{n} satisfying $0<\varepsilon_{n} \leq 1 /\left(8 \mu^{2}\right)$ to be determined later and $\Omega^{*}=\left\{i \leq N: \Delta_{j}^{\prime} \vee \Delta_{i}^{\prime \prime} \vee \Delta_{i}^{\prime \prime \prime} \leq \varepsilon_{n}\right\}$. As $\left\|\boldsymbol{\Delta}_{i}\right\|_{\mathrm{op}} \leq \mu^{2} \Delta_{i}^{\prime}+\mu^{2} \Delta_{i}^{\prime \prime \prime}$ and $\left\|\mathbf{V}_{i, i}-\mathbf{I}_{r}\right\|_{\mathrm{op}}=\Delta_{i}^{\prime \prime}$, we have $\left\|\boldsymbol{\Delta}_{i, i}\right\|_{\mathrm{op}} \leq 5 \mu^{2} \varepsilon_{n}$ for $i \in \Omega^{*}$ and

$$
\begin{equation*}
\left\{i \in \Omega^{*}\right\} \Rightarrow\left\{\mathbf{M}_{i} \in[0.3 p, 0.7 p]^{n_{1} \times n_{2}}, \sigma_{r}\left(\mathbf{M}_{i}\right) \geq \sigma \geq \sigma_{*}, \operatorname{rank}\left(\mathbf{X}_{i}\right)=r\right\} \tag{30}
\end{equation*}
$$

as $\sigma_{r}^{2}\left(\mathbf{M}_{i}\right) \geq(p / 10)^{2} n_{1} 2 k_{2}\left(1-4 \mu^{2} \varepsilon_{n}\right)_{+} \geq(p / 10)^{2} n_{1} k_{2}=\sigma^{2} \geq \sigma_{*}^{2}$ by (27) for $i \in \Omega^{*}$.
Moreover, for $\{i, j\}$ in $\Omega^{*},\left\|\boldsymbol{\Delta}_{i, j}\right\|_{\text {op }} \leq\left(4+I_{\{i=j\}}\right) \mu^{2} \varepsilon_{n}$, so that inserting (29) into $\operatorname{tr}\left(\mathbf{P}_{i} \mathbf{P}_{j}\right)=$ $\operatorname{tr}\left(\left(\mathbf{X}_{i}^{\top} \mathbf{X}_{i}\right)^{-1} \mathbf{X}_{i}^{\top} \mathbf{X}_{j}\left(\mathbf{X}_{j}^{\top} \mathbf{X}_{j}\right)^{-1} \mathbf{X}_{j}^{\top} \mathbf{X}_{i}\right)$ yields

$$
\begin{align*}
\operatorname{tr}\left(\mathbf{P}_{i} \mathbf{P}_{j}\right) & \leq r+\left(C_{1}-1\right) \mu^{2} \varepsilon_{n} r+\mu^{2}\left(1-\mu^{2}\right) \operatorname{tr}\left(\mathbf{V}_{i, j}+\mathbf{V}_{j, i}-2 \mathbf{I}_{r}\right)+\mu^{4} \operatorname{tr}\left(\mathbf{V}_{i, j} \mathbf{V}_{j, i}-\mathbf{I}_{r}\right) \\
& \leq r+C_{1} \mu^{2} \varepsilon_{n} r+\mu^{2}\left(1-\mu^{2}\right) \operatorname{tr}\left(\mathbf{V}_{i, j}+\mathbf{V}_{j, i}-\mathbf{V}_{i, i}-\mathbf{V}_{j, j}\right) \\
& =r+C_{1} \mu^{2} \varepsilon_{n} r-\mu^{2}\left(1-\mu^{2}\right)\left\|\mathbf{U}_{i}-\mathbf{U}_{j}\right\|_{\mathrm{F}}^{2} / n_{1}, \quad \forall i, j \in \Omega^{*} \tag{31}
\end{align*}
$$

where C_{1} is a numerical constant. We provide the details of this calculation in Lemma 7.
Let $\mathbf{U}, \mathbf{M}, \mathbf{P}$ be random matrices with the uniform prior distribution $\pi(\cdot)$,

$$
\pi(i)=\mathbb{P}_{\pi}\left(\mathbf{U}=\mathbf{U}_{i}, \mathbf{M}=\mathbf{M}_{i}, \mathbf{P}_{\mathbf{M}}=\mathbf{P}_{i}\right)=1 / N=2^{-n_{1}(r-1)}
$$

so that the elements of \mathbf{U} are i.i.d. Rademacher variables under \mathbb{P}_{π}. Let $\mathcal{U}^{*}=\left\{\mathbf{U}_{i}: i \in \Omega^{*}\right\}, \pi^{*}$ be the uniform prior on Ω^{*} and $\mathbb{P}_{\pi^{*}}$ the corresponding joint probability so that $\mathbb{P}_{\pi^{*}}$ is the conditional probability given $\mathbf{U} \in \mathcal{U}^{*}$ under \mathbb{P}_{π}. By (30), $\mathbb{P}_{\pi^{*}}\left\{\mathbf{U} \in \boldsymbol{\Theta}_{2}\left(n_{1}, n_{2}, p, r, \sigma\right)\right\}=1$ and (12) holds.
It remains to prove (14). By (31) and the details given in Lemma 8, the Frobenius risk of the Bayes estimator under $\mathbb{P}_{\pi^{*}}$ is bounded by

$$
\begin{equation*}
R_{\pi^{*}}^{\text {Bayes }}=\mathbb{E}_{\pi^{*}}\left[\left\|\hat{\mathbf{P}}^{*}-\mathbf{P}_{\mathbf{M}}\right\|_{\mathrm{F}}^{2}\right] \geq \mu^{2}\left(1-\mu^{2}\right) n_{1}^{-1} \mathbb{E}_{\pi^{*}}\left[\left\|\hat{\mathbf{U}}^{*}-\mathbf{U}\right\|_{\mathrm{F}}^{2}\right]-C_{1} \mu^{2} \varepsilon_{n} r \tag{32}
\end{equation*}
$$

where $\hat{\mathbf{P}}^{*}$ and $\hat{\mathbf{U}}^{*}$ are respectively the posterior mean of \mathbf{P}_{M} and \mathbf{U} under $\mathbb{P}_{\pi^{*}}$. Moreover, $\left\|\hat{\mathbf{U}}^{*}\right\|_{\mathrm{F}}^{2} \vee$ $\|\mathbf{U}\|_{\mathrm{F}}^{2} \leq r n_{1}$ always holds, so that

$$
\begin{equation*}
\mathbb{E}_{\pi^{*}}\left[\left\|\hat{\mathbf{U}}^{*}-\mathbf{U}\right\|_{\mathrm{F}}^{2}\right]+\mathbb{P}_{\pi}\left(\Omega^{* c}\right) 4 n_{1} r \geq \mathbb{E}_{\pi}\left[\left\|\hat{\mathbf{U}}^{*}-\mathbf{U}\right\|_{\mathrm{F}}^{2}\right] \geq \mathbb{E}_{\pi}\left[\|\hat{\mathbf{U}}-\mathbf{U}\|_{\mathrm{F}}^{2}\right] \tag{33}
\end{equation*}
$$

where $\hat{\mathbf{U}}$ is the Bayes estimator of \mathbf{U} under \mathbb{P}_{π}, due to the optimality of $\hat{\mathbf{U}}$ under \mathbb{P}_{π}.
Under \mathbb{P}_{π}, the elements of \mathbf{A} are independent conditionally on \mathbf{U} and the elements of \mathbf{U} are i.i.d. Rademacher. Moreover, as $\left(\mathbf{W}_{i},-\mathbf{W}_{i}\right)$ is repeated k_{2} times, conditionally on \mathbf{U} the k_{2} i.i.d. copies of $\left(A_{i, j}, A_{i, j+r-1}\right)$ are sufficient statistics for the estimation of the (i, j) element $U_{i, j}$ of \mathbf{U} such that $A_{i, j}$ and $A_{i, j+r-1}$ are independent Bernoulli variables with probabilities $p_{i, j}+(\mu p / 10) U_{i, j} \in[0.3 p, 0.7 p]$ and $q_{i, j}-(\mu p / 10) U_{i, j} \in[0.3 p, 0.7 p]$ respectively for some $p_{i, j}$ and $q_{i, j}$ satisfying the constraints. Thus, by Lemma 9 , the risk of the Bayes estimator is bounded by

$$
\mathbb{E}_{\pi}\left[\left(\hat{U}_{i, j}-U_{i, j}\right)^{2}\right] \geq 1-2 k_{2}(\mu p / 10)^{2} /(0.3 p(1-0.3 p)) \geq 1-2 \mu^{2} k_{2} p / 21
$$

By (27) $\mu^{2}=\left\{\left(21 /\left(2 k_{2} p\right)\right) \wedge 0.1\right\} / 2$, so that $\left(1-\mu^{2} 2 k_{2} p / 21\right) \geq 1 / 2$ and $1-\mu^{2} \geq 0.95$. Thus, by (32) and (33), it follows that

$$
\begin{aligned}
R_{\pi^{*}}^{\text {Bayes }} & \geq \mu^{2}\left(1-\mu^{2}\right)\left(n_{1}^{-1} \mathbb{E}_{\pi}\left[\|\hat{\mathbf{U}}-\mathbf{U}\|_{\mathrm{F}}^{2}\right]-\mathbb{P}_{\pi}\left(\Omega^{* c}\right) 4 r\right)-C_{1} \mu^{2} r \varepsilon_{n} \\
& \geq 0.475 \mu^{2} r-\left(4 \mathbb{P}_{\pi}\left(\Omega^{* c}\right)+C_{1} \varepsilon_{n}\right) \mu^{2} r
\end{aligned}
$$

This gives (14) when $4 \mathbb{P}_{\pi}\left(\Omega^{* c}\right)+C_{1} \varepsilon_{n} \leq 0.075=3 / 40$. To this end, we pick

$$
\varepsilon_{n}=\max \left\{\sqrt{40 \pi r \sigma^{2} /\left(n_{1}^{2} p\right)}+\sqrt{160 x_{0} \sigma^{2} /\left(n_{1}^{2} p\right)}, 4 \sqrt{\left(3 r+x_{0}\right) / n_{1}}\right\}
$$

with $x_{0}=\log (320)$ satisfying $16 e^{-x_{0}}=0.05$ As $\sigma^{2} \leq 2 \sigma_{*}^{2} \leq 2 n_{1} n_{2} p^{2} r^{-1} / C_{0}$ and $C_{0} r \leq n_{1}$.

$$
\varepsilon_{n} \leq \max \left\{\sqrt{80 \pi p / C_{0}}+\sqrt{320 x_{0} p / C_{0}}, 4 \sqrt{\left(3+x_{0}\right) / C_{0}}\right\}
$$

Thus, $\mu^{2} \varepsilon_{n} \leq 1 / 8$ and $C_{1} \varepsilon_{n} \leq 1 / 40$ for sufficiently large C_{0}. Moreover, Lemma 5 provides

$$
4 \mathbb{P}_{\pi}\left\{\Omega^{* c}\right\} \leq 16 e^{-x_{0}} \leq 1 / 20
$$

so that $4 \mathbb{P}_{\pi}\left(\Omega^{* c}\right)+C_{1} \varepsilon_{n} \leq 3 / 40$ indeed holds. Consequently, by (27)

$$
R_{\pi^{*}}^{\text {Bayes }} \geq 0.4 r \mu^{2}=0.2 \min \left\{21 /\left(2 k_{2} p\right), 0.1\right\}=0.2 \min \left\{0.105 n_{1} p / \sigma^{2}, 0.1\right\}
$$

This gives (14) and completes the proof for $r>1$.
The proof for $r=1$ is simpler but the construction is slightly different. Let $\mathbf{u}_{i} \in\{-1,1\}^{n_{1}}$, $\mathbf{w}_{i}=(p / 2) \mathbf{1}_{n_{1}}+(p / 10) \mathbf{u}_{i}$, and $\mathbf{M}_{i}=\mathbf{w}_{i} \mathbf{1}_{n_{2}}^{\top}$. For $1 / C_{0} \leq 0.16$, we have

$$
\mathbf{M}_{i} \in[0.4 p, 0.6 p]^{n_{1} \times n_{2}}, \sigma_{1}^{2}\left(\mathbf{M}_{i}\right) \geq(0.4 p)^{2} n_{1} n_{2} \geq \sigma_{*}^{2}, \operatorname{rank}\left(\mathbf{M}_{i}\right)=1
$$

Let $\mathbf{P}_{\mathbf{M}_{i}}=\mathbf{w}_{i} \mathbf{w}_{i}^{\top} /\left\|\mathbf{w}_{i}\right\|_{2}^{2}$ and $T_{i, j}=\mathbf{w}_{i}^{\top} \mathbf{w}_{j} / n_{1}$. We have

$$
\left\|\mathbf{P}_{\mathbf{M}_{i}}-\mathbf{P}_{\mathbf{M}_{j}}\right\|_{\mathrm{F}}^{2}=2\left(T_{i, i} T_{j, j}-T_{i, j}^{2}\right) / T_{i, i} T_{j, j}
$$

Let $\Omega^{*}=\left\{i:\left|\mathbf{u}_{i}^{\top} \mathbf{1}_{n_{1}} /\left(\mu n_{1}\right)\right| \leq \varepsilon_{n}\right\}$. For $\{i, j\} \subset \Omega^{*}$,

$$
\begin{aligned}
T_{i, j} & =n_{1}^{-1}\left(\mu \mathbf{u}_{i}+\sqrt{1-\mu^{2}} \mathbf{1}_{n_{1}}\right)^{\top}\left(\mu \mathbf{u}_{j}+\sqrt{1-\mu^{2}} \mathbf{1}_{n_{1}}\right) \\
& =n_{1}^{-1}\left(-\mu^{2}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}^{2}+\mu \sqrt{1-\mu^{2}}\left(\mathbf{u}_{i}+\mathbf{u}_{j}\right)^{\top} \mathbf{1}_{n_{1}}\right)+1
\end{aligned}
$$

so that $\left|T_{i, i}-1\right| \leq 2 \mu^{2} \varepsilon_{n}$.

$$
\begin{aligned}
& T_{i, i} T_{j, j}-T_{i, j}^{2} \\
& = \\
& 2_{1}^{-1} \mu^{2}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}^{2}-n_{1}^{-2} \mu^{4}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}^{4}-\mu^{2}\left(1-\mu^{2}\right)\left(\left(\mathbf{u}_{i}-\mathbf{u}_{j}\right)^{\top} \mathbf{1}_{n_{1}} / n_{1}\right)^{2} \\
& \quad+n_{1}^{-2} \mu^{2}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}^{2} \mu \sqrt{1-\mu^{2}}\left(\mathbf{u}_{i}+\mathbf{u}_{j}\right)^{\top} \mathbf{1}_{n_{1}} \\
& \geq \\
& n_{1}^{-1} \mu^{2}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}^{2}\left(2-4 \mu^{2}-2 \mu^{2} \varepsilon_{n}\right)-4 \mu^{4}\left(1-\mu^{2}\right) \varepsilon_{n}^{2}
\end{aligned}
$$

We omit the rest of the proof as they are almost identical to the case of $r>1$.
Lemma 5. Let $\mathbf{H} \in\{-1,1\}^{n_{1} \times(r-1)}$ such that $\left(\mathbf{H}, \mathbf{1}_{n_{1}}\right)^{\top}\left(\mathbf{H}, \mathbf{1}_{n_{1}}\right) / n_{1}=\mathbf{I}_{r}$. Let $r \geq 2$ and $\mathbf{U} \in\{-1,1\}^{n_{1} \times(r-1)}$ with i.i.d. Rademacher entries. Then,

$$
\mathbb{P}\left\{\begin{array}{c}
\left\|\mathbf{U}^{\top} \mathbf{H} / n_{1}\right\|_{o p} \vee\left\|\mathbf{U}^{\top} \mathbf{1}_{n_{1}} / n_{1}\right\|_{2} \leq \sqrt{2 \pi(r-1) / n_{1}}+\sqrt{8 x / n_{1}} \\
\left\|\mathbf{U}^{\top} \mathbf{U} / n_{1}-\mathbf{I}_{r-1}\right\|_{o p} \leq 4 \sqrt{(3(r-1)+x) / n_{1}}
\end{array}\right\} \geq 1-4 e^{-x}
$$

Suppose $n_{1} p \leq \sigma^{2}$. Let $\mu^{2}=\left(n_{1} p / \sigma^{2}\right) / 20$. Then, for

$$
\varepsilon_{n}=\max \left\{\sqrt{40 \pi r \sigma^{2} /\left(n_{1}^{2} p\right)}+\sqrt{160 x \sigma^{2} /\left(n_{1}^{2} p\right)}, 4 \sqrt{(3 r+x) / n_{1}}\right\}
$$

$\mathbb{P}\left\{\Delta_{i}^{\prime} \vee \Delta_{i}^{\prime \prime} \vee \Delta_{i}^{\prime \prime \prime} \leq \varepsilon_{n}\right\} \geq 1-4 e^{-x}$.
Proof. Let $\mathbf{U}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n_{1}}\right)^{\top}$ and $\|\mathbf{v}\|_{2}=1$. As $\mathbb{E}\left(\mathbf{v}^{\top} \mathbf{u}_{i}\right)^{2 m} \leq \mathbb{E}(N(0,1))^{2 m}$ for all m, for $t<1 / 2$

$$
\left.\mathbb{E} \exp \left(t\left(\left(\mathbf{v}^{\top} \mathbf{u}_{i}\right)^{2}-1\right)\right) \leq \mathbb{E} \exp \left(t(N(0,1))^{2}-1\right)\right) \leq \frac{e^{-t}}{(1-2 t)^{1 / 2}} \leq \exp \left(t^{2} /(1-2 t)\right)
$$

As $\mathbb{E}\left(1-\left(\mathbf{v}^{\top} \mathbf{u}_{i}\right)^{2}\right)^{2}=\mathbb{E}\left(\mathbf{v}^{\top} \mathbf{u}_{i}\right)^{4}-1 \leq 2$,

$$
\mathbb{E} \exp \left(t\left(1-\left(\mathbf{v}^{\top} \mathbf{u}_{i}\right)^{2}\right)\right) \leq 1+2\left(e^{t}-1-t\right) \leq \exp \left(t^{2} /(1-2 t)\right)
$$

By the Bernstein inequality,

$$
\mathbb{P}\left\{\left|\mathbf{v}^{\top}\left(\mathbf{I}_{r-1}-\mathbf{U}^{\top} \mathbf{U} / n_{1}\right) \mathbf{v}\right| \geq 2 \sqrt{x / n_{1}}+4 x / n_{1}\right\} \leq 2 e^{-x}
$$

Let $\varepsilon=0.12$ and $N_{\varepsilon} \leq(1+2 / \varepsilon)^{r-1}$ be the ε-covering number for the unit ball in \mathbb{R}^{r-1}. We have

$$
(1-2 \varepsilon)\left\|\mathbf{U}^{\top} \mathbf{U} / n_{1}-\mathbf{I}_{r-1}\right\|_{\mathrm{op}} \leq \max _{j \leq N_{\varepsilon}}\left|\mathbf{v}_{j}\left(\mathbf{U}^{\top} \mathbf{U} / n_{1}-\mathbf{I}_{r-1}\right) \mathbf{v}_{j}\right|
$$

with certain \mathbf{v}_{j} with $\left\|\mathbf{v}_{j}\right\|_{2}=1$. Thus, as $1 /(1-2 \varepsilon) \leq 4 / 3$ and $\log (1+2 / \varepsilon) \leq 3$,

$$
\mathbb{P}\left\{\left\|\mathbf{U}^{\top} \mathbf{U} / n_{1}-\mathbf{I}_{r-1}\right\|_{\text {op }} \geq(8 / 3) \sqrt{(3(r-1)+x) / n_{1}}+16(3(r-1)+x) /\left(3 n_{1}\right)\right\} \leq 2 e^{-x}
$$

When $4 \sqrt{(3(r-1)+x) / n_{1}}<1$, this implies

$$
\mathbb{P}\left\{\left\|\mathbf{U}^{\top} \mathbf{U} / n_{1}-\mathbf{I}_{r-1}\right\|_{\mathrm{op}} \geq 4 \sqrt{(3(r-1)+x) / n_{1}}\right\} \leq 2 e^{-x}
$$

Let $f(\mathbf{U})=\left\|\mathbf{U}^{\top} \mathbf{H} / n_{1}^{1 / 2}\right\|_{\text {op }}$. As $\mathbf{H}^{\top} \mathbf{H} / n_{1}=\mathbf{I}_{r-1}, f(\cdot)$ is a unit-Lipschitz function, so that

$$
\mathbb{P}\{f(\mathbf{U})>\mathbb{E} f(\mathbf{U})+t\} \leq e^{-t^{2} / 8}
$$

Let \mathbf{Z} be a standard Gaussian matrix. By the Sudakov-Fernique inequality

$$
\mathbb{E}[|N(0,1)|] \mathbb{E} f(\mathbf{U}) \leq \mathbb{E} f(\mathbf{Z}) \leq 2 \sqrt{r-1}
$$

The proof is complete as the proof for \mathbf{H} also applies with \mathbf{H} is replaced by $\mathbf{1}_{n_{1}}$.
Lemma 6. Let \mathbf{M}_{i} be as in (28), $\Delta_{i}^{\prime}=\left\|\mathbf{U}_{i}^{\top} \mathbf{H} /\left(n_{1} \mu\right)\right\|_{o p}, \Delta_{i}^{\prime \prime}=\left\|\mathbf{U}_{i}^{\top} \mathbf{U}_{i} / n_{1}-\mathbf{I}_{r-1}\right\|_{o p}$ and $\Delta_{i}^{\prime \prime \prime}=\left\|\mathbf{U}_{i}^{\top} \mathbf{1}_{n_{1}} /\left(n_{1} \mu\right)\right\|_{2}$. Then, the r-th singular value of \mathbf{M}_{i} is bounded by $\sigma_{r}\left(\mathbf{M}_{i}\right) \geq$ $(p / 10) \sqrt{n_{1} 2 k_{2}\left(1-2 \mu^{2} \Delta_{i}^{\prime}-\mu^{2} \Delta_{i}^{\prime \prime}-(1+1 / 92) \mu^{4}\left(\Delta_{i}^{\prime \prime \prime}\right)^{2}\right)_{+}}$.

Proof. Write $\overline{\mathbf{H}}=(\mathbf{H},-\mathbf{H}), \mathbf{M}_{1}=\sqrt{1-\mu^{2}} \overline{\mathbf{H}}+5 \mathbf{1}_{n_{1} \times(2 r-2)}$ and $\overline{\mathbf{U}}_{i}=\left(\mathbf{U}_{i},-\mathbf{U}_{i}\right)$. We have

$$
\sigma_{r}^{2}\left(\mathbf{M}_{i}\right) / n_{1}=\sigma_{r}\left(\mathbf{M}_{i}^{\top} \mathbf{M}_{i}\right) / n_{1} \geq k_{2}(p / 10)^{2} \sigma_{r}\left(\left(\mathbf{M}_{1}+\mu \overline{\mathbf{U}}_{i}\right)^{\top}\left(\mathbf{M}_{1}+\mu \overline{\mathbf{U}}_{i}\right) / n_{1}\right)
$$

Let $\overline{\mathbf{I}}_{r-1}=\left(\mathbf{I}_{r-1},-\mathbf{I}_{r-1}\right)$ and $\overline{\mathbf{u}}_{i}=\overline{\mathbf{U}}_{i}^{\top} \mathbf{1}_{n_{1}} / n_{1}$. As $\left\|\overline{\mathbf{U}}_{i}^{\top} \overline{\mathbf{U}}_{i} / n_{1}-\overline{\mathbf{I}}_{r-1}^{\top} \overline{\mathbf{I}}_{r-1}\right\|_{\mathrm{op}}=2 \Delta_{i}^{\prime \prime}$,

$$
\begin{aligned}
& \sigma_{r}\left(\left(\mathbf{M}_{1}+\mu \overline{\mathbf{U}}_{i}\right)^{\top}\left(\mathbf{M}_{1}+\mu \overline{\mathbf{U}}_{i}\right) / n_{1}\right) \\
& \geq \sigma_{r}\left(\mathbf{M}_{1}^{\top} \mathbf{M}_{1} / n_{1}+\mu^{2} \overline{\mathbf{U}}_{i}^{\top} \overline{\mathbf{U}}_{i} / n_{1}+5 \mu \overline{\mathbf{u}}_{i} \mathbf{1}_{2 r-2}^{\top}+5 \mu \mathbf{1}_{2 r-2} \overline{\mathbf{u}}_{i}^{\top}\right) \\
& \quad-\mu\left\|\overline{\mathbf{U}}_{i}^{\top} \overline{\mathbf{H}} / n_{1}+\overline{\mathbf{H}}^{\top} \overline{\mathbf{U}}_{i} / n_{1}\right\|_{\mathrm{op}} \\
& \quad \geq \sigma_{r}\left(\mathbf{M}_{1}^{\top} \mathbf{M}_{1} / n_{1}+\mu^{2} \overline{\mathbf{I}}_{r-1}^{\top} \overline{\mathbf{I}}_{r-1}+5 \mu \overline{\mathbf{u}}_{i} \mathbf{1}_{2 r-2}^{\top}+5 \mu \mathbf{1}_{2 r-2} \overline{\mathbf{u}}_{i}^{\top}\right)-2 \mu^{2} \Delta_{i}^{\prime \prime}-4 \mu^{2} \Delta_{i}^{\prime}
\end{aligned}
$$

by Weyl's inequality.
Assume $\left\|\overline{\mathbf{u}}_{i}\right\|_{2}=\sqrt{2} \mu \Delta_{i}^{\prime \prime \prime}>0$. As $\mathbf{M}_{1}^{\top} \mathbf{M}_{1} / n_{1}=\left(1-\mu^{2}\right) \overline{\mathbf{I}}_{r-1}^{\top} \overline{\mathbf{I}}_{r-1}+25 \mathbf{1}_{(2 r-2) \times(2 r-2)}$,

$$
\begin{aligned}
& \mathbf{M}_{1}^{\top} \mathbf{M}_{1} / n_{1}+\mu^{2} \overline{\mathbf{I}}_{r-1}^{\top} \overline{\mathbf{I}}_{r-1}+5 \mu \overline{\mathbf{u}}_{i} \mathbf{1}_{2 r-2}^{\top}+5 \mu \mathbf{1}_{2 r-2} \overline{\mathbf{u}}_{i}^{\top} \\
& =\overline{\mathbf{I}}_{r-1}^{\top} \overline{\mathbf{I}}_{r-1}-\frac{2 \overline{\mathbf{u}}_{i} \overline{\mathbf{u}}_{i}^{\top}}{\left\|\overline{\mathbf{u}}_{i}\right\|_{2}^{2}}+\left(\frac{\mathbf{1}_{2 r-2}}{\sqrt{2 r-2}}, \frac{\overline{\mathbf{u}}_{i}}{\left\|\overline{\mathbf{u}}_{i}\right\|_{2}}\right)\left(\begin{array}{cc}
B & \sqrt{B \varepsilon} \\
\sqrt{B \varepsilon} & 2
\end{array}\right)\left(\frac{\mathbf{1}_{2 r-2}}{\sqrt{2 r-2}}, \frac{\overline{\mathbf{u}}_{i}}{\left\|\overline{\mathbf{u}}_{i}\right\|_{2}}\right)^{\top}
\end{aligned}
$$

with $B=25(2 r-2) \geq 50$ and $\varepsilon=\mu^{2}\left\|\overline{\mathbf{u}}_{i}\right\|_{2}^{2}=2 \mu^{4}\left(\Delta_{i}^{\prime \prime \prime}\right)^{2}$. As $\overline{\mathbf{I}}_{r-1}^{\top} \overline{\mathbf{I}}_{r-1} / 2$ is an orthogonal projection with $\overline{\mathbf{u}}_{i} /\left\|\overline{\mathbf{u}}_{i}\right\|_{2}$ as an eigenvector, the r-th eigenvalue of the above matrix is

$$
\sigma_{r}^{\prime}=\left(B+2-\sqrt{(B+2)^{2}-4(2 B-B \varepsilon)}\right) / 2
$$

For $\varepsilon \leq 1, \sqrt{(B+2)^{2}-2 B(4-2 \varepsilon)}=\sqrt{(B-2+2 \varepsilon)^{2}+4\left(2 \varepsilon-\varepsilon^{2}\right)} \leq B-2+\varepsilon+4 \varepsilon / 46$, which implies

$$
\sigma_{r}^{\prime} \geq \frac{2 B(2-\varepsilon)}{B+2+B-2+\varepsilon+4 \varepsilon / 46} \geq(2-\varepsilon)(1-(25 / 46) \varepsilon / B) \geq 2-(1+1 / 92) \varepsilon
$$

Hence, the conclusion holds. The conclusion holds automatically when $\varepsilon>1$. The proof for $\varepsilon=0$ is simpler and omitted.

