
Appendix A Derivation

A.1 The Derivation of the Laplace Approximation

Let p(✓ | D) be an intractable posterior, written as

p(✓ | D) :=
1R

p(D | ✓)p(✓) d✓
p(D | ✓)p(✓) =:

1

Z
h(✓) (1)

Our goal is to approximate this distribution with a Gaussian arising from the Laplace approxi-
mation. The key observation is that we can rewrite the normalizing constant Z as the integralR

exp(log h(✓)) d✓. Let ✓MAP := arg max✓ log p(✓ | D) = arg max✓ log h(✓) be a (local) maxi-
mum of the posterior—the so-called maximum a posteriori (MAP) estimate. Taylor-expanding log h
around ✓MAP up to the second order yields

log h(✓) ⇡ h(✓MAP)�
1

2
(✓ � ✓MAP)

>⇤ (✓ � ✓MAP), (2)

where ⇤ := �r2 log h(✓)|✓MAP is the negative Hessian matrix of the log-joint in (1), evaluated at
✓MAP. Similar to its original formulation, here we again obtain a (multivariate) Gaussian integral, the
analytic solution of which is readily available:

Z ⇡ exp(log h(✓MAP))

Z
exp

✓
�

1

2
(✓ � ✓MAP)

>⇤ (✓ � ✓MAP)

◆
d✓

= h(✓MAP)
(2⇡)

d
2

(det ⇤)
1
2

.

(3)

Plugging the approximations (2) and (3) back into the expression of p(✓ | D), we obtain

p(✓ | D) =
1

Z
h(✓) ⇡

(det ⇤)
1
2

(2⇡)
d
2

exp

✓
�

1

2
(✓ � ✓MAP)

>⇤ (✓ � ✓MAP)

◆
, (4)

which we can immediately identify as the Gaussian density N (✓ | ✓MAP, ⌃) with mean ✓MAP and
covariance matrix ⌃ := ⇤�1.

Appendix B Details on the Four Components

1 Inference over Subsets of Weights

B.1.1 Subnetwork

Storing the full D ⇥ D covariance matrix ⌃ of the weight posterior in Eq. (4) is computationally
intractable for a modern neural networks. One approach to reduce this computational burden is to
perform inference over only a small subset of the model parameters ✓ [27]. This is motivated by recent
findings that neural nets can be heavily pruned without sacrificing test accuracy [85], and that in the
neighborhood of a local optimum, there are many directions that leave the predictions unchanged
[46].

This subnetwork inference approach uses the following approximation to the posterior in Eq. (4):

p(✓ | D) ⇡ p(✓S | D)
Y

r

�(✓r � b✓r) = qS(✓) , (5)

where �(x� a) denotes the Dirac delta function centered at a. The approximation qS(✓) in Eq. (5)
simply decomposes the full neural network posterior p(✓ | D) into a Laplace posterior p(✓S | D) over
the subnetwork ✓S 2 RS , and fixed, deterministic values b✓r to the D � S remaining weights ✓r. In
practice, the remaining weights ✓r are simply set to their MAP estimates, i.e. b✓r = ✓MAP

r , requiring no
additional computation. Importantly, note that the subnetwork size S is in practice a hyperparameter
that can be controlled by the user. Typically, S will be set such that the subnetwork is much smaller
than the full network, i.e. S ⌧ D. In particular, S can be set such that it is tractable to compute
and store the full S ⇥ S covariance matrix over the subnetwork. This allows us to capture rich

16

dependencies across the weights within the subnetwork. However, in principle one could also employ
one of the (less expressive) factorizations of the Hessian/Fisher described in Section B.1.2.

Daxberger et al. [27] propose to choose the subnetwork such that the subnetwork posterior qS(✓)
in Eq. (5) is as close as possible (w.r.t. some discrepancy measure) to the full posterior p(✓ | D) in
Eq. (4). As the subnetwork posterior is degenerate due to the involved Dirac delta functions, common
discrepancy measures such as the KL divergence are not well defined. Therefore, Daxberger et al.
[27] propose to use the squared 2-Wasserstein distance, which in this case takes the following form:

W2(p(✓ | D), qS(✓))2 = Tr
✓

⌃ + ⌃S � 2
⇣
⌃1/2

S ⌃ ⌃1/2
S

⌘1/2◆
, (6)

where the (degenerate) subnetwork covariance matrix ⌃S is equal to the full covariance matrix ⌃ but
with zeros at the positions corresponding to the weights ✓r (i.e. those not part of the subnetwork).

Unfortunately, finding the subset of weights ✓S 2 RS of size S that minimizes Eq. (6) is combinato-
rially hard, as the contribution of each weight depends on every other weight. Daxberger et al. [27]
therefore assume that the weights are independent, resulting in the following simplified objective:

W2(p(✓ | D), qS(✓))2 ⇡
DX

d=1

�2
d(1�md) , (7)

where �2
d = ⌃dd is the marginal variance of the dth weight, and md = 1 if ✓d 2 ✓S (with slight

abuse of notation) or 0 otherwise is a binary mask indicating which weights are part of the subnetwork
(see Daxberger et al. [27] for details). The objective in Eq. (7) is trivially minimized by choosing a
subnetwork containing the S weights with the highest �2

d values (i.e. with largest marginal variances).

In practice, even computing the marginal variances (i.e. the diagonal of ⌃) is intractable, as it requires
storing and inverting the Hessian/Fisher ⇤. To approximate the marginal variances, one could use a
diagonal Laplace approximation [43, 2] that assumes diag(⌃) ⇡ diag(⇤)�1. Alternatively, one could
use diagonal SWAG [15]. For more details on subnetwork inference, refer to Daxberger et al. [27].

B.1.2 Last-Layer

The last-layer Laplace [37, 28] is a special variant of the subnetwork Laplace where ✓S in (5) is
assumed to equal the last-layer weight matrix W (L) of the network. That is, we let f✓ : RM

! RC

is an L-layer NN, and assume that the first L� 1 layers of f✓ is a feature map. Given MAP-trained
parameters ✓MAP, we define a Laplace-approximated posterior over W (L)

p(W (L)
| D) ⇡ N (W (L)

|W (L)
MAP, ⌃

(L)), (8)
and we leave the rest of the parameters with their MAP-estimated values. Since this matrix is small
relative to the entire network, the last-layer Laplace can be implemented efficiently.

2 Hessian Factorization

For brevity, given a datum (x, y), we denote s(x, y) to be the gradient of the log-likelihood at ✓MAP,
i.e.

s(x, y) := r✓p(y | f✓(x))|✓MAP .
Using this notation, we can write the Fisher compactly by

F :=
PN

n=1 Ep(y | f! (xn)) (s(xn, y)s(xn, y)|) , (9)
We shall refer to this matrix as the full Fisher. Recall that F is as large as the exact Hessian of the
network, so its computation is often infeasible. Thus, here, we review several factorization schemes
that makes the computation (and storage) of the Fisher efficient, starting from the simplest.

Diagonal Although MacKay recommended to not use the diagonal factorization of the Hessian
[86], a recent work has indicated this factorization is usable for sufficiently deep NNs [87]. In this
factorization, we simply assume that the negative-log-posterior’s Hessian ⇤ is simply a diagonal
matrix with diagonal elements equal the diagonal of the Fisher, i.e. ⇤ ⇡ �diag(F)>I � �I . Since
we can write diag(F) =

PN
n=1 Ep(y | f! MAP (xn))(s(xn, y)� s(xn, y)),6 this factorization is efficient:

Not only does it require only a vector of length D to represent F but also it incurs only a O(D) cost
when inverting ⇤—down from O(D3).

6The operator � denotes the Hadamard product.

17

KFAC The KFAC factorization can be seen as a midpoint between the two extremes: diagonal
factorization, which might be too restrictive, and the full Fisher, which is computationally infeasible.
The key idea is to model the correlation between weights in the same layer but assume that any
pair of weights from two different layers are independent—this is a more sophisticated assumption
compared to the diagonal factorization since there, it is assumed that all weights are independent of
each other. For any layer l = 1, . . . , L, denoting Nl as the number of hidden units at the l-th layer, let
W (l)

2 RNl ⇥Nl �1 be the weight matrix of the l-th layer of the network, a(l) the l-th hidden vector,
and g(l) 2 RNl the log-likelihood gradient w.r.t. a(l). For each l = 1, . . . , L, we can then write the
outer product inside expectation in (8) as s(xi, y)s(xi, y)> = a(l�1)a(l)>

⌦ g(l)g(l)>. Furthermore,
assuming that a(l�1) is independent of g(l), we obtain the approximation of the l-th diagonal block of
F , which we denote by F (l):

F (l)
⇡ E

⇣
a(l�1)a(l�1)>

⌘
⌦ E

⇣
g(l)g(l)>

⌘
=: A(l�1)

⌦G(l), (10)

where we represent both the sum and the expectation in (9) as E for brevity.

From the previous expression we can see that the space complexity for storing F (l) is reduced to
O(N2

l +N2
l�1), down from O(N2

l N2
l�1). Considering all L layers of the network, we obtain the layer-

wise Kronecker factors {A(l)
}
L�1
l=0 and {G(l)

}
L
l=1 of the log-likelihood’s Hessian. This corresponds

to the block-diagonal approximation of the full Hessian.

One can then readily use these Kronecker factors in a Laplace approximation. For each layer l, we
obtain the l-th diagonal block of ⇤—denoted ⇤(l)—by

⇤(l)
⇡

⇣
A(l�1) +

p

�I
⌘
⌦

⇣
G(l) +

p

�I
⌘

=: V (l)
⌦ U (l).

Note that we take the square root of the prior precision to avoid “double-counting” the effect of
the prior. Nonetheless, this can still be a crude approximation [19, 26]. This particular Laplace
approximation has been studied by Ritter et al. [23, 24] and can be seen as approximating
the posterior of each W (l) with the matrix-variate Gaussian distribution [88]: p(W (l)

| D) ⇡

MN (W (l)
|W (l)

MAP, U
(l)�1, V (l)�1). Hence, sampling can be done easily in a layer-wise manner:

W (l)
⇠ p

⇣
W (l)

| D

⌘
() W (l) = W (l)

MAP + U (l)� 1
2 EV (l)� 1

2

where

E ⇠MN (0, INl , INl �1),

where we have denoted by Ib the identity b⇥b matrix, for b 2 N. Note that the above matrix inversions
and square-root are in general much cheaper than those involving the entire ⇤. Sampling E is not
a problem either since MN (0, INl , INl �1) is equivalent to the standard (NlNl�1)-variate Normal
distribution. As an alternative, Immer et al. [26] suggest to incorporate the prior exactly using an
eigendecomposition of the individual Kronecker factors, which can improve performance.

Low-rank block-diagonal We can improve KFAC’s efficiency by considering its low-rank fac-
torization [29]. The key idea is to eigendecompose the Kronecker factors in (10) and keep only
the eigenvectors corresponding to the first k largest eigenvalues. This can be done employing the
eigenvalue-corrected KFAC [44]. That is, for each layer l = 1, . . . , L:

F (l)
⇡

⇣
U (l�1)
A S(l�1)

A U (l�1)
A

>
⌘
⌦

⇣
U (l)
G Sl

GU (l)
G

>
⌘

=
⇣
U (l�1)
A ⌦ U (l)

G

⌘⇣
S(l�1)
A ⌦ S(l)

G

⌘⇣
U (l�1)
A ⌦ U (l)

G

⌘>
.

Under this decomposition, one can the easily obtain the optimal rank-k approximation of F (l), denoted
by F (l)

k , by selecting the top-k eigenvalues. However, the diagonal of this rank-k matrix can deviate
too far from the exact diagonal elements of F (l). Hence, one can make the diagonal of this low
rank matrix exact replacing diag(F l

k) with diag(F (l)), and obtain the following rank-k-plus-diagonal
approximation of F (l):

F (l)
⇡ F (l)

k + diag(F (l))� diag(F (l)
k).

18

This factorization can be seen as a combination of the previous two approximations: For each diagonal
block of F , we use the exact diagonal elements of F and approximate the off-diagonal elements with
a rank-k matrix arising from KFAC. Both the space and computational complexities are lower than
those of KFAC since here we work exclusively with truncated and diagonal matrices.

Low-rank Instead of only approximating each block by a low-rank structure, the entire Hessian
or GGN can also be approximated by a low-rank structure [47, 46]. Eigendecomposition of F is
a convenient way to obtain a low-rank approximation. The eigendecomposition of F is given by
QLQ> where the columns of Q 2 RD⇥D are eigenvectors of F and L = diag(l) is a D-dimensional
diagonal matrix of eigenvalues. Assuming the eigenvalues in l are arranged in a descending order,
the optimal k-rank approximation in Frobenius or spectral norm is given by truncation [89]: let
bQ 2 RD⇥k be the matrix of the first k eigenvectors corresponding to the largest k eigenvalues bl 2 Rk.
That is, we truncate all eigenvectors and eigenvalues after the k largest eigenvalues. The low-rank
approximation is then given by

F ⇡ bQ diag(bl) bQ>.

The rank k can be chosen based on the eigenvalues so as to retain as much information of the Hessian
(approximation) as possible. Further, sampling and computation of the log-determinant can be carried
out efficiently.

Functional When considering network linearization for the predictive distribution, we can directly
infer the Gaussian distribution on the outputs, of which there are typically few, instead of inferring a
distribution on the parameters, of which there are many [25, 26].

3 Hyperparameter Tuning

In this section we focus on tuning the prior variance/precision hyperparameter for simplicity. The same
principle can be used for other hyperparameters of the Laplace approximation such that observation
noise in the case of regression.

Post-Hoc Here, we assume that the steps of the Laplace approximation—MAP training and forming
the Gaussian approximation—as two independent steps. As such, we are free to choose different prior
variance �2 in the latter part, irrespective to the weight decay hyperparameter used in the former. Here,
we review several ways to optimize �2 post-hoc. Ritter et al. [23] proposes to tune �2 by maximizing
the posterior-predictive over a validation set Dval := (xn, yn)Nval

n=1. That is we solve the following
one-parameter optimization problem:

�2
⇤ = arg max

�2

NvalX

n=1

log p(yn |xn,D). (11)

However, Kristiadi et al. [28] found that the previous objective tends to make the Laplace approxi-
mation overconfident to outliers. Hence, they proposed to add an auxiliary term that depends on an
OOD dataset Dout := (x(out)

n)Nout
n=1 to (11), as follows

�2
⇤ = arg max

�2

NvalX

n=1

log p(yn |xn,D) + �
NoutX

n=1

H
h
p(yn |x

(out)
n ,D)

i
, (12)

where H is the entropy functional and � 2 (0, 1] is a trade-off hyperparameter. Intuitively, we choose
�2 that balances the calibration on the true dataset and the low-confidence on outliers. Moreover,
other losses could be constructed to tune the prior precision for optimal performance w.r.t. some
desired quantity. Finally, inspired by Immer et al. [22] (further details below in Online) one can also
maximize the Laplace-approximated marginal likelihood (3) to obtain �2

⇤ , which eliminates the need
for the validation data.

Online Contrary to the post-hoc tuning above, here we perform a Laplace approximation and
tune the prior variance simultaneously as we perform a MAP training [22]. The key is to form
a Laplace-approximated posterior every B epochs of a gradient descent, and use this posterior to
approximate the marginal likelihood, cf. (3). By maximizing this marginal likelihood, we can find
the best hyperparameters. Thus, once the MAP training has finished, we automatically obtain a prior
variance that is already suitable for the Laplace approximation. Note that, this way, only a single MAP
training needs to be done. This is in contrast to the classic, offline evidence framework [34] where

19

Algorithm 1 Online Laplace (adapted from Immer et al. [22, Algorithm 1])
Input:

NN f✓; training set D; learning rate ↵0 and number of epochs T0 for MAP estimation; learning
rate ↵1 and number of epochs T1 for hyperparameter tuning; marginal likelihood maximization
frequency F .

1: Initialize ✓0
2: for t = 1, . . . , T0 do
3: gt r✓L(D; ✓)|✓t �1

4: ✓t ✓t�1 � ↵0 gt
5: if t mod F = 0 then
6: p(✓ | D) ⇡ N (✓ | ✓t, (r2

L(D; ✓)|✓t)
�1) . Perform a Laplace approximation

7: for et = 1, . . . , T1 do . Hyperparameter optimization
8: h!t r�2 log p(D | �2)|�2

!t �1
. The marginal likelihood follows from (3)

9: �2
!t
 �2

!t�1
+ ↵1 h!t

10: end for
11: end if
12: end for
13: return ✓T0 ; r2

L(D; ✓)|✓T 0

the marginal likelihood maximization is performed only when the MAP estimation is done, and these
steps need to be iteratively done until convergence. As a final note, similar to the post-hoc marginal
likelihood above, this online Laplace does not require a validation set and has an additional benefit of
improving the network’s generalization performance [22]. We refer the reader to Algorithm 1 for an
overview.

4 Approximate Predictive Distribution

Here, we denote x⇤ 2 RN to be a test point, and f⇤ be the network output at this point. We will review
different way to approximate the predictive distribution p(y |x⇤,D) given a Gaussian approximate
posterior, starting from the most general.

B.4.3 General
Monte Carlo Integration The simplest but general and unbiased approximation is the Monte Carlo
(MC) integration, which can be performed by sampling an approximate posterior q(✓ | D) repeatedly:

p(y |x⇤,D) ⇡
1

S

SX

s=1

p(y | f✓s (x⇤)), where ✓s ⇠ q(✓ | D).

While the error of this approximation decays like 1/
p

S and thus requires many samples to be
accurate, for practical BNNs, it is standard to use 10 or 20 samples of q(✓ | D) [23, 28, 12, etc.]. Note
that this approximation can be used regardless the form of the likelihood p(y | f✓(x)), in particular it
can be used to directly obtain the predictive distribution in both the regression and classification alike.

B.4.4 Distribution of Network Outputs

Here, we are concerned in approximating the marginal distribution of f(x⇤), where ✓ has been
integrated out.

Linearization In this approximation, we linearize the network to obtain

f✓(x⇤) ⇡ f✓MAP(x⇤) + J>
⇤ (✓ � ✓MAP),

where J⇤ := r✓f✓(x⇤)|✓MAP 2 Rd⇥c is the Jacobian matrix of the network output. This way, under
a Gaussian approximate posterior q(✓ | D), the marginal distribution over the network output f⇤ :=

20

f(x⇤) is again a Gaussian, given by7

p(f⇤ | f✓(x⇤), x⇤,D) =

Z
�(f⇤ � f✓(x⇤)) q(✓ | D) d✓

⇡ N (f⇤ | f✓MAP(x⇤), J
>
⇤ ⌃J⇤)

This approximation has been extensively used for small networks [34], but it has since gone out
of favor in deep learning due to its cost—the Jacobian J⇤ needs to be computed per input point.
Nevertheless, this approximation is still useful in theoretical works due to its analytical nature [28, 49,
84] . Moreover, in problems where it can be efficiently use in practice, it offers a better approximation
than MC-integral [26, 48]. Due to the linearization in the network parameters, it is further possible
to obtain a functional prior in the form of a Gaussian process [25, 26]. This allows to perform
function-space inference as opposed to weight-space inference which is amenable to different Hessian
approximations than those pointed out above in Section B.1.2, and is, for example, useful for continual
learning [76].

B.4.5 Regression

Assume that we already have a Gaussian approximation to p(f⇤ |x⇤,D) ⇡ N (f⇤ |µ⇤, ⌃⇤) via the
linearization above. In regression, we still need to incorporate the observation noise � encoded in the
(usually) Gaussian likelihood N (y⇤ | f⇤, �I)8 to make prediction. This can be easily done in an exact
manner:

p(y⇤ |x⇤) =

Z

RC
N (y⇤ | f⇤, �I)N (f⇤ |µ⇤, ⌃⇤) df⇤

= N (y⇤ |µ⇤, ⌃⇤ + �I),

since the integral above is just a convolution of two Gaussian r.v.s.

B.4.6 Classification and Generalized Regression

Since unlike the regression case, the classification likelihood p(y⇤ | f⇤) is non-Gaussian, we cannot
analytically obtain p(y⇤ |x⇤) given a Gaussian approximation p(f⇤ |x⇤,D) ⇡ N (f⇤ |µ⇤, ⌃⇤). So, in
this case we are interested in approximating the intractable integral

p(y⇤ |x⇤) =

Z
p(y⇤ | f⇤)N (f⇤ |µ⇤, ⌃⇤) df⇤,

where p(y⇤ | f⇤) is constructed via an inverse-link function. Here we will review the usual case of
classification, i.e. when p(y⇤ | f⇤) = �(f⇤) where � is the logistic-sigmoid function, or p(y⇤ | f⇤) =
softmax(f⇤) .

Delta Method The crux of the delta method [91–93] is a Taylor-expansion of the softmax function
around µ⇤ up to the second order. Then, since p(f⇤ |x⇤,D) is assumed to be Gaussian, the integral
Ep(f⇤ | x⇤,D)(softmax(f⇤)) can be computed easily, resulting in an analytic expression softmax(µ⇤)+
1/2 tr(B⌃⇤), where B is the Hessian matrix of the softmax at µ⇤.

Probit Approximations The essence of the (binary) probit approximation [31, 34] is to approxi-
mate � with the probit function �—the standard Normal c.d.f.—which makes the integral solvable
analytically. Using this approximation, one can then obtain the closed-form approximation

p(y⇤ |x⇤) ⇡

Z

R
�(f⇤)N (f⇤ |µ⇤, �

2
⇤) df⇤

= �

µ⇤p

1 + ⇡
8 �2

⇤

!
.

It has a generalization to multi-class classification, due to Gibbs [52], i.e. for approximating

p(y⇤ |x⇤) =

Z

RC
softmax(f⇤)N (f⇤ |µ⇤, ⌃⇤) df⇤. (13)

7See Bishop [90, Sec. 4.5.2].
8We assume a multivariate output y! 2 RC for full generality.

21

test log likelihood test accuracy OOD-AUROC prediction time (s)

D I A G -0.302±0.005 0.894±0.002 0.832±0.011 29.5±0.2
K F A C -0.282±0.004 0.899±0.002 0.836±0.004 30.6±0.1
F U L L -0.285±0.004 0.898±0.002 0.876±0.003 62.8±1.1

Table 2: Qualitative comparison of different Hessian approximations. The K F A C Hessian approxima-
tion performs similar to F U L L Gauss-Newton but is almost as fast as D I A G. We use online marginal
likelihood method [22] to train a small convolutional network on FMNIST and measure performance
at test time. We repeat for three seeds to estimate the standard error. The OOD-AUROC is averaged
over EMNIST, MNIST, and KMNIST. The prediction time is taken as the average over all in and
out-of-distribution data sets. We use the MC predictive with 100 samples.

In this case, we approximate the resulting probability vector of length C with a vector which i-th
component is given by exp(⌧i)/

PC
j=1 exp(⌧j), where ⌧j = µ⇤j/

p
1 + ⇡/8 ⌃⇤jj for each j =

1, . . . , C. This approximation ignores the correlation between logits since it only depends on the
diagonal of ⌃⇤. Nevertheless, it yields good results even in deep learning [65], and are invaluable
tools for theoretical work [84].

Laplace Bridge The main idea of the Laplace bridge is to perform a Laplace approximation to
the Dirichlet distribution by first writing it as a distribution over RC with the help of the softmax
function [53, 54]. This way, Laplace approximation can be reasonably applied to approximate the
Dirichlet, which can be thought as mapping the Dirichlet Dir(↵⇤) to a Gaussian N (µ⇤, ⌃⇤). The
pseudo-inverse of this map, mapping (µ⇤, ⌃⇤) to ↵⇤ where for each i = 1, . . . , C, the i-th component
↵ is given by the simple closed-form expression

↵i =
1

⌃ii

0

@1�
2

C
+

exp(µi)

C2

CX

j=1

exp(�µj)

1

A ,

is the Laplace bridge. Just like the probit approximation, the Laplace bridge ignores the correlation
between logits. But, unlike all the previous approximations, it yields a full distribution over the
solutions of the softmax-Gaussian integral (13). So, the Laplace bridge is a richer yet comparably
simple approximation to the integral and is useful for many applications in deep BNNs [55].

Appendix C Further Experiments Details and Results

C.1 Laplace Comparison

Here, we present more detailed results of our comparison of the different variations of the Laplace
approximation. We show in-distribution accuracy for CIFAR-10 using a model trained with and
without data augmentation, and AUROC values averaged over the out-of-distribution datasets SVHN,
LSUN, and CIFAR-100. In the first row of Figure 8, we highlight the different Hessian structures with
different colors; in the second row, we use color to highlight the different link approximations in the
predictive distribution. We considered most combinations of the different choices for the components
discussed in Section 2, but exclude some combinations which we have found to not work well at all,
e.g. online Laplace when performing a Laplace approximation over the weights of only the last layer.
In Table 2, we compare the predictive performance and runtime when using differently structured
Hessian approximations. We find that the Kronecker-factored Hessian approximations provides a
good trade-off between runtime and performance.

C.2 Predictive Uncertainty Quantification

C.2.1 Training Details

We use LeNet [94] and WideResNet-16-4 [WRN, 95] architectures for the MNIST and CIFAR-10
experiments, respectively. We adopt the commonly-used training procedure and hyperparameter
values.

22

�������� �������� �������� �������� �������� ��������
�$�F�F�������,�'��

��������

��������

��������
�$

�8
�5

�2
�&

�0�$�3
�K�H�V�V�L�D�Q�B�V�W�U�X�F�W�X�U�H
�G�L�D�J
�N�U�R�Q
�I�X�O�O
�V�X�E�V�H�W�B�R�I�B�Z�H�L�J�K�W�V
�D�O�O
�O�D�V�W�B�O�D�\�H�U
�L�Q�I�H�U�H�Q�F�H�B�P�H�W�K�R�G
�R�Q�O�L�Q�H
�S�R�V�W���K�R�F

(a) Hessian structure (CIFAR-10 + DA)

�������� �������� �������� �������� �������� �������� ��������
�$�F�F�������,�'��

������

������

������

������

�$
�8

�5
�2

�&

(b) Hessian structure (CIFAR-10)

0.88 0.89 0.90 0.91 0.92 0.93
Acc. (ID)

0.88

0.90

0.92

A
U

R
O

C

MAP
link_approx
mc
probit
bridge
map
subset_of_weights
all
last_layer
inference_method
online
post-hoc

(c) Predictive approximation (CIFAR-10 + DA)

�������� �������� �������� �������� �������� �������� ��������
�$�F�F�������,�'��

������

������

������

������

�$
�8

�5
�2

�&

(d) Predictive approximation (CIFAR-10)

Figure 8: Comparison of variations of the LA on the CIFAR-10 OOD experiment with ((a) and (c))
and without ((b) and (d)) data augmentation (DA).

MAP We use Adam and Nesterov-SGD to train LeNet and WRN, respectively. The initial learning
rate is 0.1 and annealed via the cosine decay method [96] over 100 epochs. The weight decay is set
to 5⇥ 10�4. Unless stated otherwise, all methods below use these training parameters.

DE We train five MAP network (see above) independently to form the ensemble.

VB We use the Bayesian-Torch library [97] to train the network. Tha variational posterior is chosen
to be the diagonal Gaussian [11, 12] and the flipout estimator [66] is employed. The prior precision is
set to 5⇥ 10�4 to match the MAP-trained network, while the KL-term downscaling factor is set to
0.1, following [13].

CSGHMC We use the publicly available code provided by the original authors [67].9 We use their
default (i.e. recommended) hyperparameters.

SWAG For the SWAG baseline, we follow Maddox et al. [15] and run stochastic gradient descent
with a constant learning rate on the pre-trained models to collect one model snapshot per epoch, for a
total of 40 snapshots. At test time, we then make predictions by using 30 Monte Carlo samples from
the posterior distribution; we correct the batch normalization statistics of each sample as described in
Maddox et al. [15]. To tune the constant learning rate, we used the same approach as in Eschenhagen
et al. [84], combining a grid search with a threshold on the mean confidence. For MNIST, we defined
the grid to be the set { 1e-1, 5e-2, 1e-2, 5e-3, 1e-3 }, yielding an optimal value of 1e-2. For CIFAR-10,
searching over the same grid suggested that the optimal value lies between 5e-3 and 1e-3; another,
finer-grained grid search over the set { 5e-3, 4e-3, 3e-3, 2e-3, 1e-3 } then revealed the best value to
be 2e-3.

Other baselines Our choice of baselines is based on the most common and best performing methods
of recent Bayesian DL papers. Despite its popularity, Monte Carlo (MC) dropout [6] has been shown
to underperform compared to more recent methods (see e.g. Ovadia et al. [64]). A recent VI method
called Variational Online Gauss-Newton (VOGN) [13] also seems to underperform. For example,
Fig. 5 of Osawa et al. [13] shows that on OOD detection with CIFAR-10 vs. SVHN, MC-dropout and

9https://github.com/ruqizhang/csgmcmc

23

https://github.com/ruqizhang/csgmcmc

0 50 100 150
0.0

0.5

1.0

(a) MNIST-R Brier #
0 50 100 150

0.0

0.5

1.0

(b) MNIST-R Acc. "
0 1 2 3 4 5

0.0

0.2

0.4

0.6

(c) CIFAR10-C Brier #
0 1 2 3 4 5

0.00

0.25

0.50

0.75

MAP
DE
BBB
CSGHMC

SWAG
LA
LA*

(d) CIFAR10-C Acc. "

Figure 9: Dataset shift on the Rotated-MNIST (top) and Corrupted-CIFAR-10 datasets (bottom).

Table 3: MNIST OOD detection results.
Confidence # AUROC "

Methods EMNIST FMNIST KMNIST EMNIST FMNIST KMNIST
MAP 83.6±0.3 64.2±0.5 77.3±0.3 93.5±0.3 98.9±0.0 97.0±0.1
DE 75.8±0.2 55.4±0.4 65.9±0.3 95.1±0.0 99.2±0.0 98.3±0.0
BBB 79.1±0.4 67.5±1.6 73.1±0.4 92.3±0.2 98.2±0.2 97.0±0.2
CSGHMC 76.2±1.6 63.6±1.9 67.9±1.5 93.4±0.2 97.7±0.2 97.1±0.1
SWAG 64.9±0.3 84.0±0.2 78.5±0.3 98.9±0.0 93.6±0.3 97.1±0.1
LA 74.8±0.4 58.8±0.5 69.0±0.4 93.4±0.3 98.5±0.1 96.6±0.1
LA* 62.0±0.5 49.6±0.6 56.7±0.5 94.3±0.2 98.3±0.1 96.6±0.2

VOGN only achieve AUROC" values of 81.9 and 80.0, respectively, while last-layer-LA obtains a
substantially better value of 91.9 (they use ResNet-18, which is comparable to our model).

C.2.2 Detailed Results

We show the Brier score and accuracy as a function of shift intensity in Fig. 9. Moreover, we provide
the detailed (i.e. non-averaged) OOD detection results in Tables 3 and 4.

C.2.3 Additional Details on Wall-clock Time Comparison

Concerning the wall-clock time comparison in Fig. 5, we would like to clarify that for LA, we
consider the default configuration of laplace . As the default LA variant uses the closed-form probit
approximation to the predictive distribution and therefore neither requires Monte Carlo (MC) sampling
nor multiple forward passes, the wall-clock time for making predictions is essentially the same as for
MAP. This is contrast to the baseline methods, which are significantly more expensive at prediction
time due to the need for MC sampling (VB, SWAG) or forward passes through multiple model
snapshots (DE, CSGHMC).

Importantly, note that is an advantage exclusive to our implementation of LA (i.e. with a GGN/Fisher
Hessian approximation or with the last-layer LA) that it can be used without sampling (i.e. using the
probit or Laplace bridge predictive approximations). This kind of approximation is incompatible with
the other baselines (i.e. DE, CSGHMC, SWAG, and VB) since these methods just yield samples/dis-
tributions over weights while our LA variants implicitly yield a Gaussian distribution over logits due
to the linearization of the NN induced by the use of the GGN/Fisher (see Immer et al. [26] for details)
or the use of only the last layer. While one could still apply linearization to other methods, this would
not be theoretically justified, in contrast to GGN-/last-layer-LA.

Finally, the reason we benchmark our deterministic, probit-based version is that we found it to
consistently perform on par or better than MC sampling. If we predict with the LA using MC samples
on the logits, the runtime is only around 20% slower than the deterministic probit approximation,
which is still significantly faster than all other methods.

In summary, we believe that the ability to obtain calibrated predictions with a single forward-pass
is a critical and distinctive advantage of the LA over almost all other Bayesian deep learning and
ensemble methods.

24

Table 4: CIFAR-10 OOD detection results.
Confidence # AUROC "

Methods SVHN LSUN CIFAR-100 SVHN LSUN CIFAR-100
MAP 77.5±2.9 71.3±0.6 79.3±0.1 91.8±1.2 94.5±0.2 90.1±0.1
DE 62.8±0.7 62.6±0.4 70.8±0.0 95.4±0.2 95.3±0.1 91.4±0.1
BBB 60.2±0.7 53.8±1.1 63.8±0.2 88.5±0.4 91.9±0.4 84.9±0.1
CSGHMC 69.8±0.8 65.2±0.8 73.1±0.1 91.2±0.3 92.6±0.3 87.9±0.1
SWAG 69.3±4.0 62.2±2.3 73.0±0.4 91.6±1.3 94.0±0.7 88.2±0.5
LA 70.6±3.2 63.8±0.5 72.6±0.1 92.0±1.2 94.6±0.2 90.1±0.1
LA* 58.0±3.1 50.0±0.5 59.0±0.1 91.9±1.3 95.0±0.2 90.2±0.1

C.3 WILDSExperiments

For this set of experiments, we use WILDS[68], a recently proposed benchmark of realistic distribution
shifts encompassing a variety of real-world datasets across different data modalities and application
domains. In particular, we consider the following WILDSdatasets:

• Camelyon17: Tumor classification (binary) of histopathological tissue images across differ-
ent hospitals (ID vs. OOD) using a DenseNet-121 model (10 seeds).

• FMoW: Building / land use classification (62 classes) of satellite images across different times
and regions (ID vs. OOD) using a DenseNet-121 model (3 seeds).

• CivilCommments: Toxicity classification (binary) of online text comments across different
demographic identities (ID vs. OOD) using a DistilBERT-base-uncased model (5 seeds).

• Amazon: Sentiment classification (5 classes) of product reviews across different reviewers
(ID vs. OOD) using a DistilBERT-base-uncased model (3 seeds).

• PovertyMap: Asset wealth index regression (real-valued) across different countries and
rural/urban areas (ID vs. OOD) using a ResNet-18 model (5 seeds).

Please refer to the original paper for more details on this benchmark and the above-mentioned datasets.
All reported results in Fig. 6 and Fig. 10 show the mean and standard error across as many seeds as
there are provided with the original paper (see the list of datasets above for the exact numbers).

For the last-layer Laplace method, we use either a KFAC or full covariance matrix (depending on the
size of the last layer; in particular, we use a KFAC covariance for FMoWand full covariances for all
other datasets) and the linearized Monte Carlo predictive distribution with 10,000 samples.

For the deep ensemble, we simply the aggregate the pre-trained models provided by the original
paper10 This yields ensembles of 5 neural network models, which is a commly-used ensemble size
[64]. Since these models were trained in different ways (e.g. using different domain generalization
methods, see [68] for details), their combinations can be viewed as hyperparameter ensembles [98].

Note that the temperature scaling baseline is only applicable for classification tasks, and therefore we
do not report it for the PovertyMap regression dataset.

We tune the temperature parameter for temperature scaling, the prior precision parameter for Laplace,
and the noise standard deviation parameter for regression (i.e. for the PovertyMap dataset) by mini-
mizing the negative log-likelihood on the in-distribution validation sets provided with WILDS.

Finally, Fig. 10 shows an extended version of the results reported in Fig. 6, which additionally
reports the following metrics: accuracy (for classification) or mean squared error (for regression),
confidence (only for classification), mean calibration error (only for classification), and Brier score
(only for classification). The overall conclusion here is the same as for Fig. 6, namely that Laplace is
significantly better calibrated than MAP, and competitive with temperature scaling and ensembles,
especially on the OOD splits. Note that the differences in accuracies of the ensemble stem from
the different training procedures of the ensemble members (which sometimes achieve higher and
sometimes lower accuracy), as mentioned above.

10See https://worksheets.codalab.org/worksheets/0x52cea64d1d3f4fa89de326b4e31aa50a
for the complete list of models.

25

https://worksheets.codalab.org/worksheets/0x52cea64d1d3f4fa89de326b4e31aa50a

0.7

0.8

0.9
A

cc
u
ra

cy
/

M
S
E

ID

MAP Deep Ensemble Temp. Scaling Laplace

OOD

0.80

0.85

0.90

0.95

C
on

fi
d
en

ce

0.2

0.4

0.6

0.8

N
L
L

0.05

0.10

0.15

0.20

E
C

E
/

C
al

ib
.

0.20

0.25

0.30

0.35

M
C

E

0.1

0.2

0.3

0.4

0.5

B
ri

er
S
co

re

0.55

0.60

0.65

ID OOD

0.6

0.7

0.8

1.5

2.0

2.5

3.0

0.0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.5

0.6

0.7

0.90

0.92

0.94

0.96

ID OOD

0.80

0.85

0.90

0.95

1.00

0.10

0.15

0.20

0.25

0.30

0.1

0.2

0.3

0.2

0.4

0.6

0.2

0.3

0.4

0.72

0.73

0.74

ID OOD

0.750

0.775

0.800

0.825

0.60

0.65

0.70

0.025

0.050

0.075

0.100

0.125

0.3

0.4

0.5

0.36

0.38

0.40

0.18

0.20

0.22

ID OOD

0.600

0.625

0.650

0.675

0.700

10

20

30

40

(a) Camelyon17 (b) FMoW (c) CivilComments (d) Amazon (e) PovertyMap

Figure 10: Assessing real-world distribution shift robustness on five datasets from the WILDSbench-
mark [68], covering different data modalities, model architectures, and output types; see text for
details. We report means ± standard errors of several metrics (from top to bottom): accuracy (for
classification) or mean squared error (for regression), confidence (only for classification), negative
log-likelihood, ECE (for classification) or regression calibration error [71], mean calibration error
(only for classification), and Brier score (only for classification). The in-distribution (left panels) and
OOD (right panels) dataset splits correspond to different domains (e.g. hospitals for Camelyon17).

26

C.4 Further Details on the Continual Learning Experiment

We benchmark Laplace approximations in the Bayesian continual learning setting on the permuted
MNIST benchmark which consists of 10 consecutive tasks where each task is a permutation of the
pixels of the MNIST images. Following common practice [24, 7, 13], we use a 2-hidden layer MLP
with 100 hidden units each and 28⇥ 28 = 784 input dimensions and 10 output dimensions for the
MNIST classes. We adopt the implementation of the continual learning task and the model by Pan et al.
[76].11 In the following, we will briefly outline the Bayesian approach to continual learning [7] and
explain how a diagonal and KFAC Laplace approximation can be employed in this setting. Further, we
describe how this can be combined with the evidence framework to update the prior online alleviating
the need for a validation set, which is unlikely to be available in real continual learning scenarios.

C.4.1 Bayesian Approach to Continual Learning

The Bayesian approach to continual learning can be simply described as iteratively updating the
posterior after each task. We are given T data sets D := {Dt}

T
t=1 and have a neural network with

parameters ✓. In line with the standard supervised learning setting outlined in Section 2, we have a
prior on parameters p(✓) = N (✓; 0, �2I) and a likelihood p(D | ✓) realized by a neural network. The
posterior on the parameters after all tasks is then

p(✓ | D) / p(DT | ✓)⇥ . . .⇥ p(D2 | ✓)⇥ p(D1 | ✓)⇥ p(✓)| {z }
/p(✓ | D1)| {z }

/p(✓ | D1,D2)

. (14)

This factorization gives rise to a recursion to update the posterior after t� 1 data sets to the posterior
after t data sets:

p(✓ | D1, . . . ,Dt) / p(Dt | ✓)p(✓ | D1, . . . ,Dt�1). (15)
The normalizer for each update in Eq. (15) is given by the marginal likelihood p(Dt | D1, . . . ,Dt�1)
and we will use it for optimizing the variance �2 of p(✓). Incorporating a new task is the same as
Bayesian inference in the supervised case but with an updated prior, i.e., the prior is the previous
posterior distribution on ✓. The Laplace approximation provides one way to approximately infer
the posterior distributions after each task [99, 24, 76]. Alternatively, variational inference can be
used [7, 13].

C.4.2 The Laplace Approximation for Continual Learning

The Laplace approximation facilitates the recursive updates (Eq. (15)) that arise in continual learning.
In this context, it was first suggested with a diagonal Hessian approximation by Kirkpatrick et al. [2,
EWC] and Huszár [99] corrected their updates. Ritter et al. [24] greatly improved the performance
by using a KFAC Hessian approximation instead of a diagonal. The Laplace approximation to the
posterior after observing task t is a Gaussian N (✓(t)MAP, ⌃

(t)) We obtain ✓MAP by optimizing the
unnormalized log posterior distribution on ✓ as annotated in Eq. (14) for every task, one after another.
The Hessian of the same unnormalized log posterior also specifies the posterior covariance ⌃(t):

⌃(t) =
⇣
r

2
✓ log p(Dt | ✓)|✓(t)

MAP| {z }
log likelihood Hessian

+
Pt�1

t0=1r
2
✓ log p(Dt0 | ✓)|✓(t 0)

MAP| {z }
previous log likelihood Hessians

+ ��2I| {z }
log prior Hessian

⌘�1
. (16)

This summation over Hessians is typically intractable for neural networks with large parameter vectors
✓ and hence diagonal or KFAC approximations are used [2, 99, 24]. For the diagonal version, the
addition of Hessians and log prior is exact. For the KFAC version, we follow the alternative suggestion
by Ritter et al. [24] and add up Kronecker factors which is an approximation to the sum of Kronecker
products. However, this approximation is what underlies KFAC even in the supervised learning case
where we add up factors per data point over the entire data set. Lastly, we adapt � during training
on each task t by optimizing the marginal likelihood p(Dt | D1, . . .Dt�1), i.e., by differentiating it
with respect to �. This can be done by computing the eigendecomposition of the summed Kronecker
factors [22] and allows us to 1) adjust the regularization suitably per task and 2) avoid setting a
hyperparameter thereby alleviating the need for validation data.

11The code is avilable at https://github.com/team-approx-bayes/fromp.

27

https://github.com/team-approx-bayes/fromp

Table 5: The memory complexities of all methods in O notation. To get a better idea of what these
complexities translate to in practice, we also report the actual memory footprints (in megabytes) of
a Wide ResNet 16-4 (WRN) on CIFAR-10. Here, M denotes the number of model parameters, H
denotes the number of neurons in the last layer, K denotes the number of model outputs, R denotes
the number of SWAG snapshots, S denotes the number of CSGHMC samples, and N denotes the
number of deep ensemble (DE) members. Mean-field variational inference (VB) has a complexity
of 2M as it needs to store a variance vector of size M in addition to the mean vector of size M . For
the actual memory footprints, we assume R = 40 SWAG snapshots, S = 12 CSGHMC samples,
and N = 5 ensemble members, which are the hyperparameters recommended in the original papers
(and therefore also used in our experiments). It can be seen that the proposed default KFAC-last-layer
approximation poses a small memory overhead of O(H2 + K2) on top of the MAP estimate.

M E T H O D M E M . C O M P L E X I T Y W R N O N C I FA R - 1 0

M A P M 1 1 M B
L A M+H

2 +K
2 1 2 M B

V B 2M 2 2 M B
D E NM 5 5 M B
C S G H M C SM 1 3 2 M B
S WAG RM 4 4 0 M B

C.5 Comparison of Memory Complexity

Table 5 compares the theoretical memory complexity and actual memory footprint (of a Wide ResNet
16-4 on CIFAR-10) of the different methods.

28

	Introduction
	The Laplace Approximation in Deep Learning
	laplace: A Toolkit for Deep Laplace Approximations
	Experiments
	Choosing the Right Laplace Approximation
	Predictive Uncertainty Quantification
	Realistic Distribution Shift
	Further Applications

	Related Work
	Conclusion
	Derivation
	The Derivation of the Laplace Approximation

	Details on the Four Components
	Subnetwork
	Last-Layer
	General
	Distribution of Network Outputs
	Regression
	Classification and Generalized Regression

	Further Experiments Details and Results
	Laplace Comparison
	Predictive Uncertainty Quantification
	Training Details
	Detailed Results
	Additional Details on Wall-clock Time Comparison

	WILDS Experiments
	Further Details on the Continual Learning Experiment
	Bayesian Approach to Continual Learning
	The Laplace Approximation for Continual Learning

	Comparison of Memory Complexity

