
1 Additional experiments

Out of sample detection We trained an ensemble of 30 ResNet18 models on 1000 CIFAR10
samples and evaluated our model on (I) CIFAR10 test examples (In-class) (II) a subset of Cifar100
test examples (Out-of-class) chosen to be visually different from the CIFAR10 training samples (e.g.
apple, dinosaur, mountain, shark, skyscraper). Table 1 reports the difference between the median
entropy of the predictions for the Out-of-class and In-class samples. Our proposed methodology
leads to an increased discrepancy (ie. better Out-of-class detection) between the Out-of-class and
In-class samples when compared to standard deep-ensembles.

Single model Deep Ensemble Pool-then-calibrate
30 variations method [A] method [D]

0.342± 0.015 0.359 0.521
Table 1: Difference between the median entropy of in-class and out-of-class. The in-class is chosen to
be CIFAR10 test dataset and the out-of-class is a subset of CIFAR100 test dataset that has no visible
similarity with CIFAR10 classes. We train an ensemble of 30 models on (CIFAR10 / 1000 samples /
mixup α 1.0 / ResNet18) and then evaluate on the describe in-class vs. out-of-class datasets.

Effect of varying the size of the ensemble In order to see whether our observations hold for a
varying number of models in the ensemble pool, we plot different metrics for different numbers of
models in the pool. Figure 1reports the performance of the method Calibrate-then-pool [B] and the
method Pool-then-calibrate [D] as a function of the ensemble size (average of 10 experiments are
reported) We do not show the performance of vanilla pooling [A] in this figure. For that purpose
we use table 2 to report the calibration performances for different ensembles size (CIFAR10 / 1000
samples / mixup α 1.0 / ResNet18).
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Figure 1: Number of model (x-axis) vs. Metric (y-axis): Comparison of the methods Calibrate-
then-pool [B] and Pool-then-calibrate [D] described in Section 4 of the main text, on the CIFAR10
dataset with N = 1000 samples (950:50 split). The x-axis denotes the size of the ensemble. To
avoid clutter and due to significantly worse performance, method [A] (i.e. vanilla averaging without
scaling) is omitted. Averages over 10 expriments are reported.

Num model 1 4 8 15
Deep Ensemble ECE 7.31 12.37 13.44 13.87

method [A] Brier 0.464 0.440 0.435 0.432
Pool-then-calibrate ECE – 3.44 2.99 3.17

method (D) Brier – 0.415 0.410 0.406
Table 2: CIFAR10: Influence of the Ensemble Size
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Ablation study : We focus on the CIFAR10 dataset with Ntrain = 1000 fixed training examples,
and 100 different validation sets of sizeNval = 50: Table 3 reports the means and standard deviations
across these experiments. For setups involving training a single model, we report the mean and
standard deviations of the metric from a variety of 30 different trained models.

Metric
(Ours) 30 models 30 models single model single model single model

Method [D] mixup mixup no mixup no mixup
Augment + mixup Augment Augment Augment no Augment

test acc 69.92 ± .04 70.67 66.45 ± .61 63.73 ± .51 49.85 ± .66
test ECE 3.3 ± 1.9 13.9 7.03 ± .7 20.7 ± .4 23.4 ± 1.0
test NLL 0.910 ± .012 0.961 1.03 ± .13 1.509 ± .017 1.770 ± .045

test BRIER 0.414 ± .002 0.431 0.463 ± .005 0.556 ± .006 0.718 ± .009
Table 3: Ablation study performed on CIFAR10 1000 samples. For ensemble temp scaling, we use
950 training samples and 50 validation sets. For setups with variation, we report metric mean and
standard deviation.
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Figure 2: Mixup α (x-axis) vs. Metric (y-axis): The effect of a higher mixup in NLL, ECE, BRIER
score is quite evident in the plots. In our setting, most of the metrics improve as a function of
α. The CIFAR{10,100} datasets show a slight increment in the ECE because the model starts to
become under-confident. In contrast, the other three metrics for CIFAR show improvement. From
top to bottom, the datasets are Imagewoof 1000 samples, Diabetic Retinopathy with 5000 samples,
CIFAR10 with 1000 samples, and CIFAR100 with 5000 samples. The metric in each row is test
accuracy, test ECE, test NLL, and test Brier from left to right.

Effect of mixup α In figure 2 we list generalization and calibration results of high α mixup
augmentation. All the setups in which we analyze the performance are limited in the number of
training data points. It shows that even if with adequate data, high mixup makes models under-
confident; for low data settings, mixup with α near 1.0 boosts model performance quite significantly.
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Detailed numerical results In table 4 we present the detailed numerical results for all our setups.
The table includes result of our proposed Pool-then-calibrate method [D], the vanilla pooling method
[A], and that of the individual models. The conclusions are consistent across all the setups.

CIFAR10 - 1000 samples
Method Test Accuracy Test ECE Test NLL Test Brier

Single model 66.48 ± .62 7.31 ± .7 1.037 ± .013 0.464 ± .005
Vanilla pooling [A] 70.71 13.9 0.961 0.431

Pool-then-calibrate [D] 70.71 4.9 ± 2.9 0.916 ± .015 0.417 ± .005
CIFAR100 - 5000 samples

Single model 46.8 ± .41 5.4 ± .37 2.180 ± 0.014 0.674 ± 0.003
Vanilla pooling [A] 55.32 17.8 1.911 0.623

Pool-then-calibrate [D] 55.32 2.1 ± .5 1.787 ± .002 0.592 ± .0
Diabetic Retinopathy (5000 samples)

Single model 61.26 ± .62 2.96 ± .64 0.657 ± 0.004 0.465 ± 0.004
Vanilla pooling [A] 64.38 4.9 0.641 0.450

Pool-then-calibrate [D] 64.38 2.9 ± .8 0.637 ± .002 0.446 ± .001
Imagenette (1000 samples)

Single model 78.67 ± .34 14.45 ± .95 0.796 ± 0.012 0.332 ± 0.005
Vanilla pooling [A] 80.91 18.2 0.753 0.312

Pool-then-calibrate [D] 80.91 3.5 ± 1.0 0.638 ± .005 0.273 ± .001
MNIST (500 samples)

Single model 89.3 ± .8 6.4 ± .9 0.375 ± .022 0.163 ± .01
Vanilla pooling [A] 90.53 8.4 0.351 0.151

Pool-then-calibrate [D] 90.53 2.1 0.306 0.139
Table 4: Numerical result of Vanilla pooling [A] and Pool-then-Calibrate [D] for different setups. In
our chosen setups, the pooled predictions are consistently more under-confident than single models.
Pool-then-calibrate has the best performance across all the metrics.

2 Deviation from Calibration

To obtain a more quantitative understanding of why ensembles are under-confident, we consider
a binary classification framework. For a pair of random variables (X,Y ), with X ∈ X and Y ∈
{−1, 1}, and a classification rule p : X → [0, 1] that approximates the conditional probability
px ≈ P(Y = 1|X = x), we define the Deviation from Calibration (DC) score as

DC(p) ≡ E
[(

1{Y=1} − pX
)2
− pX(1− pX)

]
. (1)

The term E
[(

1{Y=1} − pX
)2]

is equivalent to the Brier score of the classification rule p and the

quantity E
[
pX(1− pX)

]
is an entropic term (i.e. large for predictions close to uniform). Note that

DC can take both positive and negative values and DC(p) = 0 for a well-calibrated classification
rule, i.e. pX = E

[
1{Y=1}| pX

]
almost surely. This can be obtained by observing that

DC(p) = E
[
1{Y=1} − pX

]
+ 2 · E

[
p2X − pX · 1{Y=1}

]
(2)

= E

[
E
[
1{Y=1} − pX

∣∣∣ pX]]+ 2 · E

[
E
[
p2X − pX · 1{Y=1}

∣∣∣ pX]]

= E

[
E
[
1{Y=1}

∣∣∣ pX]− pX]+ 2 · E

[
p2X − pX · E

[
1{Y=1}

∣∣∣ pX]],
and then putting pX = E

[
1{Y=1}| pX

]
. Furthermore, among a set of classification rules with the

same Brier score, the ones with less confident predictions (i.e., larger entropy) have a lesser DC score.
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In summary, the DC score is a measure of confidence that vanishes for well-calibrated classification
rules, and that is low (resp. high) for under-confident (resp. over-confident) classification rules.
Contrarily to the entropy functional, the DC score is extremely tractable.

For a set of K ≥ 2 classification rules p(1), . . . , p(K) and non-negative weights ω1 + . . .+ ωK = 1,
the linearly averaged classification rule p̄ :=

∑K
i=1 ωi p

(i) satisfies

DC

 K∑
i=1

ωi p
(i)

 =

K∑
i=1

ωi DC
(
p(i)
)
−

K∑
i,j=1

ωiωj E
[(
p(i) − p(j)

)2]
︸ ︷︷ ︸

≥0

. (3)

Equation (3) shows that averaging classifications rules decreases the DC score (i.e. the aggregated
estimates are less confident). Furthermore, the more dissimilar the individual classification rules, the
larger the decrease. Even if each model is well-calibrated, i.e., DC(p(i)) = 0 for 1 ≤ i ≤ K, the
averaged model is not well-calibrated as soon as at least two of them are not identical. The derivation
in (3) can be obtained by the following steps -

DC(p̄) = E
[(

1{Y=1} − p̄
)2]
− E

[
p̄ · (1− p̄)

]
=

k∑
i,j=1

ωiωjE
[(

1{Y=1} − p(i)
)(

1{Y=1} − p(j)
)]
−

k∑
i,j=1

ωiωjE
[
p(i)
(

1− p(j)
)]

=

k∑
i,j=1

ωiωj E
[
1{Y=1} − p(i) − 1{Y=1}p

(i) − 1{Y=1}p
(j) + 2p(i)p(j)

]

=

k∑
i=1

ωiE
[
1{Y=1} − p(i) + 2 · p(i)

(
p(i) − 1{Y=1}

)]
−

k∑
i,j=1

ωiωj E
[(
p(i) − p(j)

)2]

=

k∑
i=1

ωiDC(p(i))−
k∑

i,j=1

ωiωj E
[(
p(i) − p(j)

)2]
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