
A Shading-Guided Generative Implicit Model for
Shape-Accurate 3D-Aware Image Synthesis

Supplementary Material

Xingang Pan1 Xudong Xu2 Chen Change Loy3 Christian Theobalt1 Bo Dai3

1Max Planck Institute for Informatics 2The Chinese University of Hong Kong
{xpan,theobalt}@mpi-inf.mpg.de xx018@ie.cuhk.edu.hk

3S-Lab, Nanyang Technological University
{ccloy, bo.dai}@ntu.edu.sg

In this supplementary material, we provide the implementation details, more qualitative results, and a
discussion of broader impacts of our work.We also recommend readers to refer to the attached video
demos for animated 3D-aware image synthesis.

1 Implementation Details

1.1 Model Architectures

FC

SI
R
EN

FC

SI
R
EN

FC

SI
R
EN…

FC FC FC FC

Latent code

3D coordinate

FC

SI
R
EN

FC

FC

Ray direction

Lighting condition

7 layers

Mapping network

Figure 1: The generator architecture used in ShadeGAN.

Generator and discriminator. For the generator and discriminator architectures, we mainly follow
the design of pi-GAN [1]. Specifically, the generator is an MLP formed by stacking fully-connected
and FiLM-SIREN layers [2, 3] with 256 units, as shown in Fig. 1. The generator takes a 3D coordinate
x and a 256d latent code z as inputs. It consists of two branches to predict the volume density σ and
the albedo a respectively, where the albedo is also conditioned on the ray direction d and the lighting
condition µ. Similar to StyleGAN [4], the latent code z is sent to a mapping network with four
fully-connected and ReLU layers to produce the frequency and phase factors for the FiLM-SIREN
layers of the generator. As for the discriminator, we adopt the same convolutional neural network
(CNN) architecture as in [1], which uses CoordConv layers [5] and residual connections [6].

Surface tracking network. Our surface tracking network S is a decoder-style CNN as shown in
Tab. 1 and Tab. 2. It takes the output of the mapping network and a camera pose ξ as inputs and
outputs a 128× 128 resolution depth map, where the camera pose ξ refers to pitch and yaw angles in
this case. The abbreviations for the network layers are described below:

Conv(cin, cout, k, s, p): a convolution layer with cin input channels, cout output channels, kernel size
k, stride s, and padding p.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



Table 1: Architecture of the surface tracking network.
Layer Output size
Linear(4608, 256) + concat(ξ = (pitch, yaw)) 1
Linear(258, 256) + ReLU 1
DeConv(256, 256, 4, 1, 0) + ReLU 4
Conv(256, 256, 3, 1, 1) + ReLU 4
DeConv(256, 256, 4, 2, 1) + GN(32) + ReLU 8
Conv(256, 256, 3, 1, 1) 8
ResBlockUp(256, 128) 16
ResBlockUp(128, 64) 32
ResBlockUp(64, 32) 64
ResBlockUp(32, 16) + GN(4) + ReLU 128
Conv(16, 1, 5, 1, 2) + Sigmoid 128

Table 2: Network architecture for the
ResBlockUp(cin, cout) in Tab.1. The out-
put of Residual path and Identity path are
added as the final output.

Residual path
GN(cin/8) + ReLU + Upsample(2)
Conv(cin, cout, 3, 1, 1) + GN(cout/8) + ReLU
Conv(cout, cout, 3, 1, 1)
Identity path
Upsample(2)
Conv(cin, cout, 1, 1, 0)

Deconv(cin, cout, k, s, p): a deconvolution layer with cin input channels, cout output channels, kernel
size k, stride s, and padding p.

GN(n): a group normalization layer [7] with n groups.

BN and ReLU: the batch normalization layer [8] and the rectified linear unit.

Upsample(s): a nearest-neighbor upsampling layer with a scale of s.

ResBlockUp(cin, cout) and ResBlock(cin, cout, stride): residual blocks as defined in Tab.2 and
Tab.4.

Depth-predicting CNN. In our quantitative study on the BFM dataset, we train an additional CNN
to predict the depth map of an input image, as described in Line 253-255 of the main paper. Here we
provide the architecture of the depth-predicting CNN in Tab. 3, Tab. 2 and Tab. 4. It is trained using
Adam [9] for 30 epochs with a learning rate of 1e-4.

Table 3: Architecture of the depth-predicting CNN.
The input image is resized to 64× 64 resolution. Res-
BlockUp is the same as Tab. 2 except that GNs are
replaced by BNs.

Layer Output size
Conv(3, 64, 4, 2, 1) 32
ResBlock(64, 128, 2) 16
ResBlock(128, 256, 2) 8
ResBlock(256, 512, 1) 8
ResBlock(512, 512, 1) 8
ResBlockUp(512, 256) 16
ResBlockUp(256, 128) 32
ResBlockUp(128, 64) + BN + ReLU 64
Conv(64, 1, 5, 1, 2) + Tanh 64

Table 4: Network architecture for the
ResBlock(cin, cout, stride) in Tab.3. The
output of Residual path and Identity path
are added as the final output.

Residual path
BN + ReLU + Conv(cin, cout, 3, stride, 1)
BN + ReLU + Conv(cout, cout, 3, 1, 1)
Identity path
Identity if cin = cout
Conv(cin, cout, 1, 1, 0) if cin 6= cout

1.2 Training Details

We adopt a progressive growing training strategy as in [1]. During training, the image resolution
grows from 32 to 128, while the batchsize and learning rate decrease as listed in Tab. 5. We use the
Adam [9] optimizer with β1 = 0, β2 = 0.9. Our models are trained on 8 TITAN X Pascal GPUs. We
use the same setting to train the pi-GAN [1] baseline for fair comparison.

For the camera pose ξ, we follow pi-GAN [1] and constrain the camera position to the surface of a unit
sphere and keep its direction to the origin. Thus, ξ could be determined by pitch and yaw angles, which
are sampled from prior distributions. For BFM and CelebA, pitch ∼ N (π/2, 0.155) and yaw ∼
N (π/2, 0.3), while for Cats, pitch ∼ U(π/2− 0.5, π/2 + 0.5) and yaw ∼ U(π/2− 0.4, π/2 + 0.4).
The lighting condition µ consists of four factors (ka, kd, lx, ly), where the lighting direction could

be determined by l = (lx, ly, 1)T /
√
l2x + l2y + 1. We use the multi-variate Gaussian distribution of

(2ka − 1, 2kd − 1, lx, ly) estimated using [10] as the prior distribution. The mean and covariance
matrix for different datasets are provided in Tab. 6. For the results in Tab. 3 No.(5) of the main

2



Table 5: Training schedule. ‘G_lr’ and ‘D_lr’ represents the learning rate for generator and discrimi-
nator respectively.

Dataset Iteration (k) Batchsize Image size G_lr D_lr

BFM

0-20 96 32 2e-5 2e-4
20-40 48 64 2e-5 2e-4
40-50 48 64 1e-5 1e-4
50-80 16 128 2e-6 2e-5

CelebA

0-30 104 32 2e-5 2e-4
30-70 64 64 2e-5 2e-4
70-100 64 64 1e-5 1e-4

100-150 16 128 2e-6 2e-5
Cats 0-20 128 64 6e-5 2e-4

paper, we use a simple manually tuned prior: ka ∼ N (0.6, 0.2), kd ∼ N (0.5, 0.2), lx ∼ N (0, 0.2),
ly ∼ N (0.2, 0.05).

Table 6: Parameters of the lighting prior distributions.
Dataset BFM CelebA Cats
mean 0.058 0.141 -0.02 0.251 0.214 0.352 -0.006 0.389 -0.155 0.300 0.003 0.080

covariance

0.077 0.032 0 -0.002 0.081 0.004 0 -0.007 0.161 -0.008 0 0.006
0.032 0.058 0 0.004 0.004 0.031 0 0.003 -0.008 0.043 0 0

0 0 0.062 0 0 0 0.079 0 0 0 0.093 0
-0.002 0.004 0 0.006 -0.007 0.003 0 0.006 0.006 0 0 0.009

In the volume rendering process, we sample m points within the near and far bounds tn and tf with
a hierarchical sampling strategy as in NeRF [11]. For BFM and CelebA, m = 24, tn = 0.88, and
tf = 1.12, while for Cats, m = 40, tn = 0.80, and tf = 1.20. In experiments with the surface
tracking network, the ray sampling interval ∆i and the number of sampling points mi are gradually
reduced as the training iteration i grows. We start to adopt this strategy after training for 5000
iterations. Specifically, we start with a large interval ∆max and decrease to ∆min with an exponential
schedule as ∆i = ∆min + exp(−iβ)(∆max −∆min), where β controls the decay. mi is defined
similarly as mi = bmmin + exp(−iβ)(mmax −mmin)e. In our experiments, we set ∆max = 0.24,
∆min = 0.06, mmax = m, and mmin = m/2. β is set to 5.5e-5, 3e-5, and 1e-4 for BFM, CelebA,
and Cats datasets respectively.

1.3 Datasets

Here we provide more information on the datasets used in our experiments.

BFM [12] is a synthetic human face dataset generated via the Basel face model. It consists of
160k images for training, 20k images for validation, and 20k images for testing. For each image,
there is a corresponding ground-truth depth map. This dataset is released along with the code of
Unsup3d [10, 13], which is protected under the MIT License.

CelebA [14] is a large-scale face attributes dataset with more than 200k images of human faces.
According to the agreement on its official website [15], this dataset is available for non-commercial
research purposes.

Cats dataset [16] contains 6444 images of cat heads. According to the official website [17], this
dataset is available for research purposes.

All these datasets are obtained from their corresponding website mentioned above. These datasets do
not contain personally identifiable information or offensive content, as they are ray images without
identity labels.

1.4 GAN Inversion

With a pretrained ShadeGAN, we can perform GAN inversion for real image editing as shown in
Fig. 9 of the main paper. Specifically, we revise the discriminator to be an encoder E by adding
an additional fully-connected layer on top of the final feature. We randomly sample latent codes z,
camera poses ξ, lighting conditions µ, and generate their corresponding images Ig via the generator.
These data are used to train the encoder E to predict ξ, µ, and the frequency and phase factors of
the mapping network. The training of E takes 10k iterations with a learning rate of 2e-4. Given

3



a real target image, we first obtain the initial ξ, µ, frequency and phase factors via the trained
encoder, and then finetune them by minimizing the image reconstruction error in the form of mean-
squared-error.During finetuning, we jointly optimize ξ, µ, frequency and phase factors with the
Adam optimizer for 400 iterations. The learning rate is initialized to 0.005, decaying by a half at 200,
300, and 350 iterations.

2 Qualitative Results

Normal Albedo Diffuse shading3D MeshImage

N/A N/A

N/A N/A

N/A N/A

(b
) 

O
u

rs
(a

) 
p
i-

G
A

N

Figure 2: More qualitative examples of (a) pi-GAN [1] and (b) our ShadeGAN.

4



Normal Albedo Diffuse shading3D MeshImage

Figure 3: Qualitative results of ShadeGAN on the AFHQ dataset.

Normal

(a) with view conditioning

3D MeshImage Normal 3D MeshImage

(b) w/o view conditioning

Figure 4: Qualitative results of our method with and without view conditioning.

In this section, we provide more qualitative results of our method. In Fig. 2, we provide more
qualitative comparisons between pi-GAN [1] and our ShadeGAN. We also show the results of our
method on the AFHQ Cat dataset [18] in Fig. 3. Fig. 4 shows the effects of view conditioning in our
model. The model without view conditioning looks slightly better in general, but would have slightly
worse FID score as indicated in Tab. 3 of the main paper. Fig. 5 provides a qualitative comparison
of the 3D shape reconstruction results corresponding to Tab. 1 of the main paper. Fig. 6 compares
different ways of calculating normal directions, which shows that ours as described in Eq. 3 of the
main paper is better. It is observed that our method predicts more accurate 3D shapes than GRAF [19]
and pi-GAN [1]. Fig. 7 illustrates the effects of linearly interpolating the latent codes and lighting
conditions, which creates a continuous image and shape morphing effect. We further show more
examples on image relighting effects of ShadeGAN in Fig. 8.

3 Broader Impacts

This work provides a new approach for 3D-aware image synthesis. It could not only synthesize
novel views of an instance in a 3D-consistent manner, but also generate the corresponding 3D shape
that is more accurate than those produced by previous methods. The applications of our approach
mainly lie in those related to 3D content creation, like augmented reality, virtual reality, and computer
games. Besides, it could be used to edit 2D images, including those of human portraits. It could also
possibly be extended for malicious use like deep fakes. Thus, any application or research that uses
our approach has to strictly respect personality rights and privacy regulations.

5



Input GRAF pi-GAN Ours Ground truth Input GRAF pi-GAN Ours Ground truth

Figure 5: Qualitative results of 3D shape reconstruction corresponding to Tab. 1 of the main paper.
We visualize the shapes and normals predicted by the depth-predicting CNNs. Our results are closer
to the ground truth shapes than other baselines.

OursLocal normalImage OursLocal normalImage OursLocal normalImage

Figure 6: Comparisons of different normal direction calculation methods. ‘Local normal’ represents
the alternative normal calculation method described in "Discussion" of Sec 3.2 in the main paper,
which normalizes the normal direction at each local points on a ray. ‘Ours’ corresponds to Eq. 3 of
the main paper. It can be observed that our results have less artifacts.

N
o

rm
al

A
lb

ed
o

D
if

fu
se

 s
h
a
d
in

g
3
D

 M
es

h
Im

ag
e

Figure 7: Linearly interpolating between two latent vectors and lighting conditions achieves continu-
ous morphing on both images and shapes.

6



Albedo

Shading

Relighting Albedo Relighting

Shading

Figure 8: More image relighting examples produced by ShadeGAN.

References

[1] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein, “pi-gan: Periodic implicit
generative adversarial networks for 3d-aware image synthesis,” in CVPR, 2021.

[2] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film: Visual reasoning with a
general conditioning layer,” in AAAI, 2018.

[3] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural representa-
tions with periodic activation functions,” in NeurIPS, 2020.

[4] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial
networks,” in CVPR, 2019.

[5] R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank, A. Sergeev, and J. Yosinski, “An intriguing
failing of convolutional neural networks and the coordconv solution,” in NeurIPS, 2018.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR,
2016.

[7] Y. Wu and K. He, “Group normalization,” in ECCV, 2018.

[8] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” in ICML, 2015.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[10] S. Wu, C. Rupprecht, and A. Vedaldi, “Unsupervised learning of probably symmetric deformable
3d objects from images in the wild,” in CVPR, 2020.

[11] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf:
Representing scenes as neural radiance fields for view synthesis,” in ECCV, 2020.

7



[12] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3d face model for pose
and illumination invariant face recognition,” in 2009 Sixth IEEE International Conference on
Advanced Video and Signal Based Surveillance, Ieee, 2009.

[13] “Unsup3d.” https://github.com/elliottwu/unsup3d.
[14] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in ICCV,

2015.
[15] “Celeba.” http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
[16] W. Zhang, J. Sun, and X. Tang, “Cat head detection-how to effectively exploit shape and texture

features,” in ECCV, 2008.
[17] “Cats.” https://web.archive.org/web/20150520175645/http://137.189.35.203/

WebUI/CatDatabase/catData.html.
[18] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image synthesis for multiple

domains,” in CVPR, 2020.
[19] K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger, “Graf: Generative radiance fields for

3d-aware image synthesis,” in NeurIPS, 2020.

8

https://github.com/elliottwu/unsup3d
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://web.archive.org/web/20150520175645/http://137.189.35.203/WebUI/CatDatabase/catData.html
https://web.archive.org/web/20150520175645/http://137.189.35.203/WebUI/CatDatabase/catData.html

	Implementation Details
	Model Architectures
	Training Details
	Datasets
	GAN Inversion

	Qualitative Results
	Broader Impacts

