
A Improved lower bound for regret minimization

Theorem 10. In the MAB setting, fix the number of arms n and the time horizon T . For any
single-pass streaming MAB algorithm, if we are allowed to store at most m < n arms, then there
exists a problem instance such that E[R(T )] ≥ Ω(n

1/3T 2/3

m7/3 ).

Proof. We consider 0-1 rewards and the following family of problem instances {Ij : j ∈ {0, . . . , n−
1}} each containing n arms, with parameter ε > 0 (where ε = n1/3

m1/3T 1/3 ):

I0 =

{
µi = 1/2, for i 6= n;
µi = 1, for i = n.

∀j ∈ [n− 1], Ij =

{
µi = (1 + ε)/2, for i = j;
µi = 1/2, for i 6= j.

In the above instances, µi denotes the expected reward of armi, the i-th arm to arrive in the stream.
We choose the problem instance I0 with probability 1/2 and choose the rest of the problem instances
with probability 1/(2(n− 1)).

We now fix a deterministic algorithm A. First, note that any randomized algorithm is a distribution
over deterministic algorithms and hence a lower bound for deterministic algorithms also implies a
lower bound for randomized algorithms. Further, we assume that at its termination after T rounds,
algorithm A has read every arm into the arm-memory at some time step less than or equal to T . Note
that the arm may be discarded immediately without being pulled. Also, all arms are discarded from
the memory after T rounds. We note that this assumption does not restrict the class of algorithms
for which our lower bound holds, since any algorithm that processes the arms differently can be
replicated by an algorithm with the above assumption.

Let the regret incurred by A be denoted by R(T ). Then, we can write R(T ) as:

R(T ) =

n−1∑
i=0

XIi

where XIi denotes the regret incurred due to the problem instance Ii. If the problem instance Ii is
not an input to A, then XIi = 0. Now, we can represent XI0 as the following:

XI0 =

n−1∑
i=1

Xi

where Xi denotes the regret incurred by A due to sampling armi of the problem instance I0. Note
that, Xi = 0 if armi was never sampled.

For each k ∈ {0, . . . , bn−1
m c − 1}, let Yk =

∑m
i=1(Xkm+i + XIkm+i

). Let ` = bn−1
m c − 1. Note

that,

E[R(T )] ≥
∑̀
k=0

E[Yk].

We now prove a lower bound on E[Yk] which will give us a lower bound on the regret as desired.

Intuitively, E[Yk] denotes the expected regret an algorithm would incur by sampling the arms in the
instances Ikm+1, . . . , Ikm+m and the arms armkm+1, . . . , armkm+m in the instance I0. The reason
for clubbing these arms together is that if the arms armkm+1, . . . , armkm+m are sampled a large
number of times, then we incur a huge regret in expectation in the instance I0 and otherwise if the
arms armkm+1, . . . , armkm+m are sampled only for a few times, then we risk sampling the best
arm very few times in one of the instances Ikm+1, . . . , Ikm+m which will eventually lead to a huge
regret.

LetR = {0, 1}km×T be the set of all possible reward realizations of the first km arms. Let us fix a
reward realizationR′ ∈ R of the first km arms. We next set up the sample space. LetL = 1/(4m2ε2).
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Let (rs(i) : i ∈ [m], s ∈ [L]) be a table of mutually independent Bernoulli random variables where
rs(i) has expectation µkm+i. We interpret rs(i) as the reward obtained when armkm+i is pulled
for the s-th time and the table is called the rewards table. The sample space is then expressed as
Ω = {0, 1}m×L. Then, any ω ∈ Ω can be interpreted as a realization of the rewards table.

For a fixed R′, each instance Ikm+j , where j ∈ [m], defines a distribution Pj,R′ on Ω as follows:
Pj,R′(A) = P[A | Ikm+j , R

′], for each A ⊆ Ω

Similarly, the instance I0 defines a distribution P0 on Ω as follows:
P0,R′(A) = P[A | I0, R

′], for each A ⊆ Ω

Given an instance Ikm+j where j ∈ [m], let P i,sj,R′ be the distribution of rs(i) under this instance.
Then we have that Pj,R′ =

∏
i∈[m],s∈[L] P

i,s
j,R′ . Similarly given the instance I0, let P i,s0,R′ be the

distribution of rs(i) under this instance. Then we have that P0,R′ =
∏
i∈[m],s∈[L] P

i,s
0,R′ .

Let Zik be a running counter for the number of arm pulls of armkm+i that gets incremented by one
everytime the arm is pulled. Let Zk =

∑m
i=1 Z

i
k. Let St ⊆ {armkm+1, armkm+2, . . . , armkm+m}

denote the subset of arms which are discarded from memory by the algorithm A before Zk becomes
t+1. As time horizon T is fixed and we will eventually discard all arms at the end of time horizon, we
can assume that there exists a t′ ∈ [T ] ∪ {0} such that St′ = {armkm+1, armkm+2, . . . , armkm+m}.
For all ω ∈ Ω, let T ′ω = arg min0≤t≤T {t : St 6= ∅}, i.e., T ′ω is the minimum value of Zk when
some arm in {armkm+1, armkm+2, . . . , armkm+m} is discarded from memory for the first time. Let
A1 = {ω ∈ Ω : T ′ω ≤ L} be the set of reward realizations for which T ′ω ≤ L. Now fix some arm in
{armkm+1, armkm+2, . . . , armkm+m} say armkm+i. Define Ai2 = {ω ∈ Ω : armkm+i ∈ ST ′ω} to be
the event that the armkm+i belongs to ST ′ω . Now, let Ai = A1 ∩Ai2 be the set of reward realizations
such that ∀ω ∈ Ai, T ′ω ≤ L and armi is discarded from memory before Zk becomes T ′ω + 1. Also,
for any event A ⊆ Ω, let A = Ω \A.

Now we have the following observation for instance I0.

Observation 3. If ω ∈ A1 and I0 is an input instance to the algorithm A, then
∑m
i=1Xkm+i ≥

Ω( 1
m2ε2 ).

Let i′ = arg maxi∈[m] P0,R′(A
i). We obtain the next observation due to the fact that the best arm

armkm+i′ is sampled for at most L = o(T ) times.

Observation 4. If ω ∈ Ai′ and Ikm+i′ is an input instance to the algorithm A, then XIkm+i′ ≥
ε(T−T ′ω)

2 = Ω(εT ).

Now we will prove the following inequality which will be useful in our analysis:

m · Pi′,R′(Ai
′
) + P0,R′(A1) ≥ 1

4
. (2)

The above inequality is trivially true if P0,R′(A1) ≥ 1/4. Therefore, let us assume P0,R′(A1) ≤ 1/4,
i.e., P0,R′(A1) ≥ 3/4. Then P0,R′(A

i′) ≥ 3/(4m), by averaging argument and the definition of i′.
Using Theorem 1 for distributions P0,R′ and Pi′,R′ , we obtain:

2(P0,R′(A
i′)− Pi′,R′(Ai

′
))2

≤ KL(P0,R′ , Pi′,R′) (by Pinsker’s inequality)

=
∑
i∈[m]

L∑
t=1

KL(P i,t0,R′ , P
i,t
i′,R′) (by chain rule)

=
∑

i∈[m]\{i′}

L∑
t=1

KL(P i,t0,R′ , P
i,t
i′,R′) +

L∑
t=1

KL(P i
′,t

0,R′ , P
i′,t
i′,R′)

≤ 0 + L · 2ε2.
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In the last inequality, the first term of the summation is zero because all arms armkm+i, where
i ∈ [m] \ {i′}, have identical reward distributions under instances I0 and Ikm+i′ . To bound the
second term in the summation, we use the last property from Theorem 1. Thus we have, P0,R′(A

i′)−
Pi′,R′(A

i′) ≤ ε
√
L. Hence, Pi′,R′(Ai

′
) ≥ P0,R′(A

i′)− ε
√
L ≥ (3/(4m))− (1/(2m)) = 1/(4m).

Here, we use P0,R′(A
i′) ≥ 3/(4m) and L = 1/(4m2ε2). Hence, if P0,R′(A1) ≤ 1

4 then m ·
Pi′,R′(A

i′) ≥ 1
4 . This proves Inequality (2). Let I ′ be the input instance. Now we have the

following:

E[Yk|R′]

≥P[I ′ = Ikm+i′ |R′] · Pi′,R′(Ai
′
) · Ω(εT )

+ P[I ′ = I0|R′] · P0,R′(A1) · Ω(
1

m2ε2
)

=
P[R′|I ′ = Ikm+i′ ] · P[I ′ = Ikm+i′ ]

P[R′]
· Pi′,R′(Ai

′
) · Ω(εT )

+
P[R′|I ′ = I0] · P[I ′ = I0]

P[R′]
· P0,R′(A1) · Ω

( 1

m2ε2

)
(Due to Bayes’ Theorem )

=
P[R′|I ′ = Ikm+i′ ]

P[R′]
· 1

2(n− 1)
·mPi′,R′(Ai

′
) · Ω(εT/m)

+
P[R′|I ′ = I0]

P[R′]
· P0,R′(A1) · 1

2
· Ω
( 1

m2ε2

)
≥P[R′|I ′ = Ikm+i′ ]

P[R′]
· Ω
( T 2/3

m4/3n2/3

)
· (m · Pi′,R′(Ai

′
) + P0,R′(A1))

(Due to the fact that P[R′|I ′ = Ikm+i′ ] = P[R′|I ′ = I0]

and Ω
( 1

m2ε2

)
= Ω

( εT
mn

)
= Ω

( T 2/3

m4/3n2/3

)
≥P[R′|I ′ = Ikm+i′ ]

P[R′]
· Ω
( T 2/3

m4/3n2/3

)
(Due to Inequality (2)).

Therefore we now have the following:

E[Yk] ≥
∑
R′∈R

P[R′] · E[Yk|R′]

≥
∑
R′∈R

P[R′|I ′ = Ikm+i′ ] · Ω
( T 2/3

m4/3n2/3

)
≥Ω
( T 2/3

m4/3n2/3

)
.

Let ` = bn−1
m c − 1. Then we have the following. :

E[R(T )] ≥
∑̀
k=0

E[Yk]

≥
∑̀
i=0

Ω
( T 2/3

m4/3n2/3

)
≥Ω
(n1/3T 2/3

m7/3

)
.
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B Regret Minimization under Random Order Arrival

Theorem 11. In the MAB setting, fix the number of arms n and the time horizon T . For any
one-pass streaming MAB algorithm, if we are allowed to store at most m < n arms, then in the
setting of random order arrival there exists an input instance such that E[R(T )] ≥ Ω(n

1/3T 2/3

m7/3 ).

Proof. We consider 0-1 rewards and the 2 input instances I1, I2 each containing n arms, with
parameter ε > 0 (where ε = n1/3

m1/3T 1/3 ):

I1 =

{
µi = (1 + ε)/2 for i = 1
µi = 1/2, for i 6= 1

I2 =

{
µi = 1/2 for i 6= n
µi = 1. for i = n

In the above instances, µi denotes the expected reward of the ith arm in the input instance.
We now fix a deterministic algorithm A. First, note that any randomized algorithm is a distribution
over deterministic algorithms and hence a lower bound for deterministic algorithms also implies a
lower bound for randomized algorithms. Further, we assume that at its termination after T rounds,
algorithm A has read every arm into the arm-memory at some time step less than or equal to T . Note
that the arm may be discarded immediately without being pulled. Also, all arms are discarded from
the memory after T rounds. We note that this assumption does not restrict the class of algorithms
for which our lower bound holds, since any algorithm that processes the arms differently can be
replicated by an algorithm with the above assumption.

We choose an input instance uniformly at random from I1 and I2. Let this input instance be I ′.
Then under random-order arrival setting one of the n permutations of I ′ is chosen uniformly at
random and is sent as the input stream to the Algorithm A. Note that this is equivalent to choosing a
permutation P from 2n total distinct permutations of I1 and I2 uniformly at random and sending it
to the algorithm A. Let I ′1 be the collection of distinct permutations of I1 such that the arm with
expected reward of (1 + ε)/2 is in the first n/2 positions of the permutation. Similarly, let I ′2 be the
collection of distinct permutations of I2 such that the arm with expected reward of 1 is not in the
first n/2 positions of the permutation. Clearly, |I ′1| = n/2 and |I ′2| = n/2. Let Ij1 denote a input
permutation in I ′1 such that the armj has µj = (1 + ε)/2.

Let the regret incurred by A be denoted by R(T ). Using arguments similar to the previous section,
we will show that E[R(T )] ≥ Ω(n

1/3T 2/3

m7/3 ). First, note that we have the following:

R(T ) ≥
n/2∑
i=1

XIj1
+XI′2

where XIj1 denotes the regret incurred due to the permutation Ij1 and XI′2 denotes the total regret

incurred due to set of permutations I ′2. If the permutation Ij1 is not an input to A, then XIi1 = 0.
Similarly if none of the permutations from I ′2 is an input to to A, then XI′2 = 0. Now we can
represent XI′2 as the following:

XI′2 =

n∑
i=1

Xi

where Xi denotes the regret incurred by A due to sampling armi of the set of permutations I ′2. Note
that Xi = 0 if armi of the set of permutations I ′2 were never sampled.

For each k ∈ {0, . . . , b n2mc − 1}, let Yk =
∑m
i=1(Xkm+i +XIkm+i

1
). We now show a lower bound

on E[Yk].

Intuitively, E[Yk] denotes the expected regret an algorithm would incur by the sampling the arms in the
permutations Ikm+1

1 , . . . , Ikm+m
1 and the arms armkm+1, . . . , armkm+m in the set of permutations

I ′2. The reason for clubbing these arms together is that if the arms armkm+1, . . . , armkm+m are

17



sampled for a large number of times, then we incur a huge regret in expectation in the set of
permutations I ′2 and otherwise if the arms armkm+1, . . . , armkm+m are sampled only a few times,
then we risk sampling the best arm very few times in one of the permutations Ikm+1

1 , . . . , Ikm+m
1

which will eventually lead to a huge regret.

LetR = {0, 1}km×T be the set of all possible reward realizations of the first km arms. Let us fix a
reward realizationR′ ∈ R of the first km arms. We next set up the sample space. LetL = 1/(4m2ε2).
Let (rs(i) : i ∈ [m], s ∈ [L]) be a table of mutually independent Bernoulli random variables where
rs(i) has expectation µkm+i. We interpret rs(i) as the reward obtained when armkm+i is pulled
for the s-th time and the table is called the rewards table. The sample space is then expressed as
Ω = {0, 1}m×L. Then any ω ∈ Ω can be interpreted as a realization of the rewards table.

Each permuation Ikm+j
1 , where j ∈ [m], defines a distribution Pj,R′ on Ω as follows:

Pj,R′(A) = P[A | Ikm+j
1 , R′], for each A ⊆ Ω

Let P be an input permutation. Then we define a distribution P0 on Ω as follows:

P0,R′(A) = P[A | P ∈ I ′2, R′], for each A ⊆ Ω

Given a permutation Ikm+j where j ∈ [m], let P i,sj,R′ be the distribution of rs(i) under this
permutation. Then we have that Pj,R′ =

∏
i∈[m],s∈[L] P

i,s
j,R′ . Similarly given an input permutation

P ∈ I ′2, let P i,s0,R′ be the distribution of rs(i) under this permutation. Then we have that
P0,R′ =

∏
i∈[m],s∈[L] P

i,s
0,R′ .

Let Zik be a running counter for the number of arm pulls of armkm+i that gets incremented by one
everytime the arm is pulled. Let Zk =

∑m
i=1 Z

i
k. Let St ⊆ {armkm+1, armkm+2, . . . , armkm+m}

denote the subset of arms which are discarded from memory by the algorithm A before Zk becomes
t+1. As time horizon T is fixed and we will eventually discard all arms at the end of time horizon, we
can assume that there exists a t′ ∈ [T ] ∪ {0} such that St′ = {armkm+1, armkm+2, . . . , armkm+m}.
For all ω ∈ Ω, let T ′ω = arg min0≤t≤T {t : St 6= ∅}, i.e., T ′ω is the minimum value of Zk when
some arm in {armkm+1, armkm+2, . . . , armkm+m} is discarded from memory for the first time. Let
A1 = {ω ∈ Ω : T ′ω ≤ L} be the set of reward realizations for which T ′ω ≤ L. Now fix some arm in
{armkm+1, armkm+2, . . . , armkm+m} say armkm+i. Define Ai2 = {ω ∈ Ω : armkm+i ∈ ST ′ω} to be
the event that the armkm+i belongs to ST ′ω . Now, let Ai = A1 ∩Ai2 be the set of reward realizations
such that ∀ω ∈ Ai, T ′ω ≤ L and armi is discarded from memory before Zk becomes T ′ω + 1. Also,
for any event A ⊆ Ω, let A = Ω \A.

Now we have the following observation for permutation I ′2.

Observation 5. If ω ∈ A1 and P ∈ I ′2 is an input permutation to the algorithm A, then∑m
i=1Xkm+i ≥ Ω( 1

m2ε2 ).

Let i′ = arg maxi∈[m] P0,R′(A
i). We obtain the next observation due to the fact that the best arm

armkm+i′ is sampled for at most L = o(T ) times.

Observation 6. If ω ∈ Ai′ and Ikm+i′

1 is an input permutation to the algorithm A, then XIkm+i′
1

≥
ε(T−T ′ω)

2 = Ω(εT ).

Now we will prove the following inequality which will be useful in our analysis:

m · Pi′,R′(Ai
′
) + P0,R′(A1) ≥ 1

4
. (3)

The above inequality is trivially true if P0,R′(A1) ≥ 1/4. Therefore, let us assume P0,R′(A1) ≤ 1/4,
i.e., P0,R′(A1) ≥ 3/4. Then P0,R′(A

i′) ≥ 3/(4m), by averaging argument. Using Theorem 1 for
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distributions P0,R′ and Pi′,R′ , we obtain:

2(P0,R′(A
i′)− Pi′,R′(Ai

′
))2

≤ KL(P0,R′ , Pi′,R′) (by Pinsker’s inequality)

=
∑
i∈[m]

L∑
t=1

KL(P i,t0,R′ , P
i,t
i′,R′) (by chain rule)

=
∑

i∈[m]\{i′}

L∑
t=1

KL(P i,t0,R′ , P
i,t
i′,R′) +

L∑
t=1

KL(P i
′,t

0,R′ , P
i′,t
i′,R′)

≤ 0 + L · 2ε2.

In the last inequality, the first term of the summation is zero because all arms armkm+i, where
i ∈ [m] \ {i′}, have identical reward distributions under instances P ∈ I ′2 and Ikm+i′

1 . To bound the
second term in the summation, we use the last property from Theorem 1. Thus we have, P0,R′(A

i′)−
Pi′,R′(A

i′) ≤ ε
√
L. Hence, Pi′,R′(Ai

′
) ≥ P0,R′(A

i′)− ε
√
L ≥ (3/(4m))− (1/(2m)) = 1/(4m).

Here, we use P0,R′(A
i′) ≥ 3/(4m) and L = 1/(4m2ε2). Hence, if P0,R′(A1) ≤ 1

4 then m ·
Pi′,R′(A

i′) ≥ 1
4 . This proves Inequality (2). Let P be an input permutation. Now we have the

following:

E[Yk|R′]

≥P[P = Ikm+i′

1 |R′] · Pi′,R′(Ai
′
) · Ω(εT )

+ P[P ∈ I ′2|R′] · P0,R′(A1) · Ω
( 1

m2ε2

)
=
P[R′|P = Ikm+i′

1 ] · P[P = Ikm+i′

1 ]

P[R′]
· Pi′,R′(Ai

′
) · Ω(εT )

+
P[R′|P ∈ I ′2] · P[P ∈ I ′2]

P[R′]
· P0,R′(A1) · Ω

( 1

m2ε2

)
(Due to Bayes’ Theorem )

=
P[R′|P = Ikm+i′

1 ]

P[R′]
· 1

2n
·mPi′,R′(Ai

′
) · Ω(εT/m)

+
P[R′|P ∈ I ′2]

P[R′]
· P0,R′(A1) · 1

4
· Ω
( 1

m2ε2

)
≥P[R′|P = Ikm+i′

1 ]

P[R′]
· Ω
( T 2/3

m4/3n2/3

)
· (m · Pi′,R′(Ai

′
) + P0,R′(A1))

(Due to the fact that P[R′|P = Ikm+i′

1 ] = P[R′|P ∈ I ′2]

and Ω
( 1

m2ε2

)
= Ω

( εT
mn

)
= Ω

( T 2/3

m4/3n2/3

)
≥P[R′|P = Ikm+i′

1 ]

P[R′]
· Ω
( T 2/3

m4/3n2/3

)
(Due to Inequality (3)).
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Therefore we now have the following:

E[Yk] ≥
∑
R′∈R

P[R′] · E[Yk|R′]

≥
∑
R′∈R

P[R′|P = Ikm+i′

1 ] · Ω
( T 2/3

m4/3n2/3

)
≥Ω
( T 2/3

m4/3n2/3

)
.

Let ` = b n2mc − 1. Then we have the following. :

E[R(t)] ≥
∑̀
k=0

E[Yk]

≥
∑̀
i=0

Ω
( T 2/3

m4/3n2/3

)
≥Ω
(n1/3T 2/3

m7/3

)
.

C Important Inequalities

Lemma 12. (Hoeffding’s inequality). Let Z1, . . . , Zn be independent bounded variables with
Zi ∈ [0, 1] for all i ∈ [n]. Then

P
( 1

n

n∑
i=1

(Zi − E[Zi]) ≥ t) ≤ e−2nt2
)
, and

P
( 1

n

n∑
i=1

(Zi − E[Zi]) ≤ −t) ≤ e−2nt2
)
, for all t ≥ 0.

Theorem 13 (Berry-Esseen Theorem). There exists a positive constant C ≤ 1 such that if
X1, X2, . . . , Xn are i.i.d. random variables with E[Xi] = 0, E[X2

i ] = σ2 > 0, and E[|Xi|3] = ρ <
∞, and if we define

Yn =
X1 +X2 + . . .+Xn

n

to be the sample mean, with Fn being the cumulative distribution function of Yn
√
n

σ , and Φ be the
cumulative distribution function of the standard normal distribution N (0, 1), then for all x and n,

|Fn(x)− Φ(x)| ≤ Cρ

σ3
√
n
.

D Omitted Proofs from Section 4

Lemma 7. The worst case sample complexity of the algorithm is O( nε2 · (ilog
(r)(n) + ln( 1

δ ))) and
it does not depend on the arms’ rewards or gap parameter or the order in which the arms arrive.

Proof. If r = 1, then the total number of samples is n · s1 = O( nε2 · (ilog
(r)(n) + log( 1

δ ))). Let
c0 := 1. So for the rest of the analysis we assume that r ≥ 2 and define ci := 2ci−1 ,∀i > r. Note
that since 2 ≤ r ≤ log∗(n), c2 ≥ 2 and ci = 2ci−1 , ∀i ≥ 3. For any level ` − 1, we send one arm
from level `− 1 to level ` for every c`−1 arms seen (this is excluding the arms sampled in Step 19).
Hence, during the Modified Selective Promotion, the number of arms that can reach any level ` is
at most n/(

∏`−1
i=0 ci). Each arm arriving at level ` is pulled exactly s` times. Also note that we can
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sample up to (r − 1) · sr times in the Step 19. Since, we have r levels, the total number of samples
can be bounded as:

r∑
`=1

n∏`−1
i=0 ci

· s` + (r − 1) · sr

≤
r∑
`=1

2nβ`
(
ilog(r+1−`)(n) + log( 2`+2

δ )
)∏`−1

i=0 ci
+ r · sr

≤n · s1 + r · sr

+
2n

ε2
·
r∑
`=2

4`+1 ·
(
ilog(r+1−`)(n)

c`−1 · c`−2
+

2` · log( 2
δ )

c`−1 · c`−2

)
(
Since,

`−1∏
i=0

ci ≥ c`−1 · c`−2, β` = 4`+1/ε2, and

log(2`+2/δ) ≤ log(22`/δ2`) ≤ 2` log(2/δ)
)

≤n · s1 + r · sr

+ (2 · 45 · n/ε2)

∞∑
`=2

(4`−4/c`−2)

+ (22 · 45 · n/ε2) · log(2/δ)

∞∑
`=2

(4`−3/c`−1)(
Since, c`−1 = ilog(r+1−`)(n), and (`/c`−2) ≤ 4

)
≤n · s1 + r · sr +O(n/ε2)

(
1 + log(2/δ)

)
(
Since,

5∑
`=0

4`−2

c`
= O(1),

∞∑
`=6

4`−2

c`
<

∞∑
`=6

4`−2

8`−2
< 1
)

≤O(n/ε2) · (ilog(r)(n) + log(1/δ))(
Since, r · sr = O(n/ε2)(1 + log(1/δ)) and

n · s1 = O(n/ε2) · (ilog(r)(n) + log(1/δ))
)
.

Hence, we have that the sample complexity is O( nε2 · (ilog
(r)(n) + log( 1

δ ))).

Lemma 8. Let arm1 and arm2 be two different arms with means µ1 and µ2. Suppose µ1 − µ2 ≥ θ
and we sample each arm K

θ2 times to obtain empirical means µ̂1 and µ̂2. Then,

P(µ̂1 ≤ µ̂2) ≤ 2 · e(−K/2)

Proof.

P(µ̂1 > µ̂2) ≥ P
(
µ1 −

θ

2
< µ̂1 and µ̂2 < µ2 +

θ

2

)
= P

(
µ1 −

θ

2
< µ̂1

)
· P
(
µ̂2 < µ2 +

θ

2

)
≥
(
1− e−2· K

θ2
·( θ2 )2

)
·
(
1− e−2· K

θ2
·( θ2 )2

)
(Due to Hoeffding’s Inequality)

≥ (1− 2 · e−K/2).

Hence, P(µ̂1 ≤ µ̂2) ≤ 2 · e−K/2.

E Adversarial Example for [4]

In this section, we show an adversarial example to show that the algorithm of [4] is not (ε, δ)-PAC.
First, we state the algorithm of [4] (Algorithm 2) here for completeness. The algorithm takes as input
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n ∈ N arms arriving in a stream in an arbitrary order, an approximation parameter ε ∈ [0, 1/2), and
the confidence parameter δ ∈ (0, 1). We first define some notation that is used throughout this work,
which is consistent with the notation used in [4].

{r`}∞`=1 : r1 = 4; r`+1 = 2r` ; (intermediate parameters used to define s` below)

ε` = ε/(10 · 2`−1); (intermediate estimate of gap parameter)

β` = 1/ε2
` ;

{s`}∞`=1 : s` = 4β`
(

ln(1/δ) + 3r`
)
; (number of samples per arm in level `)

{c`}dlog∗ ne+1
`=1 : c1 = 2r1 ; c` = 2r`/2`−1;

(the number of arms processed in level ` before
sending arm∗` to level `+ 1)

For Algorithm 2 to be (ε, δ)-PAC, it has to find an ε-best arm with probability at least 1 − δ. We
next provide a formal argument for why Algorithm 2 is not an (ε, δ)-PAC algorithm by providing a
counterexample.

Algorithm 2
1: {r`}∞`=1 : r1 := 4, r`+1 = 2r` ;
2: ε` = ε

10·2`−1 ;
3: β` = 1

ε2`
;

4: s` = 4β`
(

ln( 1
δ ) + 3r`

)
;

5: c1 = 2r1 , c` = 2r`

2`−1 (` ≥ 2);
6: Counters: C1, C2, . . . , Ct initialized to 0 where t = dlog∗(n)e+ 1.
7: Stored arms: arm∗1, arm

∗
2, . . . , arm

∗
t the most biased arm of `-th level.

8: while A new arm armi arrives in the stream do
9: Read armi to memory

10: Aggressive Selective Promotion: Starting from level ` = 1:
11: Sample both armi and arm∗` for s` times.
12: Drop armi if p̂armi < p̂arm∗` , otherwise replace arm∗` with armi.
13: Increase C` by 1.
14: If C` = c`, make C` equal to 0, send arm∗` to the next level by calling Line 11 with (` = `+1).
15: end while
16: Return arm∗t as the selected most bias arm.

Let the arms arrive in the stream be arm1, . . . , armn, where n > (c1 · c2). Let armi be the ith arm
to arrive in the stream and has a mean pi, where i ∈ [n]. For all i > c1 · c2, let pi = 0. For all
i ≤ c1 · c2, let pi = 1

2 − (d ic1 − 1e) · ε
c2−2 . Let armk1 , armk2 , . . . , armkc2 be the first c2 arms which

arrive at level 2 (note that all the arms which arrive at level 2 after armkc2 will have a mean of
0). Let arm∗2 be the most biased arm (based on the sampling) at the end of Aggressive Selection
Promotion step for level ` = 2 for armkc2 . Now C2 = c2 after the arrival of armkc2 . Thus arm∗2 will
be sent to level 3. As all the following remaining arms have lesser means, at the end, the algorithm
finally returns an arm with mean less than or equal to the mean of arm∗2. Note that ∀i ∈ [c2], all
the arms in the set {arm(i−1)·c1+1, . . . , armi·c1} have the same mean and one among them is sent
as armki to level 2. Therefore pki = pk1 − (i − 1) εb , where b = 215 − 2 and pk1 = 1

2 . So for any
i ∈ [c2 − 1], pki − pki+1

= ε
b . We will show that with probability > δ, we send armkc2 to level 3,

and 1
2 − pkc2 > ε.

For i ∈ [c2], let Y ti denote the reward when we sample the arm armki for the t-th time. We assume
that Y ti ∼ Bern(pki) and Var[Y ti ] = pki(1 − pki) (Note that this is a reasonable assumption as
the Algorithm 2 should work for any distribution). For i ∈ [c2 − 1], let Zti = Y ti − Y ti+1. Clearly,
µi := E[Zti ] = ε

b . Let σ2
i := Var[Zti ]. Let us assume that ε < 1

5 (Later we will choose ε in such a way
so that this condition is satisfied). In this case, σ2

i = Var[Y ti ] + Var[Y ti+1] > 2(pkc2 )(1− pkc2 ) > 2
5 .

Let Zi = Z1
i + Z2

i + . . . + Zs2i . Note that, if every arm from the set armk1 , armk2 , . . . , armkc2
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when it arrives in the level 2 beats arm∗2 in the challenge, then armkc2 will be sent to level 3. Thus,
{Zi < 0,∀i ∈ [c2 − 1]} ⊆ {armkc2 is sent to level 3}.
Assuming that δ and ε are very small (which we will choose appropriately to bound the error), we
approximate (using the central limit theorem) the distribution of Zi using the normal distribution
N (s2µi, s2σ

2
i ). Hence,

P[Zi < 0] = P[Zi > 2s2µi]

= 1− 1

2

(
1 + erf

( s2µi√
2s2σ2

i

))
Hence, we have

P[Zi < 0] =
erfc
(

s2µi√
2s2σ2

i

)
2

≥
erfc
(
s2µi ·

√
5

4s2

)
2

(Since, σ2
i ≥ 2

5 and erfc(x) is decreasing in x)

=
erfc
(

20
√

5
b

√
ln
(
e3r2
δ

))
2

(Substituting s2 = 4β2

(
ln( 1

δ ) + 3r2

)
)

≥
√
γ − 1

2
e−

2000·γ
b2

ln( e
3r2
δ )

(Since, erfc(x) ≥ (γ − 1)
1/2
e−γx

2

,∀x ≥ 0, γ :=
√

2e/π)

=

√
γ − 1

2

( δ

e3r2

) 2000·γ
b2

.

Thus, we can lower bound the probability that armkc2 is sent to level 3 as follows:

P[armkc2 is sent to level 3]

≥ P[Zi < 0,∀i ∈ [c2 − 1]]

=
∏

i∈[c2−1]

P[Zi < 0] (Since, the arm pulls are independent)

≥
(√γ − 1

2

( δ

e3r2

) 2000·γ
b2
)c2−1

=
δ

2000·γ·(c2−1)

b2

K
, where K =

(2 · e
3r2·2000·γ

b2

√
γ − 1

)c2−1

.

Consider that function f(x) = e
x

(
1− 2000·γ·(c2−1)

b2

)
K . Since, f(x) is an increasing and convex function,

there is a constant c such that f(c) > 2. This implies that for δ = e−c we have the following:

P[armkc2 is sent to level 3] ≥ δ
2000·γ·(c2−1)

b2

K
= f(c)e−c

> 2δ.

Now, we bound the error in calculation of the above probability. Using the Berry-Esseen theorem,
the error εi of calculating P[Zi < 0] is upper bounded by Cρ

σ3
i

√
s2
≤ ε√

ln( 1
δ )

, where C ≤ 1, ρ =

E[|Zti − µi|3] ≤ 8 (as |Zti − µi| ≤ 2) and σ2
i = Var[Zti − µi] = Var[Zti ]. Also we assumed

Var[Zti ] >
2
5 (we will choose ε in such a way that this is satisfied). If we choose ε such that
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ε <
δ
√

ln( 1
δ )

c2
and ε < 1/5, then εi < δ

c2
. Hence, we can conclude that P[armkc2 is sent to level 3] >

2δ −
∑c2−1
i=1 εi > 2δ − δ = δ.

As 1
2 − pkc2 =

(
c2−1
c2−2

)
· ε, we can conclude that with probability > δ, the Algorithm 2 returns an

arm with reward gap > ε from the best arm.
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