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Abstract

Imagine trying to track one particular fruitfly in a swarm of hundreds. Higher
biological visual systems have evolved to track moving objects by relying on
both their appearance and their motion trajectories. We investigate if state-of-the-
art spatiotemporal deep neural networks are capable of the same. For this, we
introduce PathTracker, a synthetic visual challenge that asks human observers
and machines to track a target object in the midst of identical-looking “distractor”
objects. While humans effortlessly learn PathTracker and generalize to systematic
variations in task design, deep networks struggle. To address this limitation, we
identify and model circuit mechanisms in biological brains that are implicated in
tracking objects based on motion cues. When instantiated as a recurrent network,
our circuit model learns to solve PathTracker with a robust visual strategy that rivals
human performance and explains a significant proportion of their decision-making
on the challenge. We also show that the success of this circuit model extends to
object tracking in natural videos. Adding it to a transformer-based architecture for
object tracking builds tolerance to visual nuisances that affect object appearance,
establishing the new state of the art on the large-scale TrackingNet challenge.
Our work highlights the importance of understanding human vision to improve
computer vision.

1 Introduction

Lettvin and colleagues [1] presciently noted, “The frog does not seem to see or, at any rate, is
not concerned with the detail of stationary parts of the world around him. He will starve to death
surrounded by food if it is not moving.” Object tracking is fundamental to survival, and higher
biological visual systems have evolved the capacity for two distinct and complementary strategies to
do it. Consider Figure 1: can you track the object labeled by the yellow arrow from left-to-right? The
task is trivial when appearance cues, like color, make it possible to solve the temporal correspondence
problem by “re-recognizing” the target in each frame (Fig. 1a). However, this strategy is not effective
when objects cannot be discriminated by their appearance alone (Fig. 1b). In this case integration of
object motion over time is necessary for tracking. Humans are capable of tracking objects by their
motion when appearance is uninformative [2, 3], but it is unclear if the current generation of neural
networks for video analysis and tracking can do the same. To address this question we introduce
PathTracker, a synthetic challenge for object tracking without re-recognition (Fig. 1c).
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Leading models for video analysis rely on object classification pre-training. This gives them access to
rich semantic representations that have supported state-of-the-art performance on a host of tasks, from
action recognition to object tracking [4–6]. As object classification models have improved, so too have
the video analysis models that depend on them. This trend in model development has made it unclear
if video analysis models are effective at learning tasks when appearance cues are uninformative. The
importance of diverse visual strategies has been highlighted by synthetic challenges like Pathfinder,
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Figure 1: The appearance of objects makes them (a) easy or
(b) hard to track. We introduce the PathTracker Challenge
(c), which asks observers to track a particular green dot as it
travels from the red-to-blue markers, testing object tracking
when re-recognition is impossible.

a visual reasoning task that asks ob-
servers to trace long paths embed-
ded in a static cluttered display [7, 8].
Pathfinder tests object segmentation
when appearance cues like category or
shape are missing. While humans can
easily solve it [8], deep neural net-
works struggle, including state-of-the-
art vision transformers [7–9]. Impor-
tantly, models that learn an appropri-
ate visual strategy for Pathfinder also
exhibit more efficient learning and im-
proved generalization on object seg-
mentation in natural images [10, 11].
Our PathTracker challenge extends
this line of work into video by pos-
ing an object tracking problem where
the target can be tracked by motion
and spatiotemporal continuity, not cat-
egory or appearance.

Contributions. Humans effortlessly solve our novel PathTracker challenge. A variety of state-of-
the-art models for object tracking and video analysis do not.
• We find that neural architectures including R3D [12] and state-of-the-art transformer-based TimeS-

formers [5] are strained by long PathTracker videos. Humans, on the other hand, are far more
effective at solving these long PathTracker videos.

• We describe a solution to PathTracker: a recurrent network inspired by primate neural circuitry
involved in object tracking, which renders decisions that are strongly correlated with humans.

• These same circuit mechanisms improve object tracking in natural videos through a motion-based
strategy that builds tolerance to changes in target object appearance, resulting in the state-of-the-art
score on TrackingNet [13].

• We release all PathTracker data, code, and human psychophysics at http://bit.ly/InTcircuit
to spur interest in the challenge of tracking without re-recognition.

2 Related Work

Models for video analysis A major leap in the performance of models for video analysis came
from using networks which are pre-trained for object recognition on large image datasets [4]. The
recently introduced TimeSformer [5] achieved state-of-the-art performance with weights initialized
from an image categorization transformer (ViT; [14]) that was pre-trained on ImageNet-21K. The
modeling trends are similar in object tracking [15], where successful models rely on “backbone”
feature extraction networks trained on ImageNet or Microsoft COCO [16] for object recognition or
segmentation [6, 17].

Shortcut learning and synthetic datasets A byproduct of the great power of deep neural network
architectures is their vulnerability to learning spurious correlations between inputs and labels. Perhaps
because of this tendency, object classification models have trouble generalizing to novel contexts [18,
19], and render idiosyncratic decisions that are inconsistent with humans [20–22]. Synthetic datasets
are effective at probing this vulnerability because they make it possible to control spurious image/label
correlations – providing a fairer test of the computational abilities of these models. For example, the
Pathfinder challenge was designed to test if neural architectures can trace long curves in clutter – a
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visual computation associated with the earliest stages of visual processing in primates. That challenge
identi�ed diverging visual strategies between humans and transformers that are otherwise state of the
art in natural image object recognition [9,14]. Other challenges like Bongard-LOGO [23], cABC [8],
SVRT [24], and PSVRT [25] have highlighted limitations of leading neural network architectures
that would have been dif�cult to identify using natural image benchmarks like ImageNet [26]. These
limitations have inspired algorithmic solutions based on neural circuits discussed in SI §1.

Translating circuits for biological vision into arti�cial neural networks While thePath�nder
challenge [7] presents immense challenges for transformers and deep convolutional networks [8], it
can be solved by a simple model of intrinsic connectivity in visual cortex, with orders-of-magnitude
fewer parameters than standard models for image categorization. This model was developed by
translating descriptive models of neural mechanisms from Neuroscience into an architecture that
can be �t to data using gradient descent [7, 11]. Others have found success in modeling object
tracking by drawing inspiration from “dual stream” theories of appearance and motion processing in
visual cortex [27–30], or basing the architecture off of a partial connectome of the Drosophila visual
system [31]. We adopt a similar approach in the current work, identifying mechanisms for object
tracking without re-recognition in Neuroscience, and developing those into differentiable operations
with parameters that can be optimized by gradient descent. This approach has the dual purpose of
introducing task-relevant inductive biases into computer vision models, and developing theory on
their relative utility for biological vision.

Multi-object tracking in computer vision The classic psychological paradigms of multi-object
tracking [2] motivated the application of models, like Kalman �lters, which had tolerance to object
occlusion when they relied on momentum models [32]. However, these models are computationally
expensive, hand-tuned, and because of this, no longer commonly used in computer vision [33]. More
recent approaches include �ow tracking on graphs [34] and motion tracking models that are relatively
computationally ef�cient [35,36]. However, even current approaches to multi-object tracking are not
learned, instead relying on extensive hand tuning [37,38]. In contrast, the point ofPathTrackeris to
understand the extent to which state-of-the-art neural networks are capable of tracking a single object
in an array of distractors.

3 ThePathTrackerChallenge

Overview PathTrackerasks observers to decide whether or not a target dot reaches a goal location
(Fig. 2). The target dot travels in the midst of a pre-speci�ed number of distractors. All dots are
identical, and the task is dif�cult because of this: (i) appearance is not useful for tracking the target,
and (ii ) the paths of the target and distractors can momentarily “cross” and occupy the same space,
making it impossible to individuate them in that frame and meaning that observers cannot solely rely
on the target's location to solve the task. This challenge is inspired by object tracking paradigms in
cognitive psychology [2,3,39], which suggest that humans might tap into mechanisms for motion
perception, attention and working memory to solve a task likePathTracker.

The trajectories of target and distractor dots are randomly generated, and the target occasionally
crosses distractors (Fig. 2). These object trajectories are smooth by design, giving the appearance
of objects meandering through a scene, and the difference between the coordinates of any dot on
successive frames is no more than 2 pixels with less than20� of angular displacement. In other words,
dots never turn at acute angles. We develop different versions ofPathTrackerwith varying degrees of
complexity based on the number of distractors and/or the length of videos. These variables change
the expected number of times that distractors cross the target and the amount of time that observers
must track the target (Fig. 2). To make the task as visually simple as possible and maximize contrast
between dots and markers, the dots, start, and goal markers are placed on different channels in 32� 32
pixel three-channel images. Markers are stationary throughout each video and placed at random
locations. Examples videos can be viewed athttp://bit.ly/InTcircuit .

Human benchmark We began by testing if humans can solvePathTracker. We recruited 180 indi-
viduals using Amazon Mechanical Turk to participate in this study. Participants viewedPathTracker
videos and pressed a button on their keyboard to indicate if the target object or a distractor reached
the goal. These videos were played in web browsers at 256� 256 pixels using HTML5, which helped
ensure consistent frame rates [40]. The experiment began with an 8-trial “training” stage, which
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Figure 2:PathTrackeris a synthetic visual challenge that asks observers to watch a video clip and
answer if a target dot starting in a red marker travels to a blue marker. The target dot is surrounded by
identical “distractor” dots, each of which travels in a randomly generated and curved path. In positive
examples, the target dot's path ends in the blue square. In negative examples, a “distractor” dot ends
in the blue square. The challenge of the task is due to the identical appearance of target and distractor
dots, which, as we will show, makes appearance-based tracking strategies ineffective. Moreover, the
target dot can momentarily occupy the same location as a distractor when they cross each other's
paths, making it impossible to individuate them in that frame and compelling strategies like motion
trajectory extrapolation or working memory to recover the target track. (b) A 3D visualization of the
video in (a) depicts the trajectory of the target dot, traveling from red-to-blue markers. The target and
distractor cross approximately half-way through the video. (c,d) We develop versions ofPathTracker
that test observers sensitivity to the number of distractors and length of videos (e,f). The number of
distractors and video length interact to make it more likely for the target dot to cross a distractor in a
video (compare the one X inb vs. two ind vs. three inf ; see SI §2 for details).

familiarized participants with the goal ofPathTracker. Next, participants were tested on 72 videos.
The experiment was not paced and lasted approximately 25 minutes, and participants were paid$8
for their time. Seehttp://bit.ly/InTcircuit and SI §2 for an example and more details.

Participants were randomly entered into one of two experiments. In the �rst experiment, they were
trained on the 32 frame and 14 distractorPathTracker, and tested on 32 frame versions with 1, 14,
or 25 distractors. In the second experiment, they were trained on the 64 frame and 14 distractor
PathTracker, and tested on 64 frame versions with 1, 14, or 25 distractors. All participants viewed
unique videos to maximize our sampling over the different versions ofPathTracker. Participants
were signi�cantly above chance on all tested conditions ofPathTracker(p < 0.001, test details in SI
§2). They also exhibited a signi�cant negative trend in performance on the 64 frame datasets as the
number of distractors increased (t = � 2:74, p < 0:01). There was no such trend on the 32 frame
datasets, and average accuracy between the two datasets was not signi�cantly different. These results
validate our initial design assumptions: humans can solvePathTracker, and manipulating distractors
and video length increases dif�culty.

4 Solving thePathTrackerchallenge

Can leading models for video analysis match humans onPathTracker? To test this question we
surveyed a variety of architectures that are the basis for leading approaches to many video analysis
tasks, from object tracking to action classi�cation. The models fall into four groups: (i) deep
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Figure 3: Model accuracy on thePathTrackerchallenge. Video analysis models were trained to
solve 32 (a) and 64 frame (b) versions of challenge, which featured the target object and 14 identical
distractors. Models were tested onPathTrackerdatasets with the same number of frames but 1, 14,
or 25 distractors (left/middle/right). Colors indicate different instances of the same type of model.
Grey hatched boxes denote 95% bootstrapped con�dence intervals for humans. Only our InT Circuit
rivaled humans on each dataset.

convolutional networks (CNNs), (ii ) transformers, (iii ) recurrent neural networks (RNNs), and (iv)
Kalman �lters. The deep convolutional networks include a 3D ResNet (R3D [12]), a space/time
separated ResNet with “2D-spatial + 1D-temporal” convolutions (R(2+1)D [12]), and a ResNet with
3D convolutions in early residual blocks and 2D convolutions in later blocks (MC3 [12]). We trained
versions of these models with random weight initializations and weights pretrained on ImageNet.
We included an R3D trained from scratch without any downsampling, in case the small size of
PathTrackervideos caused learning problems (see SI §3 for details). We also trained a version
of the R3D on optic �ow encodings ofPathTracker(SI §3). For transformers, we turned to the
TimeSformer [5]. We evaluated two of its instances: (i) where attention is jointly computed for all
locations across space and time in videos, and (ii ) where temporal attention is applied before spatial
attention, which results in massive computational savings. Both models performed similarly on
PathTracker. We report the latter version here as it was marginally better (see SI §3 for performance of
the other, joint space-time attention TimeSformer). We include a version of the TimeSformer trained
from scratch, and a version pre-trained on ImageNet-20K. Note that state-of-the-art transformers for
object tracking in natural videos feature similar deep and multi-headed designs [6]. For the RNNs, we
include a convolutional-gated recurrent unit (Conv-GRU) [41]. Finally, our exemplar Kalman �lter is
the standard Simple and Online Realtime Tracking (SORT) algorithm, which was fed coordinates of
the objects extracted from each frame of every video [37].

Method The visual simplicity ofPathTrackercuts two ways: it makes it possible to compare
human and model strategies for tracking without re-recognition as long as the task is not too easy.
Prior synthetic challenges likePath�nder constrain sample sizes for training to probe speci�c
computations [7–9]. We adopted the following strategy to select a training set size that would help us
test tracking strategies that do not depend on re-recognition. We took Inception 3D (I3D) networks [4],
which have been a strong baseline architecture in video analysis over the past several years, and tested
their ability to learnPathTrackeras we adjusted the number of videos for training. As we discuss in
SI §1, when this model was trained with 20K examples of the 32 frame and 14 distractor version
of PathTrackerit achieved good performance on the task without signs of over�tting. We therefore
trained all models in subsequent experiments with 20K examples. By happenstance, this dataset size
givesPathTrackera comparable number of frames to large-scale real world tracking challenges like
LaSOT [42] and GOT-10K [43].

We measure the ability of models to learnPathTrackerand systematically generalize to novel versions
of the challenge when trained on 20K samples. We trained models using a similar approach as in
our human psychophysics. Models were trained on one version ofPathTracker, and tested on other
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Figure 4: The Index-and-Track (InT) circuit model is inspired by Neuroscience models of motion
perception [45] and executive cognitive functions [46]. (a) The circuit receives input encodings from
a video (z), which are processed by interacting recurrent inhibitory and excitatory units (i; e) [7,10],
and a mechanism for selective “attention” (a) that tracks the target location. (b) InT units have
spatiotemporal receptive �elds. Spatial connections are formed by convolutions with weight kernels
(We; Wi ). Temporal connections are controlled by gates (g; h). (c) Model parameters are �t with
gradient descent. Softplus= [ :], sigmoid= � , convolution= � , elementwise product= � .

versions with the same number of frames, and the same or different number of distractors. In the �rst
experiment, models were trained on the 32 frame and 14 distractorPathTracker, then tested on the 32
framePathTrackerdatasets with 1, 14, or 25 distractors (Fig. 3a). In the second experiment, models
were trained on the 64 frame and 14 distractorPathTracker, then tested on the 64 framePathTracker
datasets with 1, 14, or 25 distractors (Fig. 3a). Models were trained to detect if the target dot reached
the blue goal marker using binary crossentropy and the Adam optimizer [44] until performance on
a test set of 20K videos with 14 distractors decreased for 200 straight epochs. In each experiment,
we selected model weights that performed best on the 14 distractor dataset. Models were retrained
three times on learning rates2 f 1e-2; 1e-3; 1e-4; 3e-4; 1e-5g to optimize performance. The best
performing model was then tested on the remaining 1 and 25 distractor datasets in the experiment.
We used four NVIDIA GTX GPUs and a batch size 180 for training.

Results We treat human performance as the benchmark for models onPathTracker. Nearly all
CNNs and the ImageNet-initialized TimeSformer performed well enough to reach the 95% human
con�dence interval on the 32 frame and 14 distractorPathTracker. However, all neural network
models performed worse when systematically generalizing toPathTrackerdatasets with a different
number of distractors, even when that number decreased (Fig. 3a, 1 distractor). Speci�cally, model
performance on the 32 framePathTrackerdatasets was worst when the videos contained 25 distractors:
no CNN or transformer reached the 95% con�dence interval of humans on this version of the dataset
(Fig. 3a).

The optic �ow R3D and the TimeSformer trained from scratch were less successful than the standard
CNNs but still above chance, while the Conv-GRU performed at chance. The SORT Kalman �lter was
extremely sensitive to distractors, performing better than any other model on 1-distractorPathTracker
datasets, but dropping well-below the human con�dence interval on 14- and 25-distractorPathTracker
datasets.

The performance of all models plummeted on 64 framePathTrackerdatasets. The drop in model
performance from 32 to 64 frames re�ects a combination of the following features ofPathTracker.
(i) The target becomes more likely to cross a distractor when length and the number of distractors
increase (Fig. 2; SI Fig. 2c). This makes the task dif�cult because the target is momentarily impossible
to distinguish from a distractor. (ii ) The target object must be tracked from start-to-end to solve the
task, which can incur a memory cost that is monotonic w.r.t. video length. (iii ) The prior two features
interact to non-linearly increase task dif�culty (SI Fig. 2c).

Neural circuits for tracking without re-recognition PathTrackeris inspired by object tracking
paradigms from Psychology, which tested theories of working memory and attention in human
observers [2, 3].PathTrackermay draw upon similar mechanisms of visual cognition in humans.
However, the video analysis models that we include in our benchmark (Fig. 3) do not have inductive
biases for working memory, and while the TimeSformer uses a form of attention, it is insuf�cient for
learningPathTrackerand only reached human performance on one version of the challenge (Fig. 3).
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