
Fine-Grained Zero-Shot Learning with DNA as Side
Information

Supplementary Material

Although the main text is prepared to be self-contained, we provide further details for implementation,
hyperparameter tuning, mathematical derivations used in the main text and some clarifications on
parts that were left for the supplementary materials due to space restrictions.

1 Overview
In this section, we touch upon a brief overview of contributions we mentioned in the main text:
BOLD datasets, DNA embeddings, and BZSL model intuition.

1.1 BOLD datasets
Since BOLD is an open-access database, a manual effort is needed to further curate a clean dataset.
Figure 1 displays a small subset of images deleted during cleaning process. Note that, for INSECT
dataset, only cases with images and matching DNA barcodes are included whereas for CUB dataset,
we did not impose this restriction as we only needed DNA information. Consequently, we retrieved
all DNA barcodes from bird species (extracted from COI genes only) present in BOLD.

Figure 2 presents further details on INSECT dataset such as number of species per genera and
number of samples per species. From Figure 2(a), one can observe that dataset can be considered
balanced as more than 90% of species have samples between 10 and 30. Fine-grained nature of the
dataset, on the other hand, can be seen from Figure 2(b). Out of 578 genera, 270 of them have at
least 2 species in the dataset. In 50 genera, there are more than 4 species coming from the same
genus, which makes the data challenging yet, at the same time, provides a chance to find similar
seen classes for the unseen classes.

1.2 DNA Embeddings
Although traditional sequencing methods [5, 4] have shown that DNA barcodes extracted from
COI gene are very powerful to uniquely identify living organisms in species level, it was to our
surprise to see that DNA embeddings obtained from a simple CNN model yielded more than 99%
accuracy on INSECT dataset with 1, 213 species. On BIRD species dataset with more than 1000
classes, the same CNN model achieved 95.6% accuracy which clearly shows that DNA barcodes’
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Figure 1: Small subset of sample images deleted from INSECT dataset during data cleaning.
Images inside of a circle are taken from microscope camera, thus, had very low resolution. Some
images display only body parts, which is enough to extract DNA information but useless for image
classification. There are many images in which insects are positioned very far from camera, hence
almost no morphological characteristics were visible.

utility is not bounded just by insects species. Figure 3 displays the TSNE plot of DNA embeddings
from benchmark CUB dataset using randomly selected 15 classes. On one hand, species clusters
are well-separated. On the other hand, species belonging to the same genus, inside the colored
rectangles, grouped close to each other.

1.3 Hierarchical Bayesian Model Intuition
The Figure 4 below validates the model intuition that there is a deeper level of hierarchy among
existing classes than a single global Bayesian prior can explain. Indeed, images from semantically
similar classes are embedded close to each other due to their shared latent parameters.

2 Details of posterior predictive distribution (PPD) derivation
The proposed model (BZSL) assumes Gaussian data model and Normal-Inverse Wishart (NIW)
prior on class parameters. Derivations for each class (seen and surrogate-unseen) are treated
independently as our model imposes independence on data generation conditioned on local priors
and global hyperparameters. By preserving the conjugacy, the assumption of common covariance
among classes sharing the same local prior further simplified the derivations. Six Steps of the
derivation are outlined in Figure 5 and pseudo-code is presented in Algorithm 1. Please refer to the
Table 1 for all variables and parameters used in the calculations. Class sufficient statistics, which
are only available for seen classes, are defined by x̄ji, Sji and nji, which represent sample mean,
scatter matrix and size of class i associated with local prior j, respectively. The notations ωjc and
ωj used in Algorithm 1 represents current seen and unseen classes, whose PPD are being derived.
The notation φ(·) stands for attribute vector(s) of the corresponding class(es).

Although we haven’t utilized local priors for seen class, please note that the following derivations
are based on a more general setup, where seen classes PPD can also incorporate local priors. At
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Figure 2: INSECT Data statistics

the end of the step 6, we will provide the exact PPD formulation that we used in our experiments
in which local priors are omitted in Seen class PPD.

Parameter Description
D image feature space dimension
d superscript that refers to the dth component of each parameter
j local prior index
i actual class index
k image index
c index of current class
ti local prior indicator for class i
tk class indicator for data point k
K # of neighbors of current class in surrogate-class
µj mean of local prior j
Σj covariance of local prior j
µji mean of class i of local prior j
x̄ji sample mean of class i of local prior j
Sji scatter matrix of class i of local prior j
nji size of class i of local prior j
xjik data point k from class i of local prior j

Table 1: The notation used in the derivation of PPD.
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Figure 3: TSNE plots of DNA embeddings from CUB dataset. Class names are represented by
birds’ scientific names.
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Figure 4: t-SNE visualization from AWA and CUB datasets shows that classes similar in the
attribute space indeed cluster closer in the feature space as well. For example, white-necked raven
clusters next to common raven instead of Gull, Hummingbird and Kingfisher species. The same
phenomenon also appears in coarse grained datasets (AWA) as different kinds of dogs, monkeys,
cetaceans and carnivorous cats cluster together with their other kinds. Nevertheless, note that
groups are not as intermingled as in fine grained CUB dataset.
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Figure 5: PPD derivation outline

Sufficient Statistics
As Gaussian distribution requires only mean and covariance to be uniquely identified, hence data
in classes can be summarized by their sufficient statistics; sample means and covariances.

P (xjik|µji,Σj) ∼ N(xjik|µji,Σj) (1)

x̄ji =
1

nji

∑
k:tk=i

xjik (2)

x̄ji ∼ N(µji,Σjn
−1
ji ) (3)
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Algorithm 1 Posterior Predictive Distributions in BZSL
Input: Training data, φ(seen), φ(unseen)
Output: PPD parameters for each seen class (µ̄jc, v̄jc, Σ̄jc) and unseen class (µ̄j , v̄j, Σ̄j)

1: Set hyper-parameters: κ0, κ1,m, s,K
2: Compute µ0 (mean of class means) and Σ0 (mean of class covariances scaled by s)
3: for each seen class ωjc do . Images available
4: Calculate current class params: x̄jc, njc, Sjc
5: Calculate Sµ (Eq 34)
6: Calculate PPD by combining global prior and data driven likelihood: µ̄jc, v̄jc, Σ̄jc (Eq 37)
7: end for
8: for each unseen class ωj do . No image available
9: Find K most similar seen classes:

10: L2(φ(ωj), φ(seen))
11: for each selected seen class ωji do
12: Calculate class params: x̄ji, nji, Sji
13: end for
14: Calculate κ̃j (Eq 30)
15: Calculate PPD parameters using local and global priors: µ̄j , v̄j, Σ̄j (Eq 38)
16: end for

Sji =
1

nji

∑
k:tk=i

(xjik − x̄ji)(xjik − x̄ji)T (4)

(nji − 1)Sji ∼ W (Σj, nji − 1) (5)

(3) follows from eq. (2) and independence assumption given local prior parameters. (5) is a very
definition of Wishart distribution as Sji is scatter matrix of class i from local prior j.

Step 1: Marginal Likelihood
The class sample means x̄ji′s are connected to their local prior (j) by integrating out the intermediate
class parameter µji. Note that all three parameters (x̄ji,µji,µj) are Normally distributed and
terms depend on local prior covariance (Σj) are treated constant for this derivation.
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P (x̄ji|µj ,Σj, κ1) =

∫
P (x̄ji|µji, nji,Σj)P (µji|µj ,Σj, κ1)dµji (6)

=

∫
N(x̄ji|µji,Σjn

−1
ji )N(µji|µj ,Σjκ

−1
1 ) (7)

=

∫
(2π)−

d
2 |Σj/nji|−

1
2 exp(−1

2
(x̄ji − µji)T (Σj/nji)

−1(x̄ji − µji)) (8)

∗ (2π)−
d
2 |Σj/κ1|−

1
2 exp(−1

2
(µji − µj)T (Σj/κ1)−1(µji − µj))dµji

=

∫
C1C2exp(−

1

2
(µji −

κ1µj + njix̄ji
κ1 + nji

)T (
Σj

nji + κ1

)−1(µji −
κ1µj + njix̄ji
κ1 + nji

) + C3)dµji

(9)

= C1C2 exp(C3)

∫
exp(−1

2
(µji −

κ1µj + njix̄ji
κ1 + nji

)T (
Σj

nji + κ1

)−1(µji −
κ1µj + njix̄ji
κ1 + nji

)dµji

(10)

P (x̄ji|µj ,Σj, κ1) = C1C2 exp(C3)(2π)
d
2 | Σj

κ1 + nji
|
1
2 (11)

C1 = (2π)−
d
2 |Σj/nji|−

1
2 (12)

C2 = (2π)−
d
2 |Σj/κ1|−

1
2 (13)

C3 = −1

2
(x̄ji

T (Σj/nji)
−1x̄ji + µj

T (Σj/κ1)−1µj −
κ1µj + njix̄ji
κ1 + nji

T

(
Σj

nji + κ1

)−1κ1µj + njix̄ji
κ1 + nji

)

(14)

C3 = −1

2
((x̄ji − µj)T

njiκ1Σ−1
j

(nji + κ1)
(x̄ji − µj)) (15)

P (x̄ji|µj ,Σj, κ1) = (2π)−
d
2 |Σj(κ1 + nji)

njiκ1

|−
1
2 exp(−1

2
(x̄ji − µj)T

njiκ1Σ−1
j

(nji + κ1)
(x̄ji − µj)) (16)

P (x̄ji|µj ,Σj, κ1, nji) = N(x̄ji|µj ,Σj(
1

nji
+

1

κ1

)) (17)

(6), (7) and (8) follow the model assumption and definition of Normal distribution. (9) is derived
by completing the (8) into normal distribution and combining extra elements into constant C3.
New term in the (11) comes from evaluation of integral from (10) as the exponential term is in the
Gaussian form. Combining the similar terms in (14), we get (15), hence marginal likelihood (16).
Hereon, it is trivial to observe that the likelihood is in Gaussian form with mean and covarinace as
in (17).

Step 2: Posterior of µk
We combined the sufficient statistics (means) of classes sharing the same local prior in the posterior
distribution of surrogate-class mean µj .
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P (µj |µ0,Σj, κ0, κ1, {x̄ji}ti=j) ∝ P (µj|µ0,Σj, κ0)
∏
i:ti=j

P (x̄ji|µj ,Σj, κ1) (18)

P (µj|µ0,Σj, κ0, κ1, {x̄ji}ti=j) ∝ exp(−1

2
(µj − µ̄j)T (

∑
i:ti=j

njiκ1

(nji + κ1)
+ κ0)Σ−1

j (µj − µ̄j))

(19)

P (µj |µ0,Σj, κ0, κ1, {x̄ji}ti=j) = N(µ̄j , κ̄
−1
j Σj) (20)

µ̄j =

∑
i:ti=j

njiκ1
(nji+κ1)

x̄ji + κ0µ0∑
i:ti=j

njiκ1
(nji+κ1)

+ κ0

(21)

κ̄j = (
∑
i:ti=j

njiκ1

(nji + κ1)
+ κ0) (22)

Applying Bayes rule, posterior can be proportioned as in (18). As local prior mean and sample
mean are Normal distributed (from step 1), we get (19). Completing square procedure used in
previous step would give the exact normalization, hence, posterior can be written in a closed form
of Gaussian as in (20). The last part can also be verified by observing all exponential terms are
quadratic, indeed Gaussian.

Step 3: Updated prior of µjc
As new information is available from classes sharing the same local prior, current class mean (µjc)
can leverage this information by updating its prior. Marginalizing out local prior mean µj would
render this information propagation as below,

P (µjc|µ0,Σj, κ0, κ1, {x̄ji}ti=j) =

∫
P (µjc|µj ,Σj, κ1)P (µj |µ̄j , Σ̄j, κ0, κ1, {x̄ji}ti=j)dµj

(23)

P (µjc|µ0,Σj, κ0, κ1, {x̄ji}ti=j) =

∫
N(µjc|µj ,Σjκ

−1
1 )N(µj|µ̄j , Σ̄j)dµj (24)

P (µjc|µ0,Σj, κ0, κ1, {x̄ji}ti=j) = N(µjc|µ̄j , Σ̄j + Σjκ
−1
1 ) (25)

Step 4: Posterior on µjc
Combining the prior from step 3 with current class sample mean x̄jc from step 1, we derive the
posterior for current class mean µjc. Analogously, applying Bayes rule and observing that both
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distributions are Normal, we obtain an another Gaussian.

P (µjc|µ0,Σj, κ0, κ1, {x̄ji}ti=j, x̄jc) (26)
∝ P (µjc|µ0,Σj, κ0, κ1, {x̄ji}ti=j)P (x̄jc|µjc,Σjn

−1
jc )

(27)

∝ N(µjc|µ̄j , Σ̄j + Σjκ
−1
1 )N(x̄jc|µjc,Σjn

−1
jc ) (28)

P (µjc|µ0,Σj, κ0, κ1, {x̄ji}ti=j, x̄jc) = N(
njcx̄jc + κ̃jµ̄j

njc + κ̃j
,Σj(κ̃

−1
j + n−1

jc )) (29)

κ̃−1
j = κ̄−1

j + κ−1
1 (30)

Note that in order to simplify the notation, κ terms are collected in κ̃−1
j .

Before stepping into the covariance related derivations, we would like to draw your attention to
an expression similar to C3 from equation (15) that appears with µ̄j in the remaining terms while
deriving posterior.

(x̄jc − µ̄j)T
njcκ̃j

(njc + κ̃j)
Σ−1
j (x̄jc − µ̄j) =

njcκ̃j
njc + κ̃j

tr((Σ−1
j )(x̄jc − µ̄j)(x̄jc − µ̄j)T )) (31)

Note that x̄jc and µ̄j are observed values, and the equation depends only on Σj . This formula
stays in the exponent creating a factor that contributes to Wishart distribution and is denoted as
P (Sµ|Σj).

Step 5: Wishart Terms
As it is observed from plate diagram and generative model in Figure (5), local prior covariance Σj

is shared among its all classes. Even though Wishart terms are independent of mean variables,
the residual terms in the posterior calculations create additional Wishart distributions. These
distributions and the ones from data scatter matrices are combined in the posterior of Σj as below,

P (Σj|{Sji, x̄ji}ti=j, Sjc, x̄jc) ∝ P (Σj|Σ0,m)P (Sjc|Σj, njc)P (Sµ|Σj)
∏
i:ti=j

P (Sji|Σj, nji) (32)

= IW (Σ0 +
∑
i:ti=j

Sji + Sjc + Sµ, m+
∑
i:ti=j

(nji − 1) + njc) (33)

Sµ =
njcκ̃j
κ̃j + njc

(x̄jc − µ̄j)(x̄jc − µ̄j)T (34)

Since the prior on Σj is Inverse-Wishart and scatter matrices are Wishart distributed, the posterior
will be exactly Inverse-Wishart.

Step 6: Integration of remaining parameters
As you notice from Step 4 and 5, the posterior distribution is Normal-Inverse-Wishart and from
model assumption, data is Gaussian. Hence, the integration in PPD can analytically be derived.
Integration with respect to µ will render another multivariate Normal distribution due to conjugacy,
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thereafter integration w.r.t Σ completes to Inverse-Wishart. Finally, arranging the terms yields the
posterior predictive distribution in the form of Student-t.

P (x|{x̄ji, Sji}ti=j, x̄jc, Sjc,µ0, κ0, κ1) (35)

=

∫ ∫
P (x|µjc,Σj)P (µjc,Σj|{x̄ji, Sji}ti=j, x̄jc, Sjc,µ0, κ0, κ1)dµjcdΣj

= T (x|µ̄jc, Σ̄jc, v̄jc) (36)

µ̄jc =
njcx̄jc + κ̃jµ̄j

njc + κ̃j

v̄jc = njc +
∑
i:ti=j

(nji − 1) +m− d+ 1

Σ̄jc =
njs + κ̃j + 1

(njc + κ̃j)v̄jc
(Σ0 +

∑
i:ti=j

Sji + Sjc + Sµ)

Note that aforementioned derivation of seen class PPD includes local priors, yet in our experiments
we simply dropped local priors from Seen class PPD. Hence, the final PPD for seen classes in which
local priors are omitted is derived also in the form of a Student-t distribution as following,

P (x|{x̄ji, Sji}ti=j, x̄jc, Sjc,µ0, κ0, κ1) = T (x|µ̄jc, Σ̄jc, v̄jc)

µ̄jc =
njcx̄jc + κ0κ1

κ0+κ1
µ0

njc + κ0κ1
κ0+κ1

, v̄jc = njc +m−D + 1, Σ̄jc =
(Σ0 + Sjc + Sµ)(njc + κ0κ1

κ0+κ1
+ 1)

(njc + κ0κ1
κ0+κ1

)v̄jc
(37)

where, Sµ is defined as in Eq (34). The index c in Equation (37) represents the current seen class,
whose PPD is being derived.

Dropping the current class statistics from Eq (36), on the other hand, delivers the PPD for
unseen classes as below,

P (x|{x̄ji, Sji}ti=j,µ0, κ0, κ1) = T (x|µ̄j , Σ̄j, v̄j) (38)

v̄j =
∑
i:ti=j

(nji − 1) +m− d+ 1, Σ̄j =
(κ̃j + 1)

κ̃j v̄j
(Σ0 +

∑
i:ti=j

Sji)

where µ̄j is from (21).

3 Training Details
In this section, we provide training details regarding implementation and hyperparameter tuning
for CNN model, BZSL model and other state-of-the-art ZSL methods.
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Figure 6: CNN model architecture

3.1 Implementation
Experiments are run on two machines: (1) a Dell PC with Windows 10, Intel(R) Core(TM) i9-9900
CPU @ 3.10 GHz, 64 GB RAM, and NVIDIA GeForce RTX 2080 GPU, 8GB RAM (2) School
server with NVIDIA Tesla V100-PCIE GPU, 16GB RAM. LambdaLab [2] becnhmarking tests
reveal that on average RTX 2080 is 56% as fast as Tesla V100 GPU for Deep Learning training.
All models except FGNs are run on the PC. CADA-VAE and LsrGan are run on the school server.

3.1.1 CNN model

The details of CNN model training are mentioned in the main text, but here we present the detailed
model architecture in Figure 61. The same model and parameters are utilized in learning both
INSECT and CUB datasets’ DNA embeddings, except the sequence length. Since in INSECT
dataset more than 90% of DNA barcodes have a length of 658, we transformed barcodes into 658x5
2D arrays during one-hot endcoding, whereas for bird dataset, we utilized maximum sequence
length, 1500, for one-hot encoding 2D array. The reason for the latter was that bird DNA barcode
lengths have a high variance and results on validation set maximized once we use maximum
sequence length. For the padding of missing bases, we simply used the label others which represents
missing and ambiguous symbols.

Jupyter notebook together with Readme file for learning DNA embeddings is attached to the
Supplementary material with the name DNA_embeddings.zip. Please refer to the Readme file for
setting up the conda virtual environment and installing required packages in order to run the code.

3.1.2 BZSL

The model is developed in MATLAB, and any version including 2016 and above should be able to
run the model without any problem. The code is attached to the Supplementary material under the
same BZSL.zip. You may find it useful to check the Readme file to reproduce reported results.

3.1.3 Other ZSL methods

We compared the proposed model against six state-of-the-art ZSL approaches and five of them
have a publicly available codes. We got the code for ALE [1] from the authors themselves and it is

1In the main text, we mentioned that CNN architecture will be present in Figure 3 of Supplementary material but
due to extra experiments, architecture is presented here. We are sorry for the inconvenience
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developed in MATLAB. Methods and links to their codes are presented below:

• CADA-VAE [7]: https://github.com/edgarschnfld/CADA-VAE-PyTorch. The
code is developed by authors in PyTorch. GPU enabled code.

• LsrGan [9]: https://github.com/Maunil/LsrGAN. The code is dveloped by authors
in PyTorch. GPU enabled code.

• CRNet [10]: https://github.com/Fezaries/CRnet. The code is developed in
Python. GPU enabled code.

• RelationNet [8]: https://github.com/lzrobots/LearningToCompare_ZSL.
The code is developed by authors in PyTorch. GPU enabled code.

• ESZSL [6]: https://github.com/mvp18/Popular-ZSL-Algorithms. The code
is developed in Python.

3.2 Hyperparameter Tuning
3.2.1 CNN Model

We very coarsely tuned the CNN model. After fixing the model architecture, we tuned initial
learning rate, batch size and number of epochs between the ranges given below:

• Learning rate: {0.1, 0.01, 0.05, 0.001}

• Batch size: {32, 64}

• Number of epochs: {5, 10}

We also tried SGD optimizer but ADAM was superior.

3.2.2 BZSL

Referencing the main text, unconstrained model has 5 parameters to tune: {κ0, κ1, K,m, s}. As
you may recall from the main text, hhe hyperparameter κ0 adjusts the separation between local
prior centers, on the other hand, κ1 adjusts the dispersion between class centers inheriting the same
local prior. Moreover, m controls the degree of deviation of individual Σj’s from the E[Σj] and s
is the scale constant. As the expected value of Σj is Σ0

m−d−1
where d is the dimension of the data,

larger values for m assumes classes with more spherical shapes, whereas smaller values creates
resilience to learn more flexible shapes.

Model hyperparameters are coarsely tuned to maximize the Harmonic mean on validation set.
The only preprocessing we did was to apply PCA to reduce the dimensionality of the data from
2048 to 500. The range of each parameter and the best quintuplets associated with each dataset are
depicted in the Tables 2 and 3, respectively. Running time of the model was 33 seconds per trial.

12

https://github.com/edgarschnfld/CADA-VAE-PyTorch
https://github.com/Maunil/LsrGAN
https://github.com/Fezaries/CRnet
https://github.com/lzrobots/LearningToCompare_ZSL
https://github.com/mvp18/Popular-ZSL-Algorithms


HP Range
κ0 {0.1, 1}
κ1 {1, 10, 25}
K {1, 2, 3}
m {5d, 25d, 100d, 500d}
s {1, 5, 10}

Table 2: Parameter ranges used in hyper-
parameter tuning

Datasets Best quintuplets
INSECT {0.1, 10, 5d, 10, 3}
CUB (w. Att) {1, 25, 500d, 10, 3}
CUB (w. w2v) {0.1, 25, 5d, 5, 2}
CUB (w. DNA) {0.1, 25, 25d, 5, 3}

Table 3: Best quintuplets from tuning with
the order of {κ0, κ1,m, s,K}.

3.3 Other methods
Out of six ZSL methods, four of them are based on neural networks and it is not feasible, if not
impossible, to tune all hyperparameters. Thus, we utilized Hyperopt [3], a distributed hyperparameter
optimization technique developed in Python to tune all SotA ZSL methods, except ALE. All models
are tuned to maximize the harmonic mean.

ALE was built on MATLAB and has only two parameters to tune: learning rate and margin
constant, hence no need to use sophisticated software for tuning. Learning rate was tuned in the set
of {1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001}, whereas margin constant was tuned from the
set of {0.01, 0.1, 0.5, 1}. The model is run 100 epochs with early stop is set to 30 epochs.

For other methods, hyperparameters and their range are listed below (ranges are arranged by
observing parameters used by authors for different benchmark datasets and then slightly extended):
CADA-VAE (100 runs):

• Classifier learning rate (LR) (lr_cls): log-uniform from range of [log(1e− 5), log(1e− 2)]

• Generative model LR (lr_gen_model): log-uniform from range of [log(1e− 5), log(1e− 2)]

• Classifier training steps (cls_train_steps): random-sampling from set of {4 : 1 : 40}

• Batch size (batch_size): random-sampling from set of {32, 64, 96, 128}

• Latent space dimensionality (latent_size): random-sampling from set of {32, 64, 96, 128}

• Regularizer loss (loss): random-sampling from set of {L1, L2}

LsrGan (25 runs due to slow training time, see Table 5):

• Class weight (cls_weight): log-uniform from range of [log(1e− 3), log(1e− 1)]

• LR (lr): log-uniform from range of [log(1e− 6), log(1e− 3)]

• Unseen class weight (unseen_cls_weight): log-uniform from range of [log(1e− 2), log(0.9)]

• Epsilon (epsilon): log-uniform from range of [log(1e− 2), log(0.9)]

• Upper epsilon (upper_epsilon): log-uniform from range of [log(1e− 2), log(0.9)]
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• Number of synthesized features per class (syn_num): random-sampling from set of {100 :
100 : 3000}

• Number of epochs (nepoch): random-sampling from set of {10 : 5 : 50}

• Correlation penalty (correlation_penalty): random-sampling from set of {5 : 10 : 50}

• Pretrained classifier for inference (no_classifier): random-sampling from set of {True, False}
CRNet (50 runs)

• LR (LEARNING_RATE): log-uniform from range of [log(1e− 6), log(1e− 2)]

• Weight decay (WEIGHT_DECAY): log-uniform from range of [log(1e− 20), log(1e− 3)]

• Number of clusters (K): random-sampling from set of {1 : 1 : 21}
RelationNet (50 runs)

• LR (learning_rate): log-uniform from range of [log(1e− 6), log(1e− 3)]

• Number of episodes (episode): random-sampling from set of {50, 000 : 10, 000 : 200, 001}

• Step size of learning rate scheduler (lr_step_size): random-sampling from set of {10, 000 :
10, 000 : 200, 001}

ESZSL (100 runs)

• Regularization constant alpha (alpha): uniform from range of [−10, 10]

• Regularization constant gamma (gamma): uniform from range of [−10, 10]

4 Additional Experiments

4.1 Ablation study
We conduct an ablation study for the proposed model to investigate the necessity and efficacy of
different components of the model. Starting with the obvious one, breaking the hierarchy and
removing the second layer, the model will not be able to form local priors for the surrogate classes,
thus all unseen classes would be assigned to other seen classes. The utility of the Bayesian aspect
of the model can be tested by comparing the proposed model against a standard Gaussian Mixture
Model (GMM). In this experiment, we eliminated the global and local priors, hence, each seen class
is fit a single Gaussian and each unseen class is fit a GMM withK components. Table 4 exhibits the
harmonic means of the Bayesian model and GMM on INSECT and CUB (with 3 different sources
of side information) datasets. Performance drop is particularly drastic on the INSECT data due to
the poor unseen class accuracy. The Bayesian aspect is not only necessary for a better knowledge
transfer from seen to unseen classes, but hyperparameters of the model also provide the flexibility
to model datasets with various levels of granularity, which brings us to the next ablation study.

4.2 Model Runtime Analysis
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Methods INSECT CUB (Att) CUB (W2V) CUB (DNA)
GMM 5.01 26.20 21.11 18.97
BZSL 26.99 38.82 29.94 34.97

Table 4: Fitting GMM instead of Bayesian hierarchy. We tuned number of components, K, and
reported the best results for GMM.

Method Ave. runtime per trial
CADA-VAE 280
LsrGan 3, 274
CRNet 1, 625
RelationNet 882
ALE 513
ESZSL 3.6
BZSL 8.6

Table 5: Running time in seconds per
trial on CUB dataset (our version in
which 6 classes are not present).

Table 5 displays runtime of all ZSL methods on
CUB dataset while visual attributes are used as side
information. All models but LsrGan are run on the PC
for this experiment. On server, average runtime per trial
for LsrGan was 1, 834 seconds and using the LambdaLab
research as a reference point an approximate runtime of
LsrGan on PC is calculated as 1, 834/0.56 = 3, 274
seconds. ESZSL and BZSL has the lowest running time
per trial and BZSL is 30 times faster than the next fastest
method, CADA-VAE. Both methods owe the super fast
training time to their closed form solutions.

4.3 Visualization of Synthesized Features
from FGNs.
To better understand the effect of various side informations on FGNs’ performance, we visualized
generated unseen class features from CADA-VAE and LsrGan on CUB data using 3 different side
information sources: visual attributes (common one), word2vecs and DNA embeddings. For each
experiments we sampled 60 points for TSNE training and then randomly sampled 20 unseen classes
for visualization. Figure 7 displays the TSNE plot from CUB data. Since the same randomly
selected 20 unseen classes are used for all figures, we only put one legend and it is in the Figure 7.
Please note that, we utilized the best setup from tuning for the model training and we only sampled
20 classes after training done for only visualization purposes. TSNE plots of synthesized features
from these 2 models using visual, word2vec and DNA attributes are presented in Figures 8, 9, 10,
respectively.

The first thing to notice is the bizarre distribution of synthesized features from CADA-VAE. The
model to some extent is able to transfer the relative inter-class proximity from the attribute space
to image feature space, and achieves competitive results yet the generated features lack quality.
The superior results of LsrGan when visual attributes are available is visible by the TSNE plot in
Figure 8(b). However, once the correlation between side information and image features decreases,
the quality of generated features suffers. Both methods display mode collapse once word vectors
are used as side information (see red circle in Figure 9). On the other hand, with DNA embeddings,
features from LsrGan are scattered all around and fail to form meaningful clusters. Despite their
strange shapes, features generated by CADA-VAE seem to be slightly more reasonable and it is
reflected in their better performance with DNA embeddings.
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Figure 7: TSNE plot of randomly sampled 20 unseen classes from CUB data
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(a) Synthesized unseen class features from CADA-VAE
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(b) Synthesized unseen class features from LsrGan

Figure 8: TSNE plots using visual attributes as side information during model training on CUB
data
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(a) Synthesized unseen class features from CADA-VAE (b) Synthesized unseen class features from LsrGan

Figure 9: TSNE plots using word2vec as side information during model training on CUB data
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(a) Synthesized unseen class features from CADA-VAE
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(b) Synthesized unseen class features from LsrGan

Figure 10: TSNE plots using DNA as side information during model training on CUB data
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