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Abstract

There have been many recent advances on provably efficient Reinforcement
Learning (RL) in problems with rich observation spaces. However, all these works
share a strong realizability assumption about the optimal value function of the true
MDP. Such realizability assumptions are often too strong to hold in practice. In
this work, we consider the more realistic setting of agnostic RL with rich ob-
servation spaces and a fixed class of policies Π that may not contain any near-
optimal policy. We provide an algorithm for this setting whose error is bounded
in terms of the rank d of the underlying MDP. Specifically, our algorithm enjoys a
sample complexity bound of Õ

(
(H4dK3d log |Π|)/ε2

)
where H is the length of

episodes, K is the number of actions and ε > 0 is the desired sub-optimality. We
also provide a nearly matching lower bound for this agnostic setting that shows
that the exponential dependence on rank is unavoidable, without further assump-
tions.

1 Introduction

Reinforcement Learning (RL) has achieved several remarkable empirical successes in the last
decade, which include playing Atari 2600 video games at superhuman levels [Mnih et al., 2015],
AlphaGo or AlphaGo Zero surpassing champions in Go [Silver et al., 2018], AlphaStar’s victory
over top-ranked professional players in StarCraft [Vinyals et al., 2019], or practical self-driving
cars. These applications all correspond to the setting of rich observations, where the state space is
very large and where observations may be images, text or audio data. In contrast, most provably
efficient RL algorithms are still limited to the classical tabular setting where the state space is small
[Kearns and Singh, 2002, Brafman and Tennenholtz, 2002, Azar et al., 2017, Dann et al., 2019] and
do not scale to the rich observation setting.

To derive guarantees for large state spaces, much of the existing work in RL theory relies on a
realizability and a low-rank assumption [Krishnamurthy et al., 2016, Jiang et al., 2017, Dann et al.,
2018, Du et al., 2019a, Misra et al., 2020, Agarwal et al., 2020a]. Different notions of rank have been
adopted in the literature, including that of a low-rank transition matrix [Jin and Luo, 2019], a low
Bellman rank [Jiang et al., 2017], Wittness rank [Sun et al., 2019], Eluder dimension [Osband and
Van Roy, 2014], Bellman-Eluder dimension [Jin et al., 2021], or bilinear classes [Du et al., 2021].
These studies also show that learning without any such structural assumptions requires a sample size
that grows exponentially in the time horizon of the MDP [Dann and Brunskill, 2015, Krishnamurthy
et al., 2016, Du et al., 2019b]. The choice of the most suitable and most general notion of rank is
the topic of much active research in RL theory.
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In comparison, the realizability assumption has received much less attention. This is the strong
premise that the optimal value function belongs to the class of functions considered, which typically
does not hold in practice. In many applications, the optimal value function Q? is highly complex
and we cannot hope to accurately approximate it in the absence of some strong domain knowledge.
Can we relax the realizability assumption in RL?

Value-function realizability can be viewed as the analogue of the PAC-realizability assumption in
classical statistical learning theory. That assumption rarely holds, which has motivated the de-
velopment and analysis of numerous algorithms for the agnostic PAC learnability model. Those
algorithms provably learn to predict as well as the best predictor in the given function class, in-
dependently of whether the Bayes predictor belongs to the class. The counterparts of such results
in reinforcement learning are mostly unavailable, which prompts the following question: Can we
derive a theory of agnostic reinforcement learning?

Here, we precisely initiate that study. In this agnostic setting, we adopt common structural assump-
tions, e.g. small rank of the transition matrix, but seek to learn to perform as well as the best policy
in the given policy class, independently of how close this class represents the Bellman-optimal pol-
icy. Specifically, we study agnostic Reinforcement Learning (RL) with a fixed policy class Π in
the episodic MDPs with rich observations. Provably sample-efficient algorithms for agnostic RL
would be highly desirable but it is still unknown to what degree learning is possible in this setting.
Our work provides new insights about learnability with structural assumptions in the absence of
(approximate) realizability in RL.

Agnostic RL without any additional structural assumptions has been considered in the past. By
evaluating each policy in the class individually, one can easily obtain a sample complexity upper
bound of O(|Π|/ε2). Kearns et al. [2000] also showed that an upper bound of (KH log |Π|)/ε2 is
possible, where K is the number of actions and H is the time horizon. However, as discussed in
prior work such as [Krishnamurthy et al., 2016], bounds of this form are rather unsatisfactory as one
of them admits a linear dependence on the size of the function class, which is prohibitively large, and
the other one admits an exponential dependence on the length of the episodes H , which is typically
long. Using existing constructions, one can derive a lower bound on the sample complexity of the
form min{|Π|,KH}/ε2 in the rich observation setting. This further justifies our adoption of rank as
a natural structural assumption.

Our Contributions: The following highlights our main technical contributions, where d is the
rank of the state transition matrix induced by any policy in the class Π, and is assumed to be small.

• We provide a uniform exploration-based algorithm that can find an ε-sub-optimal policy w.r.t.
the policy class Π after collecting O((HK/d)4d log(d|Π|)/ε2) samples in the MDP. This
bound shows that one can achieve a sample complexity that is polynomial in both H and
log |Π|, while being exponential in rank d only (which we assume is small).
In addition to the sample complexity bound obtained here, the algorithmic techniques itself
might be of independent interest and useful beyond this work. The algorithm is based on
showing that for every policy, the expected rewards follows an autoregressive model of degree
d. Thus obtaining samples of O(d)-length paths for a policy we show that one can extrapolate
expected rewards for the entire episode.

• We complement this upper bound with a sample complexity lower bound of Ω
(
(H/d)

d/2
/ε2
)

(when K = 2), thereby showing that the HO(d) term in the upper bound is unavoidable. The
lower bound also highlights which structures in the policy class induce the HO(d) terms thus
shedding light on what structural assumptions could help alleviate the exponential dependence
on the rank.

• Finally, we seek to improve upon the Hd term and provide an adaptive algorithm that admits
a sample complexity that depends on the eigenspectrum of the transition matrix of the MDP;
while in the worst case that bound matches the above one, it provides a significantly better
guarantee when the eigenspectrum is more favorable.

However, we view the main benefit of our work to be the initiation of the study of agnostic rein-
forcement learning and the presentation of an in-depth analysis of a natural structural assumption
within that setting. This can form the basis for future research in this domain with alternative and
perhaps more favorable rank-type assumptions.
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2 Problem Setup

We consider an episodic Markov decision process with episode length H ∈ N, observation space
X and action space A := {1, . . . ,K}. For ease of exposition, we assume that the observa-
tion space X is finite (albeit extremely large), but our results can be readily extended to count-
ably infinite and possibly uncountably infinite observation spaces. Each episode is a sequence
((x1, a1, r1), (x2, a2, r2), . . . , (xH , aH , rH)) ∈ (X ×A× R)H , where the initial observation x0 is
drawn from the initial distribution µ0 ∈ ∆(X ), the actions are generated by the learning agent and
all the following observations are sampled from the transition kernel xh+1 ∼ T (·|xh, ah) ∈ ∆(X )
that depends on the previous observation and action. Finally, the rewards rh are drawn from a sub-
Gaussian distribution with mean r(xh, ah) where r : X × A 7→ [0, 1]. The learning agent does not
know the transition kernel T , the initial distribution µ0, or the reward function r.

In our setting, the agent is given a policy class Π ⊆ {X 7→ ∆(A)} consisting of policies that map
observations to distributions over the actions A. For any policy π ∈ Π, we denote by Tπ ∈ RX×X ,
the transition matrix induced by π, i.e., for any x, x′ ∈ X ,

[Tπ](x′,x) = Ea∼π(x) T (x′ | x, a).

Assumption 1 (Low-rank transition). There exists d ∈ N such that rank(Tπ) ≤ d for all π ∈ Π.

For the main part of the paper, we assume that the learner knows the value of d, but later extend
our results to the case where d is unknown. We define λπ = (λπ1 , . . . , λ

π
d )> ∈ Cd to denote the

eigenvalues of the transition matrix Tπ with rank at most d. Without any loss of generality, assume
that |λπ1 | ≥ |λπ2 | ≥ . . . ≥ |λπd |.
We denote by Pπ the distribution over episodes when following policy π and by Eπ its expectation.
We call the expected rewards obtained at time h by policy π expected policy rewards:

Rπh := Eπ[r(xh, ah)]. (1)

The value function of π at time h is given by V πh (x) = Eπ
[∑H

h′=h r(xh′ , ah′) | xh′ = x
]
. Further,

when using V π without a time index and arguments, we mean the value or expected H-step return:

V π := E[V π0 (x0)] = Eπ
[ H∑
h=1

r(xh, ah)
]

=

H∑
h=1

Rπh, (2)

the value function averaged over initial observations.

Learning objective. The goal of the learner is to return a policy π̃, after interacting with the MDP
for n episodes of length H , such that the value of the returned policy is as close as possible to the
value of the best policy in Π, that is,

V π̃ ≥ max
π∈Π

V π − ε,

where the error ε is a small as possible and may depend on n, the policy class Π and the MDP.

3 Related work

We give a brief overview of the most closely related works here, and defer a more detailed discussion
to Appendix A.

Recently there has been great interest in designing RL algorithms with general function approxima-
tion [Jiang et al., 2017, Dann et al., 2018, Sun et al., 2019, Du et al., 2019a, Wang et al., 2020, Du
et al., 2021]. In particular, Jiang et al. [2017] introduced the notion of Bellman rank, a measure of
complexity that depends on the underlying environment and the value function class F , and provide
statistically efficient algorithms for learning problems for which Bellman rank is bounded. This was
later extended to model-based algorithms by Sun et al. [2019]. While these algorithms work across
a variety of problem settings, their sample complexity scales with log(|F|). Furthermore, these al-
gorithms also require the optimal value function f∗ to be realized in F . In our work, we do not

3



assume that the learner has access to a value function class F . In fact, given a value function class
F , we can construct the policy class ΠF that corresponds to greedy policies induced by the class F .
However, given just a policy class Π, one cannot construct a value function class, without additional
knowledge of the underlying dynamics.

Our Assumption 1 implies that for any policy π ∈ Π, the transition dynamics exhibits a low-rank
decomposition with dimension d, that is Tπ(x′|x) = 〈φπ(x), ψπ(x′)〉, for some d-dimensional
feature maps φπ, ψπ : X 7→ Rd. Low rank MDPs and linear transition models have recently gained
a lot of attention in the RL literature [Yang and Wang, 2020, Jin et al., 2020, Modi et al., 2020, Wang
et al., 2021a]. The works most closely related to our setup are those of Jin et al. [2020] and Yang and
Wang [2020], who give algorithms to find an optimal policy in low rank MDPs with known feature
maps φ. Similarly, the other algorithms also assume that the learner either observes the feature φ(x),
or the feature ψ(x). Agarwal et al. [2020a] and Modi et al. [2021] learn under weaker assumptions
and only assume that the learner has access to a function class that realizes φ. However, in our
setup, the learner neither observes the features φπ, ψπ nor has access to a realizable function class
for them, and thus these methods are not applicable.

Several of the works mentioned above recognize the issue of a strict realizability assumption and
provide results only when the function class contains a good approximation to the optimal value
function of model. However, the goal in our agnostic setting is more ambitious. We would like to
find a policy that can compete with the best policy in the given class Π, independent of how close
the best return in the class maxπ∈Π V

π is to the return of the optimal policy V π
?

for that MDP.

There have also been several approaches for provably efficient RL with non-parametric function
classes [Yang et al., 2020, Long et al., 2021, Shah et al., 2020]. However, these approaches still
aim to learn the optimal value function and their regret necessarily scales with the complexity of
the optimal value function in the RKHS which can be very high. Instead, in our agnostic setting
we would like to be able to quickly identify the best policy from the given policy class with low
complexity containing a good but not necessarily optimal policy. Finally, there are a few prior
works in agnostic RL that directly compete against a policy class [Abbasi-Yadkori et al., 2013, Azar
et al., 2013]. However, they either make strong assumptions on the feedback model, e.g. Abbasi-
Yadkori et al. [2013] assumes that the the agent fully observed the current transition kernel and
reward instead of just a sample from it, or the provided bound [Azar et al., 2013] scales linearly with
the size of the policy class, instead of logarithmically.

4 Upper bound

In this section, we describe our main algorithm for finding a policy that is close to the best-in-
class in Π. This algorithm presented in Algorithm 1, is an instance of policy search with uniform
exploration. Specifically, we first collect a dataset D of n episodes by picking actions uniformly at
random and subsequently use those episodes to estimate the value of each policy in Π. The algorithm
then simply returns the policy π̃ with the highest estimated value.

Our main technical innovation is a new estimation procedure for policy values in Algorithm 2 that
leverages the low-rank structure of the transition matrix. A straightforward way to estimate the
policy value is to take the sum of the rewards on average across all episodes where all actions are
consistent with the policy [Kearns et al., 2000]. Unfortunately, this rejection sampling approach
yields an error of Ω(

√
KH). Instead, our procedure only estimates the expected policy rewards

for the first 3d steps. Specifically, when invoked with a given policy π, ValEstimate estimates the
expected rewards for that policy by considering the subset of trajectories in D where π agrees with
the chosen action till the first 3d steps, and by averaging the observed rewards in those trajectories.
ValEstimate then predicts the future expected rewards for that policy by extrapolating these 3d esti-
mated expected rewards. The prediction is computed by recognizing that the expected rewards for
any policy π satisfy an autoregressive relation of order d as shown in Lemma 1.

In order to find the coefficients of this autoregression, ValEstimate computes λ̂ ∈ Cd by solving the
optimization problem (4), where the coefficient αk(λ) are the sum of degree k monomials:

αk(λ) =
∑

x∈{0,1}d s.t. ‖x‖1=k

λx1
1 λx2

2 . . . λxdd . (3)
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After estimating λ̂, ValEstimate then predicts the expected rewards for all future time steps for the
policy π by unfolding the autoregression model whose coefficients are given by αk(λ̂). The estimate
for the value of the given policy π, denoted by Ṽ π , is then computed as the sum of the predicted
expected rewards for H steps.

Finally, Algorithm 1 returns the policy π̃ whose estimated value function is highest amongst all
the policies in Π. The following theorem characterizes the performance guarantee for the policy π̃
returned by our algorithm.

Algorithm 1 Policy search algorithm
Input: horizon H , rank d, number of episodes n, finite policy class Π

1: Collect the dataset D = {(xth, ath, rth)Hh=1}nt=1 of n trajectories by drawing actions from
Uniform(A).

2: for policy π ∈ Π do
3: Estimate Ṽ π by calling ValEstimate(H, d,D, π).
4: Return: policy π̃ with best estimated value, i.e. π̃ ∈ argmaxπ∈Π Ṽ

π .

Algorithm 2 Value estimation by autoregressive extrapolation
1: function VALESTIMATE(H, d,D, π):
2: for time step h = 1, . . . , 3d do
3: Estimate expected rewards by importance sampling

R̂h =
1

n

n∑
t=1

rth
∏
h′≤h

(
K1
{
π(xth′) = ath′

})
4: Estimate eigenvalues of the autoregression by solving the optimization problem:

(λ̂, ∆̂)← argmin
λ∈Cd,∆∈R

∆ s.t. |λk| ≤ 1 for k = 1, . . . , d (4)

and
∣∣∣ d∑
k=1

(−1)k+1αk(λ)R̂h−k − R̂h
∣∣∣ ≤ ∆ for h = d+ 1, . . . , 3d

5: Predict R̃h as:

R̃h =

{
R̂h for 1 ≤ h ≤ d∑d
k=1(−1)k+1αk(λ̂)R̃h−k for d+ 1 ≤ h ≤ H

. (5)

6: return: Estimate of the value Ṽ =
∑H
h=1 R̃h.

Theorem 1 (Main Theorem). For a given δ ∈ (0, 1), d-rank MDP, horizon H ≥ d and a finite
policy class Π, after collecting n episodes, Algorithm 1 returns a policy π̃ that with probability at
least 1− δ admits the following guarantee:

V π̃ ≥ max
π∈Π

V π −O
(
d3 ·

(H
d

)2d
√
K3d log(6Πd/δ)

n

)
.

Theorem 1 implies that Algorithm 1 can find an ε-optimal policy with probability 1 − δ as long as
the number of samples n satisfies

n = Ω
((H

d

)4dK3d log(6d|Π|/δ)
ε2

)
.

The key idea used in ValEstimate, is that for any policy π for which rank(Tπ) ≤ d, the expected
rewards satisfy an auto-regression of order d. The following lemma formalize this idea.
Lemma 1 (Autoregression on expected rewards). Let π be any policy for which the transition matrix
Tπ has rank at most d. Then, for any time step h ≥ d+ 1, the expected reward for policy π at time
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step h, denoted by Rπh , satisfies the auto-regression

Rπh =

d∑
k=1

(−1)k+1αk(λπ)Rπh−k, (6)

where λπ ∈ Cd denotes the set of eigenvalues of the matrix Tπ , and αk(λπ) is as defined in (3).

We defer the proof of Lemma 1 to Appendix C.1. The proof uses the fact that for any policy
π ∈ Π, the distribution over observations at time step h is given by µπh = (Tπ)hµ0, where µ0

denotes the distribution over the observation space at initialization. If rank(Tπ) ≤ d, an applica-
tion of the Cayley-Hamilton theorem implies that we can write (Tπ)h as a linear combination of
((Tπ)h−1, . . . , (Tπ)h−d). This implies that µπh, and thus the expected rewards Rπh , satisfy an auto-
regression of order d. While the expected rewards Rπh satisfy an auto-regression for every policy
π, note that we cannot hope for a similar relation between the instantaneous rewards rh(sπh, π(sh))
observed when taking actions according to π.

The following result shows that we can simultaneously estimate the expected rewards for the first
3d steps for every policy π ∈ Π. Let D be a dataset of n episodes in the MDP collected by drawing
actions uniformly at random from A. Then, for any policy π, there are approximately n/K3d

episodes in D where the actions taken during the first 3d time steps matches the predictions of
π on those observations. We compute R̂πh as the empirical average of the hth step reward in the
corresponding n/K3d episodes that match with π for the first 3d steps.

Lemma 2 (Importance sampling). For any δ ∈ (0, 1), with probability at least 1− δ, for any policy
π ∈ Π and time step h ∈ [3d], the estimates R̂πh computed using importance sampling satisfy the
error bound

|R̂πh −Rπh| ≤
√

2K3d log(6d|Π|/δ)
n

+
2K3d log(6d|Π|/δ)

n
.

For a given policy π, if we had access to the expected rewards {Rπ1 , . . . , Rπd}, we could have
solved for the coefficients αk(λ) exactly. However, we only have access to the empirical estimates
{R̂1, . . . , R̂d} of the expected rewards, and thus we compute the coefficients αk(λ̂) by solving the
optimization problem in (4). We predict the future expected rewards by extrapolating using αk(λ̂).
The following lemma bounds the error propagated due to this mismatch in our estimation.

Lemma 3 (Error propagation bound). Let λ, λ̂ ∈ Cd be such that max{|λ1|, |λ̂1|} ≤ 1. Further,
with the initial values R1, . . . , Rd and R̃1, . . . , R̃d, let the sequence {Rh} and {R̃h} be given by

Rh =

d∑
k=1

(−1)k+1αk(λ)Rh−k and R̃h =

d∑
k=1

(−1)k+1αk(λ̂)R̃h−k,

where the coefficients αk(λ) and αk(λ̂) are define as in (3). Then, for all h ≥ 3d+ 1,

|R̃h −Rh| ≤ 2d ·
(16eh

d

)2d

· max
h′≤3d

|Rh′ − R̃h′ |.

We defer the proof of Lemma 3 to Appendix C.3. The proof of Theorem 1 follows from com-
bining the above three technical results. Lemma 1 suggests that for any policy π ∈ Π for which
rank(Tπ) ≤ d, the expected per step rewards satisfy an auto-regression of order at most d. The
error propagation bound in Lemma 3 and the bound on the estimation of the expected rewards for
the first 3d steps given in Lemma 3 implies that, for every policy π ∈ Π, the estimated value Ṽ π
is close to the true value V π . Specifically, the estimation error in the value of every policy in π is
bounded by Õ((H/d)2d

√
K3d log(|Π|)/n). Thus, when n = Õ((H/d)4dK3d/ε2), we have that

|Ṽ π − V π| ≤ ε for every policy π ∈ Π simultaneously. This implies that the returned policy , that
maximize the estimated value Ṽ π , is 2ε sub-optimal w.r.t. the best policy in Π. We defer full details
of the proof of Theorem 1 to Appendix C.5.
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Figure 1: Latent state construction: contextual combination lock. As long as the agent follows
actions of π∗(blue arrows), the agent remains in good states (i, g) and receives a Bernoulli(1/2 + ε)
reward but otherwise transits to bad states (i, b) and receives a Bernoulli(1/2) reward.

5 Lower Bound

After presenting an algorithm with sample-complexity bound of Õ((H/d)2dK3d/ε2), we now show
through a lower-bound that the dependency on H and d cannot be improved significantly:

Theorem 2 (Lower bound). Let ε ∈ (0, 1/26), δ ∈ (0, 1/2), d ≥ 4, K = 2 and H ≥ 219d.
There exists a policy class of size (H/d)d and a family of MDPs with rank at most Θ(d), finite
observation space, horizon H and two actions such that the optimal policy for each MDP in the
family is contained in the policy class and the following holds: Any algorithm that returns an ε-
optimal policy, with probability at least 1− δ, for every MDP in this family has to collect at least

Ω
( 1

Hε2

( H

41d

)d/2
log
( 1

2δ

))
.

episodes in expectation in some MDP in this family.

The above lower bound shows that an exponential dependency on d in the form of (H/d)d is un-
avoidable, even when a realizable policy class with π∗ ∈ Π and moderate size log |Π| = d log(H/d)
is given to the learner. We now provide a brief description of the problem class used in the proof of
our lower bound but defer details of our construction and the proof to Appendix E.

The Markov decision processes in the proof of our lower bound bear some similarity to the so-called
combination lock constructions used in prior works [Krishnamurthy et al., 2016, Du et al., 2019b],
where the algorithm only receives positive feedback after playing a certain sequence of actions.
Modelling a combination lock typically requires KH states in MDPs and Θ(H) latent states in
POMDP. In contrast, our contextual version of a combination lock uses a low-rank MDP with very
large observation space but where the transition dynamics are governed by Θ(d)� H hidden states
(and thus the rank is Θ(d)). The latent state structure is shown in Figure 1. The agent starts at the top
left latent state and always progresses with probability p = d/H to the right. As long as it chooses
good actions (blue edges), it progresses in the top chain where it will eventually reach state (d, g)
with constant probability and receive a reward of 1 with probability 1/2 + ε. If at any time before
reaching state (d, g), it chooses a bad action (red edges), then it moves to the lower chain where it
eventually has a 1/2 chance of receiving a reward of 1.

If the latent states s ∈ S were directly observable, an ε-optimal policy could be learned with
O(dH/ε2) samples. However, in the latent state s, the agent only receives an observation drawn
uniformly from a large set Xs. The sets {Xs}s∈S form a partition of the entire observation space X
and there is a mapping φ : X 7→ S that identifies the latent state for each observation. Each MDP
Mπ∗,φ in our problem class is parameterized by the mapping φ and a policy π∗ ∈ Π. The class
of policies Π can be arbitrary as long as each pair of policies differ on at least a constant fraction
of X . In MDP Mπ∗,φ, only the action π∗(x) is a good action (blue action) and allows the agent to
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stay in the top latent state chain. Thus, finding the Θ(ε)-best policy in Π for Mπ∗,φ is equivalent to
identifying π∗.

Importantly, our problem class contains MDP Mπ∗,φ for every possible π∗ ∈ Π and latent state
mapping φ. We pick the number of observations large enough so that observations become uninfor-
mative and it is virtually impossible for a learner to learn φ. Instead it can only hope to learn π∗ by
identifying the bias ε in the rewards. We can show that this requires number of samples that are not
much smaller than collecting Θ(1/ε2 ln(1/δ)) episodes with each of the (H/d)

d policies in Π.

While the lower bound in Theorem 2 does not have a dependence on log(|Π|). The simple observa-
tion that the contextual bandit problem can be seen as an instance of our setup where d = 1, implies
that some dependence on log(|Π|) is necessary based on standard contextual bandit lower bounds
[Lattimore and Szepesvári, 2020]. However, getting a lower bound of the form Ω(Hd log(|Π|)) is an
interesting question, which we leave open for future work. Finally, while the provided lower bound
is constructed using an MDP with two actions, it can easily be extended to incorporate multiple
actions, and when the learner has access to a generative model.

6 Adaptive algorithms

In Section 4, the algorithm introduced benefits from the guarantee provided by Theorem 1, which is
near optimal in the worst case as the lower bound construction shows. However, in cases where the
transition matrix induced by the policy class all have nicer eigenspectra, one could expect to have an
improved sample complexity. Ideally, the algorithm should automatically adapt to more favorable
eigenspectra. This is precisely what we describe in this section. We give an adaptive algorithm
whose sample complexity improves when the eigenspectrum of transition matrices induced by the
policy class admits a more favorable property.

6.1 Adaptivitity to the eigenspectrum

Our adaptive algorithm, presented in Algorithm 3 in Appendix D.3, is a policy search algorithm
similar to Algorithm 1 where, instead of invoking the procedure ValEstimate, we compute the value
function for every policy π by invoking the procedure AdaValEstimate given in Appendix D.3.

AdaValEstimate follows along the lines of ValEstimate. When invoked for a policy π, it first esti-
mates the expected rewards for the first 3d time steps. Then, AdaValEstimate computes the auto-
regression coefficients αk(λ̂), and uses them to predict the expected rewards for all future time
steps by extrapolating. The major difference between ValEstimate and AdaValEstimate is the way
the coefficients αk(λ̂) are computed. Specifically, using ∆ := 2d4d

√
(8K3d log(6d|Π|)/δ)/n, the

procedure AdaValEstimate computes the coefficients λ̂ by solving the optimization problem

λ̂← argmin
λ∈Cd

d∏
k=2

(H−1∑
h=0

|λk|h
)

s.t. λ1 = 1, |λk| ≤ 1 for 2 ≤ k ≤ d,

and
∣∣∣ d∑
k=1

(−1)k+1αk(λ)R̂h−k − R̂h
∣∣∣ ≤ ∆ for d+ 1 ≤ h ≤ 3d.

The above modification to the computation of λ̂ allows our error propagation bound to adapt to
λ, which defines the coefficients of autoregression for the expected rewards in policy π (given in
Lemma 1). The propagated error would be small if the coordinates of λ are bounded away from 1.
The policy π̃, returned by Algorithm 3, thus enjoys the following adaptive performance guarantee.

Theorem 3 (Adaptive upper bound). For a given δ ∈ (0, 1), d-rank MDP, horizon H and a finite
policy class Π, after collecting n episodes, Algorithm 3 returns a policy π̃ that with probability at
least 1− δ admits the following guarantee:

V π̃ ≥ max
π∈Π

V π −O
(
dH2(16e)2d ·max

π′∈Π

d∏
k=2

(H−1∑
j=0

|λπ
′

k |j
)2
√
K3d log(6Πd/δ)

n

)
,
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Proof of Theorem 3 follows along the lines of the proof of Theorem 1 where we replace the error
propagation bound (in Lemma 3) by a similar bound that adapts to the eigenspectrum of the transi-
tion matrix Tπ . We defer the proof details to appendix Appendix D.3. Note that for any |λk| ≤ 1

and thus
∑H−1
h=0 |λk|h ≤ H . Using this fact in Theorem 3 recovers the result of Theorem 1, albeit

upto a multiplicative factor of 22d. In the following, we provide an example of a low rank MDP
problem in which the adaptive bound above could be much better than the worst case upper bound
in Theorem 1.
Corollary 1 (Well mixing MDP). Given δ ∈ (0, 1), horizon H and a finite policy class Π. Let
M be a d-rank MDP such that the second largest eigenvalue of the transition matrix Tπ satisfies
|λπ2 | ≤ 1 − γ for every policy π ∈ Π. Then, after collecting n episodes, our adaptive algorithm
returns a policy π̃ that with probability at least 1− δ admits the following guarantee:

V π̃ ≥ max
π∈Π

V π − Õ
((K

γ

)2d 1√
n

)
,

where the Õ hides polynomial factors of d,H, log(1/δ) and multiplicative constants.

We next show through a lower bound that the adaptive upper bound in Theorem 3 cannot be im-
proved further. We defer the proof details to Appendix E.3.
Theorem 4 (Adaptive lower bound). Let ε ∈ (0, 1/16), δ ∈ (0, 1/2), d ≥ 4 and (λi)i∈[d] ∈ [0, 1]d

satisfy

d2d .
d∏
i=1

1

1− λi
. exp(H) and

d∑
i=1

1

1− λi
≤ H

4 ln(4d)
.

Then, there is a realizable policy class and a family of MDPs with rank at most Θ(d), finite obser-
vation space, horizon H and two actions such that: For each i ∈ [d], policy π and MDP M in this
class, there is an eigenvalue of the induced transition matrix TπM in [λi/2, λi]. Furthermore, any
algorithm that returns, with probability at least 1−δ an ε-optimal policy for any MDP in this family,
has to collect at least

Ω
( 1

ε2dd

√√√√ d∏
i=1

1

1− λi
log(1/2δ)

)
episodes in expectation in some MDP in this family.

Adaptivity to rank. In Appendix D.4, we also provide an adaptive algorithm that can find the best
policy in the class Π without knowing the value of the rank parameter d∗. Our adaptive algorithm,
given in Algorithm 5, follows from standard techniques in the model selection literature. For every
d ∈ [H], we compute an optimal policy π̃d assuming that the rank d∗ = d. Then, for each d ∈ [H],
we estimate the value function for the policy π̃d by drawing n/2H fresh trajectories using that
policy. Finally, we return the policy π̃ from the set {π̃d}d∈[H] with the highest estimated value. The
returned policy π̃ satisfies, with probability at least 1− δ,

V π̃ ≥ max
π∈Π

V π − Õ
((H

d∗

)2d∗
√

(8K)3d∗ log(|Π|/δ)
n

)
.

We defer full details of the analysis to the Appendix.

7 Conclusion

We presented a new analysis of reinforcement learning with rich observations in the agnostic setting,
under the low rank MDP assumption. We gave both a non-adaptive and an adaptive algorithm for
learning a quasi-optimal policy in this scenario, which we showed to benefit from guarantees that
are only polynomial in the horizon and the number of actions, and only logarithmic in the size of the
policy class considered. While our bound is exponential in the MDP rank, we give nearly matching
lower bounds proving that that dependency is unavoidable. The agnostic setting is a more realistic
setting that has received less attention in the literature. We view this work as initiating the study
of this general setting under workable assumptions and believe that many other algorithmic and
theoretical aspects of such scenarios need to be studied further.
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Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, pages 3692–3702. PMLR, 2019.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. arXiv
preprint arXiv:1906.01786, 2019.

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced)
policy gradient and natural policy gradient methods. Advances in Neural Information Processing
Systems, 33, 2020.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed explo-
ration for provable policy gradient learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 13399–13412. Curran Associates, Inc., 2020b.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-
horizon off-policy estimation. arXiv preprint arXiv:1810.12429, 2018.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. arXiv preprint arXiv:1906.04733, 2019.

Ruosong Wang, Dean Foster, and Sham M. Kakade. What are the statistical limits of offline {rl}
with linear function approximation? In International Conference on Learning Representations,
2021b.

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be expo-
nentially harder than online rl. arXiv preprint arXiv:2012.08005, 2020.

Gellert Weisz, Philip Amortila, and Csaba Szepesvári. Exponential lower bounds for planning in
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A Detailed comparison to prior work

Provably sample-efficient learning algorithms have been well studied in the classical tabular RL
literature [Kearns and Singh, 2002, Brafman and Tennenholtz, 2002]. However, the number of
samples required by these algorithms to find the optimal policy π∗ scales with the size of the state
space |X | [Jaksch et al., 2010, Lattimore and Hutter, 2012], and thus these methods fail to scale to the
rich observation settings where |X | could be astronomically large. There have been significant recent
advances in developing efficient algorithms for such rich observation settings, albeit under additional
assumptions. The two main styles of assumptions considered in the literature to make learning
tractable are: (a) the learner has access to a value function class F that realizes the optimal value
function f∗ for the underlying MDP, and (b) the underlying transition dynamics admits additional
structure such as low rank or linear decomposition, etc. We note that the goal of these works is to
find the optimal policy for the underlying MDP. In comparison, in our work, we assume access to a
policy class Π and our goal is to find a policy π̃ that could compete with the best policy in the class
Π. In the following, we compare our setup with the assumptions made in the prior work.

RL with general value function approximation. Recently there has been great interest in de-
signing RL algorithms with general function approximation [Jiang et al., 2017, Dann et al., 2018,
Sun et al., 2019, Du et al., 2019a, Wang et al., 2020]. In particular, Jiang et al. [2017] introduced
the notion of Bellman rank, a measure of complexity that depends on the underlying environment
and the value function class F , and provide statistically efficient algorithms for learning problem for
which Bellman rank is bounded. This was later extended to model-based algorithms by Sun et al.
[2019]. While these algorithms work across a variety of problem settings, their sample complexity
scales with log(|F|). Furthermore, these algorithms also require the optimal value function f∗ to be
realized in F . In our work, we do not assume that the learner has access to a value function class
F . In fact, given a value function class F , we can construct the policy class ΠF that corresponds to
greedy policies induced by the class F . However, given just a policy class Π, one can not construct
a value function class, without additional knowledge of the underlying dynamics.

Example 1. Let X = {0, 1, . . . , N}, A = {0, 1}, Π = {π0, π1} and H = 2. For every action
a ∈ A, we define the reward r(x, a) = 1 when x is even, and r(x, a) = 0 when x is odd. Further,
we assume that the transition dynamics T is parameterized by a vector p ∈ {0, 1}N such that for
any state x, if p(x) = 1, then the next state x′ is sampled uniformly at random from the set of
even numbers in X , independent of the chosen action. When p(x) = 0, we sample an odd number
uniformly at random for x′. Thus, in order to learn the optimal value function, the leaner needs to
recover the value of the vector p on at least O(N) states. From standard packing arguments, we get
that in N dimensions there are at least 2O(N) vectors that are O(N) apart. Thus, any appropriate
value function class F that contains p must have size at least 2O(N).

Linear MDP assumption. Our Assumption 1 implies that for any policy π ∈ Π, the transition dy-
namics exhibits a low-rank decomposition with dimension d, that is Tπ(x′|x) = 〈φπ(x), ψπ(x′)〉,,
for some d-dimensional feature maps φπ, ψπ : X 7→ Rd. Low rank MDPs and linear transition
models have recently gained a lot of attention in the RL literature [Yang and Wang, 2020, Jin et al.,
2020, Modi et al., 2020, Wang et al., 2021a]. The works most closely related to our setup are those
of Jin et al. [2020] and Yang and Wang [2020], who give algorithms to find optimal policy in low
rank MDPs with known feature maps φ. Similarly, the other algorithms also assume that the learner
either observes the feature φ(x), or the feature ψ(x). However, in our setup, the learner neither
observes the features φπ nor the features ψπ , thus restricting application of these algorithms to our
setting.

A new line of work, initiated by Agarwal et al. [2020a], focuses on the representation learning
question in the above setting. They assume that the feature functions φ and ψ, although not known
to the learner, are realized in the given classes Φ and Ψ respectively. In order to find the optimal
policy, their algorithm first identifies the underlying feature functions φ∗ and ψ∗, and thus, their
sample complexity guarantees scale with log(|Φ||Ψ|). Later, Modi et al. [2021] show that a similar
approach also works when the learner has only access to a Φ but not Ψ. In comparison, we do not
assume knowledge of either classes Φ or Ψ, and instead work with a policy class Π. In fact, the
following simple illustrative example shows that the feature function Φ could be arbitrarily complex
even when |Π| is small, and thus we can not hope to learn the feature function from samples.
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Example 2. Let X = [N ], A = {0, 1}. We define the feature function ψ(x) ∈ R2 such that
(1/2N, 0)> if x is even and (0, 1/2N)> if x is odd. Further, for λ ≥ 0, define the feature function
φλ(x) ∈ R2 such that φλ(x) = (1, 0)> if sin(x/λ) ≥ 0, and φλ(x) = (0, 1)> otherwise. In this
MDP, the next state x′ is either sampled uniformly at random from the set of even numbers in X or
sampled uniformly at random from the set of odd numbers inX , depending on the value of sin(x/λ).

Note that the mapping x 7→ sin(x/λ) could be arbitrarily complex when λ is small. In fact, the
function class Φ = {λ | x 7→ sin(x/λ)} has infinite VC dimension. Thus, one cannot hope to learn
the feature function φλ from samples.

It is worth noting that in the above example, FLAMBE [Agarwal et al., 2020a], MOFFLE [Modi
et al., 2021], or in fact any other approach that attempts to recover the feature function φ, as men-
tioned above will not succeed. Furthermore, when |Π| is large and the length of the episode H is
large, the previously known agnostic upper bounds of |Π|ε2 or 2H log(|Π|)

ε2 are also prohibitively large.

However, in the above example, our algorithm enjoys a sample complexity bound of H
4 log(|Π|)
ε2 .

Finally, note that in our setup, the decomposition of the induced transition kernel (into φπ and ψπ)
may be different for each policy π in the class Π. Furthermore, there may be policies outside of Π
that do not even exhibit such a low-rank decomposition. Thus, although our low rank assumption is
similar to those in linear or low-rank MDPs [Agarwal et al., 2020a], our model is more general.

Comparison to Block MDP model. Krishnamurthy et al. [2016] introduced the block MDP
model, where a small number of latent states S govern the transition dynamics, and the observa-
tions x ∈ X are generated depending on the current latent state s. In this model, there is a decoding
function g∗ that maps observations x back to the latent state s that generates x. Du et al. [2019a],
Misra et al. [2020] assume that the learner is given a realizable class of decoding functions G and
show that the true mapping g∗ ∈ G can be learnt efficiently, both computationally and statistically,
which can then be used to find the optimal policy. However, note that the transition matrix in a
Block MDPs with S latent states has rank at most |S|, and thus their model is captured by our As-
sumption 1. However, in our setup, we do not assume that the leaner has access to the class G. In
fact, Example 2 above shows that the latent state map g∗ (the mapping φλ(x) in that case) could be
arbitrarily complex even when Π is small, and thus we can not hope to learn g∗ from samples.

Policy gradient methods. Model free direct policy search algorithms that directly maximize the
value function have shown tremendous empirical success [Kakade, 2001, Kakade and Langford,
2002, Levine and Koltun, 2013, Schulman et al., 2015, 2017], and recently, have been analysed
from a theoretical perspective [Agarwal et al., 2019, Abbasi-Yadkori et al., 2019, Bhandari and
Russo, 2019, Liu et al., 2020, Agarwal et al., 2020b]. While these methods operate directly on a
policy class Π, as we do in our work, they require additional modelling assumptions in order to
succeed; foremost being that the policy class Π exhibits a differentiable paraeterization. Further
assumptions include that the policy class Π contains the optimal policy π∗, the policy class Π has a
good coverage over the state space [Agarwal et al., 2019], and that the underling MDP has a linear
factorization with known feature maps [Agarwal et al., 2020b]. We do not require these assumptions.

DICE/DualDICE algorithms. Recent works of Liu et al. [2018] and Nachum et al. [2019] pro-
vide estimators that do not suffer the curse of horizon, i.e. the factor of AH , in off-policy estimation
of expected policy rewards by applying importance sampling on average visitation distributions of
single steps of state-action pairs, instead of the much higher dimensional distribution of the whole
trajectories. However, their estimator requires access to a function class H that contains the impor-
tance weights of the average visitation distribution. We do not require access to such a class H in
our estimator of expected policy rewards.

POMDP with reactive policies. We will show in the following that our theory and algorithm ap-
plies to partially observable Markov decision processes (POMDPs), as long as policies are reactive,
that is, only take the current observation into account. Although existing works such as [Jiang et al.,
2017] show polynomial sample-complexity bounds for POMDPs with reactive policy classes, they
require the optimal policy to be reactive, which is not true in POMDPs in general. In contrast, we
can handle the important scenario where reactive policies can achieve good but not necessarily close
to optimal performance and we are interested in finding the best such policy.
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A POMDP consists of a MDP with finite state space S, action space A and horizon H where
observed rewards at each step are drawn from a distribution with mean r(sh, ah) that depends
on the current state sh and action ah. Similarly, the next state is drawn fron a transition kernel
P (sh+1|sh, ah). However, in a POMDP, the current state is not observable and the agent instead
receives an observation xh ∈ X . We consider the formulation where the observation is drawn from
a distribution O(xh|sh) that depends on the current latent state sh. Unlike in, e.g., Block MDP
models, xh does not need to be sufficient to decode sh and this model does not need to be an MDP
over the observation space X . As a consequence, the optimal actions do in general depend on all
previous observations. Nonetheless, reactive policies which are of the form X → A and only take
the current observation into account, often achieve good performance and are of particular interest
in practice due to their simplicity.

Since a POMDP may not be a MDP over observations, such models are formally outside of our
scope. However, as our technique never explicitly accesses observations except through the policy,
we can cast a POMDP problem as follows in our framework. For any policy π : X → A in our policy
class Π we define a stochastic policy π′ over latent states as π′(a|s) =

∑
x∈X 1{π(x) = a}O(x|s)

and denote the class of these policies by Π′ ⊆ S → ∆(A). Running our algorithms on a POMDP
with policy class Π is equivalent to running them on an MDP with direct access to latent states S
and policy class Π′. Since an MDP with finite state space S has rank at most |S|, our guarantees
apply to POMDPs with a reactive policy class and we can set d = |S|.

Exponential lower bounds for planning and offline RL. Several publications [Wang et al.,
2021b, Zanette, 2020, Weisz et al., 2021] recently provide exponential lower bounds for learning
the optimal policy with access to a realizable linear Q-function class F of dimension d in several
settings. Most related is Wang et al. [2021b], wo study offline RL where the agent has only access
to a dataset of transition samples and show even if the dataset has good coverage of the features of
F , a sample complexity that is exponential in d or H is unavoidable. In contrast, we allow the agent
to collect samples arbitrarily by interacting with the MDP and although our algorithms first collect
a dataset non-adaptively, the uniform action choices ensure good state coverage as opposed to just
feature coverage which avoids the existing lower bounds.
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B Cayley-Hamilton theorems

The following result holds for any matrix A with rank d.
Lemma 4 (Cayley-Hamilton Theorem for rank d matrices [Segercrantz, 1992]). Let A ∈ CN×N
be a matrix with rank at most d, where d ≤ N , and let λ = (λ1, . . . , λd) ∈ Cd denote the set of
eigenvalues of A. Then, A satisfies the relation

Ad+1 =

d∑
k=1

(−1)k+1αk(λ)Ad+1−k,

where the coefficient αk(λ) are given by the sum of degree k monomials:

αk(λ) =
∑

x∈{0,1}d s.t. ‖x‖1=k

λx1
1 λx2

2 . . . λxdd .

The proof of the above follows from the characteristic polynomial for rank d matrices, which allows
us to express d+ 1-th power for any matrix A in terms of the lower powers.

We will soon provide an extension of the above result which allows us to express the n-th power
of the matrix A in terms of the lower powers. Before doing so, we need to define some additional
notation.

B.1 Coefficients αm,k

For any m ≥ 0 and k ≥ 0, we first define the coefficients αm,k.

Definition 1. For any k ≥ 0 and λ = (λ1, . . . , λd) ∈ Cd, define αm,k(λ) to denote the quantity

αm,k(λ) :=
∑

y∈{0,...,m}d
1

{ d∑
j=1

1{yj > 0} = k and
d∑
j=1

yj = m
} d∏
j=1

λ
yj
j . (7)

whenever m ≥ k and αm,k = 0 when m ≤ k or k > d. Further, for the ease of notation, for any
k ∈ [d], we define αk(λ) to denote the quantity αk,k(λ).

The following lemma provides a useful technical relation between the coefficients αm,k defined
above.
Lemma 5. For anym ≥ 0, k ∈ [d] and λ ∈ Cd, the quantities (αm,k)k∈[d],m≥0 given in Definition 1
satisfy

m∧d∑
j=1

αm,j(λ) · αk,k(λ) =

(m+k)∧d∑
j′=k+1

(
j′

k

)
αm+k,j′(λ).

Proof. For the sake of the proof, we will be interpreting αm,j(λ) and αk,k(λ) as symmetric poly-
nomials with λ as the formal variables. The value of these quantities can be computed by plugging
in the value of λ1, . . . , λd for λ.

Thus, αm,j denotes a symmetric sum of monomials, where each monomial term has j variables
with sum of all the powers in that monomial being m. Similarly, αk,k denotes a symmetric sum
of monomials, where each monomial term has k variables each with the power of 1. Subsequently,
when we take the product αm,j ·αk,k, we will get monomial terms, where in each term the sum of all
the powers ism+k, but the total number of distinct variables can range from k+1 to min{j + k, d}.
Since, the polynomials αm,j and αk,k are symmetric in λ, the resultant polynomial that we will get
after taking their product will also be symmetric. Furthermore, each of the monomial terms with j′

distinct variables can be generated through
(
j′

k

)
different splits with k variables that go into αk,k(λ)

and the rest j′ − k variables that go into αm,j′−k(λ). Hence, the coefficient of αm+k,j′ would be
exactly

(
j′

k

)
. We formalize this in the following:

m∧d∑
j=1

αm,j(λ) · αk,k(λ)
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=

m∧d∑
j=1

(∑
y≥0

1

{ d∑
i=1

1{yi > 0} = j and
d∑
i=1

yi = m
} d∏
i=1

λyii ×

∑
y′≥0

1

{ d∑
i=1

1{y′i > 0} = k and
d∑
i=1

y′i = k
} d∏
i=1

λ
y′i
i

)

=

m∧d∑
j=1

∑
y,y′≥0

1

{ d∑
i=1

1{yi > 0} = j ∧
d∑
i=1

1{y′i > 0} = k ∧
d∑
i=1

yi = m ∧
d∑
i=1

y′i = k
} d∏
i=1

λ
yi+y

′
i

i

=

(m+k)∧d∑
j′=k+1

(
j′

k

) ∑
y,y′≥0

1

{ d∑
i=1

1{yi + y′i > 0} = j′ and
d∑
i=1

yi + y′i = m+ k
} d∏
i=1

λ
yi+y

′
i

i

=

(m+k)∧d∑
j′=k+1

(
j′

k

) ∑
y′′≥0

1

{ d∑
i=1

1{y′′i > 0} = j′ and
d∑
i=1

y′′i = m+ k
} d∏
i=1

λ
y′′i
i

=

(m+k)∧d∑
j′=k+1

(
j′

k

)
· αm+k,j′ ,

where y′′i := yi + y′i and the third equality in the above follows by rearranging the terms while
satisfying the constraints inside the indicator.

We next provide a bound on the value of αm,k as a function of m and k.

Lemma 6. For any d ≥ 1, m ≥ 0, k ≤ min{d,m} and λ ∈ Cd, that satisfies |λj | ≤ 1 for all
j ∈ [d], the quantities αm,k(λ) given in Definition 1 satisfy the bound

|αm,k(λ)| ≤
(4emax{m, d}

d

)d
.

Furthermore, for k = m ≤ d, we have that αk(λ) = αk,k(λ) ≤ 4d.

Proof. Starting from the definition of αm,k(λ), we note that

|αm,k(λ)| =
∣∣∣ ∑
y∈{0,...,m}d

1

{ d∑
j=1

1{yj > 0} = k and
d∑
j=1

yj = m
} d∏
j=1

λ
yj
j

∣∣∣
≤

∑
y∈{0,...,m}d

1

{ d∑
j=1

1{yj > 0} = k and
d∑
j=1

yj = m
}∣∣∣ d∏
j=1

λ
yj
j

∣∣∣
=

∑
y∈{0,...,m}d

1

{ d∑
j=1

1{yj > 0} = k and
d∑
j=1

yj = m
} d∏
j=1

∣∣λyjj ∣∣
≤

∑
y∈{0,...,m}d

1

{ d∑
j=1

1{yj > 0} = k and
d∑
j=1

yj = m
}
,

where the inequality in the second line follows from an application of Triangle inequality. The last
line holds because |λj | ≤ 1, and thus |

∏
λ
yj
j | ≤ 1 for any y. We note that the right hand side in the

above expression denotes the number of ways of distributing m balls into d bins such that exactly k
of them are non-empty. If m = k = 1, we get that |αm,k(λ)| ≤ 1. Otherwise, a simple counting
argument implies that

|αm,k(λ)| ≤
(
d

k

)(
m− 1

k − 1

)
≤ 2d ·

(
m− 1

k − 1

)
.

When m ≤ d or k = 1, we can simply upper bound the above as

|αm,k(λ)| ≤ 2d · 2m ≤ 4d.
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Next, when m > d and k ≥ 2, using the fact that
(
N
n

)
≤ (eN/n)

n for any 0 < n ≤ N , we get that

|αm,k(λ)| ≤ 2d ·
(
e(m− 1)

(k − 1)

)k
≤ 2d ·

(
2em

k

)k
≤ 2d ·

(
2em

d

)d
,

where the inequality in the second line above holds because (m − 1)/(k − 1) ≤ 2m/k for k ≥ 2,
and the inequality in the last line holds because the function (x/y)

y is an increasing function of y
when x ≥ ey.

Considering the above two bounds together implies that:

|αm,k(λ)| ≤
(4emax{m, d}

d

)d
.

B.2 Coefficients βm,k

We next define the coefficients βm,k which will be useful in our upper bound analysis.

Definition 2. For any d ≥ 1, λ ∈ Cd and m ≥ 0, define the vector βm(λ) ∈ Cd using the following
recursion:

(a) β0(λ) := (α1(λ), . . . , αd(λ))>, and,

(b) For m ≥ 1, define βm(λ) := (βm,1(λ), . . . , βm,d(λ))
> as

βm,k(λ) =

{
βm−1,1(λ) · αk(λ)− βm−1,k+1(λ) for 1 ≤ k ≤ d− 1

βm−1,d(λ) · αd(λ) for k = d
,

where αk(λ) is as defined in (7) , and β0,k denotes the k-th coordinate of the vector β0.

The next technical lemma provides a relation between the β and α values defined above.
Lemma 7. For any m ≥ 0 and k ∈ [d],

βm,k(λ) =

(m+k)∧d∑
j=k

(
j − 1

k − 1

)
αm+k,j(λ). (8)

Proof. We prove the desired relation via induction over m. For the base case, when m = 0, from
the definition of β0,k, we note that

β0,k = αk,k(λ) =

k∑
j=k

(
k − 1

k − 1

)
αk,j(λ).

Now, we proceed to the induction step. Assume that the relation (8) holds for all m′ < m. Thus, for
any k ∈ [d], from the definition of βm,k(λ), we have that

βm,k(λ) = βm−1,1(λ) · β0,k(λ)− βm−1,k+1(λ)

=
(m∧d∑
j=1

αm,j(λ)
)
· αk,k(λ)−

(m+k)∧d∑
j=k+1

(
j − 1

k

)
· αm+k,j(λ),

where the equality in the second line follows from using the relation (8) for time step m− 1. Using
the identity in Lemma 5 in the above, we get that

βm,k(λ) =

(m+k)∧d∑
j=k

(
j

k

)
· αm+k,j(λ)−

(m+k)∧d∑
j=k+1

(
j − 1

k

)
· αm+k,j(λ)
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=

(m+k)∧d∑
j=k

(
j − 1

k − 1

)
· αm+k,j(λ),

where the last line uses the relation
(
j
k

)
=
(
j−1
k−1

)
+
(
j−1
k

)
. This completes the induction step. Thus,

proving that the relation (8) holds for all m ≥ 0 and k ∈ [d].

We next provide a bound on the value of the coefficients βm,k as a function of m and k.

Lemma 8. For any d ≥ 1, m ≥ 0, k ≤ d and λ ∈ Cd, such that |λj | ≤ 1 for all j ∈ [d], the
quantities βm,k(λ) defined in Definition 2 satisfy the bound

|βm,k(λ)| ≤
(8emax{m+ k, d}

d

)d
.

Proof. As a consequence of Lemma 7, we have that for any m ≥ 0 and k ∈ [d],

βm,k(λ) =

(m+k)∧d∑
j=k

(
j − 1

k − 1

)
· αm+k,j(λ).

Thus, using Triangle inequality, we have that

|βm,k| =
∣∣∣(m+k)∧d∑

j=k

(
j − 1

k − 1

)
· αm+k,j(λ)

∣∣∣
≤

(m+k)∧d∑
j=k

(
j − 1

k − 1

)
· |αm+k,j(λ)|.

Plugging in the bound on |αm+k,j(λ)| from Lemma 6 in the above, we get that

|βm,k| ≤
d∑
j=k

(
j − 1

k − 1

)
·
(4emax{m+ k, d}

d

)d
(i)

≤
(
d

k

)
·
(4emax{m+ k, d}

d

)d
(ii)

≤
(8emax{m+ k, d}

d

)d
,

where the inequality in (i) is given by the fact that any N and n, we have
∑N
j=n

(
j
n

)
=
(
N+1
n+1

)
, and

the inequality in (ii) holds because for any k ≤ d,
(
d
k

)
≤ 2d.

B.3 Extension of the Cayley-Hamilton theorem

The following result is an extension of the Cayley-Hamilton theorem (Lemma 4) for rank dmatrices,
and relies on the coefficients βm,k defined above.

Lemma 9 (Cayley-Hamilton Theorem extension). Let A ∈ CN×N be a matrix with rank at most
d, where d ≤ N , and let λ = (λ1, . . . , λd) ∈ Cd denote the set of eigenvalues of A. Then, for any
m ≥ 0,

Ad+m+1 =

d∑
k=1

(−1)k+1βm,k(λ)Ad+1−k (9)

where the coefficients vector βm(λ) := (βm,1(λ), . . . , βm,k(λ)) are given in Definition 2.

Proof. We give a proof by induction over m. For the base case, when m = 0, Lemma 4 implies that

Ad+1 =

d∑
k=1

(−1)k+1αk(λ)Ad+1−k =

d∑
k=1

(−1)k+1β0,k(λ)Ad+1−k, (10)
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where the second equality follows form the definition of the vector β0(λ). We next prove the induc-
tion step.

Assume that the relation (9) holds for all m′ < m. We note that

Ad+1+m = AAd+1+(m−1)

(i)
= A

( d∑
k=1

(−1)k+1βm−1,k(λ) ·Ad+1−k
)

= βm−1,1(λ)Ad+1 +

n∑
k=2

(−1)k+1βm−1,k(λ) ·Ad+2−k

= βm−1,1(λ)Ad+1 +

n−1∑
k=1

(−1)kβm−1,k+1(λ) ·Ad+1−k.

where the equality in (i) following from using the relation (9) for time step m− 1. Plugging in the
expansion for Ad+1 from (10) in the above, we get that

Ad+1+m = βm−1,1(λ)
( d∑
k=1

(−1)k+1β0,k(λ) ·Ad+1−k
)

+

d−1∑
k=1

(−1)kβm−1,k+1(λ) ·Ad+1−k

=

d∑
k=1

(−1)k+1(βm−1,1(λ) · β0,k(λ)− βm−1,k+1(λ))Ad+1−k. (11)

where in the second line, we defined βm−1,d+1 = 0. We next note that for any k ∈ [d],

βm−1,1(λ) · β0,k(λ)− βm−1,k+1(λ) = βm−1,1(λ) · αk(λ)− βm−1,k+1(λ)

= βm,k(λ),

where the second line above follows from the definition of βm,k. Using this relation in (10), we get
that

Ad+1+m =

d∑
k=1

(−1)k+1βm,k(λ)Ad+1−k,

hence completing the induction step. Thus, the relation (9) holds for all m ≥ 0.

C Missing proofs from Section 4

C.1 Proof of Lemma 1

Lemma 1 (Autoregression on expected rewards). Let π be any policy for which the transition matrix
Tπ has rank at most d. Then, for any time step h ≥ d+ 1, the expected reward for policy π at time
step h, denoted by Rπh , satisfies the auto-regression

Rπh =

d∑
k=1

(−1)k+1αk(λπ)Rπh−k, (6)

where λπ ∈ Cd denotes the set of eigenvalues of the matrix Tπ , and αk(λπ) is as defined in (3).

Proof. For any time step h ≥ 1, let µπh denote the distribution over the observation space X at time
step h when starting from the initial distribution µ0 and taking actions according to the policy π.
Using the definition of the transition matrix Tπ , we note that

µπh = Tπµπh−1, (12)

where µπ0 is defined as µ0. Further, let νπ ∈ RX denotes the vector of expected rewards under policy
π on the observation space, i.e., for any observation x ∈ X ,

νπ(x) := Ea∼π(x)[r(s, a)].
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Thus, for any h ≤ H , the expected reward Rπh is given by the expression

Rπh = 〈νπ, µπh〉 = 〈νπ, (Tπ)d+1µπh−d−1〉, (13)

where the second equality follows from recursively using the relation (12). Using the Cayley-
Hamilton theorem (Lemma 4) for the matrix Tπ , with rank at most d, we get that

(Tπ)d+1 =

d∑
k=1

(−1)k+1αk(λ)(Tπ)d+1−k,

where λ = (λπ1 , . . . , λ
π
d ) denotes the set of eigenvalues of Tπ . Plugging the above in relation (13)

for h ≥ d+ 1, we get that

Rπh = 〈νπ,
d∑
k=1

αk(λ)(Tπ)d+1−kµπh−d−1〉

=

d∑
k=1

(−1)k+1αk(λ)〈νπ, µπh−k〉 =

d∑
k=1

(−1)k+1αk(λ)Rπh−k,

where the last equality follows from plugging back the expression for Rπh−k from (13).

C.2 Proof of Lemma 2

The following result provides an upper bound on the error in our estimates for the expected reward
for any policy π ∈ Π.
Lemma 2 (Importance sampling). For any δ ∈ (0, 1), with probability at least 1− δ, for any policy
π ∈ Π and time step h ∈ [3d], the estimates R̂πh computed using importance sampling satisfy the
error bound

|R̂πh −Rπh| ≤
√

2K3d log(6d|Π|/δ)
n

+
2K3d log(6d|Π|/δ)

n
.

Proof. First fix any h ∈ [3d] and π ∈ Π. The expected policy reward estimate is given by

R̂πh =
1

n

n∑
i=1

rth
∏
h′≤h

(
K1
{
π(xth′) = ath′

})
Clearly, R̂πh is an unbiased estimate of Rπh as

Eπ̄[R̂πh] =
1

n

n∑
t=1

Eπ̄
[
rth
∏
h′≤h

(
K1
{
π(xth′) = ath′

})]
=

1

n

n∑
t=1

Eπ̄
[
rth
∏
h′≤h

π(ath′ |xth′)
π̄(ath′ |xth′)

]
=

1

n

n∑
t=1

Eπ[rth] =
1

n

n∑
t=1

Rπh = Rπh,

where π̄ denotes the stochastic policy that picks actions uniformly at random and is used to draw
the trajectory (xth, a

t
h, r

t
h)Hh=1 for t ∈ [n]. The equality in the second line above follows from the

definition of π̄ and the last line follows by a change of measure to the case where the trajectories
are sampled using the policy π. We next consider the second moment of each individual term in the
estimator

Eπ̄
[
(rth)2

∏
h′≤h

(
K1
{
π(xth′) = ath′

})2] (i)

≤ K2h
∏
h′≤h

Pπ̄
(
π(xth′) = ath′

)
(ii)
= K2h · 1

Kh
= Kh,
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where the inequality (i) uses that 0 ≤ rih ≤ 1, and the inequality (ii) holds because π̄ draws actions
uniformly at random which implies that Pπ̄

(
aih′ = π(xih′) | xih′

)
= 1/K. Therefore the variance

for the tth sample,

Vπ̄
[
rth
∏
h′≤h

(
K1
{
π(xth′) = ath′

})]
≤ Kh.

Since all episodes are i.i.d., an application of Bernstein’s inequality implies that with probability at
least 1− δ∣∣∣R̂πh −Rπh∣∣∣ ≤

√
2Vπ̄

[
Kh1

{
ai1:h = π(ai)1:h

}
rih
]

log(2/δ)

n
+

4Kh

3

log(2/δ)

n

≤
√

2Kh log(2/δ)

n
+

2Kh log(2/δ)

n
.

Taking a union bound, we get that with probability at least 1− δ, for all h ∈ [3d] and π ∈ Π,∣∣∣R̂πh −Rπh∣∣∣ ≤
√

2Kh log(6d|Π|/δ)
n

+
2Kh log(6d|Π|/δ)

n
.

C.3 Proof of Lemma 3

Before providing the proof of Lemma 3, we first introduce the matrix P (λ) that depends on the
eigenvalues λ ∈ Cd, and establish a technical result about the eigenspectrum of P (λ).
Definition 3. For any d ≥ 1, λ = (λ1, . . . , λd) ∈ Cd, define the matrix P (λ) ∈ Cd×d such that

[P (λ)]i,k =


(−1)k+1αk(λ) when i = 1 and 1 ≤ k ≤ d
1 when 2 ≤ i ≤ d− 1 and k = i− 1

0 otherwise
,

where the value of αk(λ) is given in Definition 1.

The following technical result considers the eigenspectrum of the matrix P (λ).
Lemma 10. For any λ ∈ Cd, the eigenvalues of the matrix P (λ) are given by (λ1, . . . , λd).

Proof. For the ease of notation, define αk to denote αk,k(λ) for k ∈ [d]. We start by computing the
characteristic polynomial of the matrix P (λ), which is given by

det(zI − P (λ)) = det


(z − α1) α2 −α3 · · · (−1)dαd
−1 z 0 · · · 0
0 −1 z · · · 0

... · · ·
...

0 0 0 · · · z

.
Computing the determinant by expansing along the first row, we get that

det(zI − P (λ)) = (z − α1)zd−1 +

d∑
k=2

(−1)k+1 · ((−1)kαk) · (−1)k−1 · zd−k

= zd − α1z
d−1 + αkz

d−2 + . . .+ (−1)dαd.

Using the definition of αk from Definition 1, we can factorize the above polynomial as

det(zI − P (λ)) =

d∏
k=1

(z − λk).

Since, the eigenvalues of any matrix are given by the roots of its characteristic polynomial, the above
computation shows that the eigenvalues of the matrix P (λ) are given by (λ1, . . . , λd).
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The following structural lemma shows that for any autoregression with coefficients
(α1(λ), . . . , αk(λ)), the (m + d)-th term can be expressed using the m-th power of the ma-
trix P (λ). Recall that the expected rewards for any policy satisfy such an autoregression whenever
the underlying MDP has low rank (see Lemma 1).
Lemma 11. Let λ ∈ Cd and R1, . . . , Rd ∈ R. For any h ≥ d+ 1, let Rh be given by

Rh =

d∑
k=1

(−1)k+1αk(λ)Rh−k, (14)

where the coefficient αk(λ) are defined in Definition 1. Then, for any m ≥ 0,

Rm+d = 〈U,P (λ)mV 〉 (15)

where the vector U := (1, 0, . . . , 0)> ∈ Rd, the vector V := (Rd, Rd−1, . . . , R1)> ∈ Rd and the
matrix P (λ) ∈ Cd is defined in Definition 3.

Proof. For any h ≥ d, define the vector Uh ∈ Rd such that

Uh := (Rh, Rh−1, . . . , Rh−d+1)
>
.

We first note that for any j ∈ [d] such that j ≥ 2,

Uh[j] = Rh−(j)−1 = Uh−1[j − 1].

Further, using the recurrence relation (14), we get that for any h ≥ d+ 1,

Uh[1] = Rh =

d∑
k=1

(−1)k+1αk(λ)Rh−k =

d∑
k=1

(−1)k+1αk(λ)Uh−1[k].

The above two relation imply that for any h ≥ d+ 1,

Uh = P (λ)Uh−1, (16)

where the matrix P (λ) is defined such that

[P (λ)]j,k =


(−1)k+1αk when j = 1 and 1 ≤ k ≤ d
1 when 2 ≤ j ≤ d and k = j + 1

0 otherwise
.

Setting h = d+m in relation (16), we get that for any m

Um+d = P (λ)Um−1+d = · · · = P (λ)mUd.

Finally, we note that for any m ≥ 0,

Rm+d = 〈V,Um+d〉 = 〈V, P (λ)mUd〉,

where the vector V = (1, 0, . . . , 0) ∈ Rd and the vector Ud = (Rd, . . . , R1)
> ∈ Rd.

We are finally ready to prove Lemma 3. The following proof is based on the extension of the
Cayley-Hamilton theorem for rank d matrices (see Lemma 9) and uses Lemma 11.

Lemma 3 (Error propagation bound). Let λ, λ̂ ∈ Cd be such that max{|λ1|, |λ̂1|} ≤ 1. Further,
with the initial values R1, . . . , Rd and R̃1, . . . , R̃d, let the sequence {Rh} and {R̃h} be given by

Rh =

d∑
k=1

(−1)k+1αk(λ)Rh−k and R̃h =

d∑
k=1

(−1)k+1αk(λ̂)R̃h−k,

where the coefficients αk(λ) and αk(λ̂) are define as in (3). Then, for all h ≥ 3d+ 1,

|R̃h −Rh| ≤ 2d ·
(16eh

d

)2d

· max
h′≤3d

|Rh′ − R̃h′ |.

25



Proof. Using Lemma 11 for the sequences {Rh} and {R̃h} respectively, we get that for any m ≥ 0,

Rd+m = 〈U,P (λ)mV 〉 and R̃d+m = 〈Ũ , P (λ̂)mṼ 〉,

where the matrices P (λ), P (λ̂) ∈ Rd×d are defined according to Definition 3 and the vectors
U, Ũ , V, Ṽ ∈ Rd are independent of λ and m. Thus, for any m ≥ 0,

|Rm+d − R̃m+d| = |〈U,P (λ)mV 〉 − 〈Ũ , P (λ̂)mV 〉|
= |〈Ū , P̄mV̄ 〉|, (17)

where the vectors Ū , V̄ ∈ R2d and the block diagonal matrix P̄ ∈ R2d×2d are defined as

V̄ :=

[
V

−Ṽ

]
, Ū :=

[
U

−Ũ

]
and P̄ :=

[
P (λ) 0

0 P (λ̂)

]
.

An application of Lemma 10 implies that the eigenvalues of the matrix P (λ) and the matrix P (λ̂)

are given by λ and λ̂ respectively. Since the matrix P̄ is block-diagonal, we note that the set of
eigenvalues of the matrix P̄ is given by λ̄ = (λ1, λ̂1, . . . , λd, λ̂d). Note that the vector λ̄ is not
sorted except for the first two coordinates, however |λ̄k| ≤ 1 for all k ∈ [2d]. Using Lemma 9 for
2d× 2d matrix P̄ , we get that for any m ≥ 2d+ 1,

P̄ 2d+m+1 =

2d∑
k=1

βm,k(λ̄) · P̄ 2d+1−k.

Using the above relation with (17) and setting m = h− 3d− 1, we get that for any h ≥ 3d+ 1,

|Rh − R̃h| =
∣∣〈Ū , P̄h−dV̄ 〉∣∣ =

∣∣∣〈Ū , 2d∑
k=1

βh−3d−1,k(λ̄) · P̄ 2d+1−kV̄
〉∣∣∣

=
∣∣∣ 2d∑
k=1

〈Ū , βh−3d−1,k(λ̄) · P̄ 2d+1−kV̄ 〉
∣∣∣.

Using the triangle inequality on the right-hand side in the above, we obtain:

|Rh − R̃h| ≤
2d∑
k=1

∣∣βh−3d−1,k(λ̄)
∣∣ · |〈Ū , P̄ 2d+1−kV̄

〉
|

(i)
=

2d∑
k=1

|βh−3d−1,k(λ̄)| · |R3d+1−k − R̃3d+1−k|

(ii)

≤ 2d ·
(4emax{h− 3d− 1 + k, 2d}

d

)2d

· max
h′≤3d

|Rh′ − R̃h′ |

≤ 2d ·
(16emax{h, d}

d

)2d

· max
h′≤3d

|Rh′ − R̃h′ |,

= 2d ·
(16eh

d

)2d

· max
h′≤3d

|Rh′ − R̃h′ |,

where the equality in (i) holds due to relation (17) and the inequality (ii) is given by the bound on
|βh−3d−1,k(λ̄)| from Lemma 8. The last line is due to the fact that h > 3d.

C.4 Supporting technical results for the proof of Theorem 1

Lemma 12. Let λ ∈ Cd be such that |λk| ≤ 1 for all k ∈ [d]. Using the initial values R1, . . . , Rd,
let Rh be defined as

Rh :=

d∑
k=1

(−1)k+1αk(λ)Rh−k. (18)

Further, let R̂1, R̂2, . . . , R̂3d denote the estimates for R1, . . . , R3d respectively, such that

max
h≤3d

|R̂h −Rh| ≤ η. (19)

Then,
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(a) The optimization problem (4) in Algorithm 2 has a solution (λ̂, ∆̂) such that

|∆̂| ≤ 2d · 4d · η.

(b) Further, let R̃h be predictions according to line 5 in Algorithm 2 using the solution λ̂. Then,

max
h≤3d

|R̃h −Rh| ≤ 2d · (64e)d · η.

Proof. We prove the two parts separately below.

(a) We first show that the optimization problem in (4) is feasible. Specifically, we show that there
exists a tuple (λ′,∆′) that satisfies all the constraints in (4) such that |∆′| ≤ 2d4dη. Set
λ′ = λ. We note that |λ′1| = 1 and |λ′k| ≤ 1 for all k ≤ d and thus all the constraints in (4) are
satisfied. Furthermore, for any h ≤ 3d,

|
d∑
k=1

(−1)k+1αk(λ)R̂h−k − R̂h|
(i)
= |

d∑
k=1

(−1)k+1αk(λ)(R̂h−k −Rh−k)− (R̂h −Rh)|

(ii)

≤
d∑
k=1

|αk(λ)| · |R̂h−k −Rh−k|+ |R̂h −Rh|

(iii)

≤ d · 4d · η + η

≤ 2d · 4d · η (20)

where the equality (i) follows from the relation (18) and the inequality (ii) follows from
Triangle inequality. The inequality (iii) follows by plugging in the bound from Lemma 6 for
|αk(λ)| and using the bound in (19). The above implies that |∆′| ≤ 2d4dη.

Thus, any solution (λ̂, ∆̂) of the optimization problem in (4) must satisfy

|∆̂| ≤ 2d · 4d · η. (21)

(b) Let us first define some additional notation. For any m ≤ 2d, define ∆m as the error for mth
expected reward when plugging in the minimizer solution λ̂, i.e.,

∆̂m :=

d∑
k=1

(−1)k+1αk(λ̂) · R̂d+m−k − R̂d+m. (22)

Further, define Zm as the error in our prediction for the expected reward at (m + d)th time
step, i.e.

Zm := R̃m+d − R̂m+d. (23)

In the following, we will show that for all m ≥ 1,

Zm = ∆̂m +

m−1∑
i=1

βi−1,1(λ̂) · ∆̂m−i, (24)

where the coefficients βi−1,1 are given in Definition 2.

Our desired bound follows as a direct consequence of (24). For any 1 ≤ m ≤ 2d,

|R̃m+d −Rm+d| ≤ |R̃m+d − R̂m+d|+ |R̂m+d −Rm+d|
(i)

≤ |∆̂m +

m−1∑
i=1

βi−1,1(λ̂) · ∆̂m−i|+ η

(ii)

≤ |∆̂m|+
m−1∑
i=1

|βi−1,1(λ̂)||∆̂m−i|+ η
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(iii)

≤ |∆̂|+
m−1∑
i=1

|βi−1,1(λ̂)||∆̂|+ η

(iv)

≤ 2d · 4d ·
(8emax{m, d}

d

)d
· η

≤ 2d · (64e)d · η,

where the inequality (i) follows from the definition of Zm in (23) and by using the bound in
(19), and the inequality (ii) above is due to Triangle inequality. The inequality (iii) above
follows by using the fact that |∆̂m| ≤ |∆̂| for all m ≤ 2d. Finally, the inequality (iv) follows
by plugging in the bound in (21) and by using Lemma 8 to bound |βi−1,1(λ̂)|.

Proof of relation (24). We prove this by induction over m. For the base case, when m = 1,

Zd+1 = R̃d+1 − R̂d+1
(i)
=

d∑
k=1

(−1)k+1αk(λ̂) · R̂k − R̂d+1
(ii)
= ∆̂1,

where the equality in (i) follows from the definition of R̃d+1 holds due to (18) and (ii) follows from
the definition of ∆̂1.

We next show the induction step. For any m ≥ 2, suppose that the relation (24) holds for all times
m′ < m. We note that

Zd+m = R̃d+m − R̂d+m

(i)
=

d∑
k=1

(−1)k+1αk(λ̂) · R̃d+m−k − R̂d+m

=

d∑
k=1

(−1)k+1αk(λ̂) · R̃d+m−k −
d∑
k=1

(−1)k+1αk(λ̂) · R̂d+m−k

+

d∑
k=1

(−1)k+1αk(λ̂) · R̂d+m−k − R̂d+m

(ii)
=

d∑
k=1

(−1)k+1αk(λ̂) · R̃d+m−k −
d∑
k=1

(−1)k+1αk(λ̂) · R̂d+m−k + ∆̂m

=

d∑
k=1

(−1)k+1αk(λ̂) ·
(
R̃d+m−k − R̂d+m−k

)
+ ∆̂m

(iii)
=

d∑
k=1

(−1)k+1β0,k(λ̂) ·
(
R̃d+m−k − R̂d+m−k

)
+ ∆̂m

(iv)
=

d∑
k=1

(−1)k+1β0,k · Zm−k + ∆̂m.

where (i) follows from the definition of R̃d+m (see (5)) and (ii) follows by the definition of ∆̂m in
(22). The equality (iii) above is due to the fact that β0,k(λ̂) = αk(λ̂) (by definition) and finally, the
equality (iv) follows from the definition of Zm−k in (23). Plugging in the induction hypothesis for
Zm−k in the above, we get that

Zd+m =

d∑
k=1

(−1)k+1β0,k(λ̂) ·
(

∆̂m−k +

m−k−1∑
j=1

βj−1,1(λ̂) · ∆̂m−k−j

)
+ ∆̂m

= ∆̂m +

m−1∑
i=1

∆̂m−i ·
(

(−1)i+1β0,i(λ̂) +

i−1∑
j=1

(−1)i−j−1βj−1,1(λ̂) · β0,i−j

)
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= ∆̂m +

m−1∑
i=1

βi−1,1(λ̂) · ∆̂m−i,

where the second line above follows by rearranging the terms and using the fact that β0,k(λ̂) = 0

whenever k > d, and the equality in the last line holds by using the fact that β0,k(λ̂) · βh−1,1(λ̂) =

βh−1,k+1(λ̂) + βh,k(λ̂) for all h, k ≥ 0 (see Definition 2). This completes the induction step, hence
proving (24) for all m ≥ 1.

C.5 Proof of Theorem 1

We finally provide the proof of Theorem 1 that characterizes the performance guarantee for the
policy π̃ returned by Algorithm 1.

Proof of Theorem 1 . Starting from Lemma 2, we get that with probability at least 1 − δ, for every
policy π ∈ Π, our estimate R̂πh computed in line 3 of Algorithm 2 satisfies the error bound

max
h′≤3d

|R̂πh′ −Rπh′ | ≤ min

{√
8K3d log(6d|Π|/δ)

n
,

4K3d log(6d|Π|/δ)
n

}
. (25)

Now, consider any policy π ∈ Π, and let λ̂π , ∆̂π , R̃πh and Ṽ π denote the corresponding local
variables in the procedure ValEstimate when invoked in Algorithm 1 for the policy π. Further, let
λπ denote the eigenvalues of the transition matrix Tπ . As a consequence of Lemma 1, the expected
rewards Rπh satisfy an autoregression where the coefficients are determined by λπ . Specifically, for
any h ≥ d+ 1,

Rπh =

d∑
k=1

(−1)k+1αk(λπ) ·Rπh−k.

Furthermore, by definition (see line 5 of Algorithm 2), the predicted rewards R̃πh also satisfy a
similar autoregression where the coefficients are determined by λ̂π , the solution of the optimization
problem in (4) for the policy π. We have, for any h ≥ d+ 1,

R̃πh =

d∑
k=1

(−1)k+1αk(λ̂π) · R̃πh−k

where R̃h′ := R̂h′ for h′ ≤ d. Additionally, also note that Tπ is a stochastic matrix and thus
|λπk | ≤ 1 for all k ∈ [d]. By definition, we also have that |λ̂πk | ≤ 1. Thus, using the error propagation
bound in Lemma 3 for the sequences {Rπh} and {R̃πh} we get that for any h ≥ 3d+ 1,

|R̃πh −Rπh| ≤ 2d ·
(16eh

d

)2d

max
h′≤3d

|R̃h′ −Rh′ |.

The above bound implies that for any h ≥ 1,

|R̃πh −Rπh| ≤ 2d ·
(16e(h ∨ d)

d

)2d

max
h′≤3d

|R̃h′ −Rh′ | (26)

We note that an application of Lemma 12 implies that the predicted rewards R̃πh′ satisfy the error
bound

max
h′≤3d

|R̃πh′ −Rπh′ | ≤ 2d · (64e)d · max
h′≤3d

|R̂πh′ −Rπh′ |

≤ 2d · (64e)d · η,

where η denotes the right hand side of (25). Plugging the above in (26), we get that

|R̃πh −Rπh| ≤ 4d2 ·
(128e2(h ∨ d)

d

)2d

· η. (27)
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for any h ≥ 1. Thus, the error in the estimated value Ṽ π for the policy π is bounded by

|Ṽ π − V π| = |
H∑
h=1

(R̃πh −Rπh)|

≤
H∑
h=1

|R̃πh −Rπh|

≤
H∑
h=1

4d2 ·
(128e2(h ∨ d)

d

)2d

· η

≤ 4d3 ·
(128e2H

d

)2d

· η, (28)

where the inequality in the second last line follows by using the bound in (27), and the inequality in
the last line holds because H ≥ d.

Since π is arbitrary in the above chain of arguments, the error bound in (28) holds for all policies
π ∈ Π. Thus, for any π ∈ Π, the policy π̃ returned in line 4 of Algorithm 1 satisfies

V π̃ − V π = (Ṽ π − V π) + (Ṽ π̃ − Ṽ π) + (V π̃ − Ṽ π̃)

≥ (Ṽ π − V π) + (V π̃ − Ṽ π̃)

≥ −|Ṽ π − V π| − |V π̃ − Ṽ π̃|,

where the inequality in the second line follows from the fact that Ṽ π̃ ≥ Ṽ π for every π ∈ Π by the
definition of the policy π̃. Using the bound from (28) for policies π and π̃ ∈ Π in the above, we get
that

V π̃ ≥ V π − 4d3 ·
(128e2H

d

)2d

· η

≥ V π − 4d3 ·
(128e2H

d

)2d

·min

{√
8K3d log(6d|Π|/δ)

n
,

4K3d log(6d|Π|/δ)
n

}
≥ V π − 4d3 ·

(128e2H

d

)2d
√

8K3d log(6d|Π|/δ)
n

where the inequality in the second line above follows by plugging in the value of η as the right hand
side of (25), and the inequality in the last line holds due to the fact that −min{a, b} ≥ −a for any
a, b ≥ 0.

Since the above holds for any π ∈ Π, we have that

V π̃ ≥ max
π∈Π

V π − 4d3 ·
(128e2H

d

)2d
√

8K3d log(6d|Π|/δ)
n

,

hence proving the desired statement.
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D Adaptive upper bounds

In this section, we present Algorithm 3 whose performance guarantee adapts to the unknown eigen-
spectrum of the underlying transition matrix. We then proceed to the proof of our adaptive upper
bound Theorem 3.

D.1 Adaptive policy search algorithm

Algorithm 3 Adaptive policy search algorithm (Adaptivity to unknown eigenspectrum)
Input: horizon H , rank d, number of episodes n, finite policy class Π

1: Collect the dataset D = {(xth, ath, rth)Hh=1}nt=1 by sampling n trajectories where actions are
sampled from Uniform(A).

2: for policy π ∈ Π do
3: Estimate Ṽ π by calling AdaValEstimate(H, d,D, π).
4: Return: policy π̃ with best estimated value π̃ ∈ argmaxπ∈Π Ṽ

π .

Algorithm 4 Adaptive value estimation by autoregressive extrapolation
1: function ADAVALESTIMATE(H, d,D, π):

2: Set ∆ = 2d4d min
{√

8K3d log(6d|Π|/δ)
n , 4K3d log(6d|Π|/δ)

n

}
.

3: for time step h = 1, . . . , 3d do
4: Estimate expected rewards by importance sampling

R̂h =
1

n

n∑
i=1

rih
∏
h′≤h

(
K1
{
π(xih′) = aih′

})
5: Estimate eigenvalues of the autoregression by solving the optimization problem:

λ̂← argmin
λ∈Cd

d∏
k=2

(H−1∑
h=0

|λk|h
)

(29)

s.t. |λ1| = 1, |λk| ≤ 1 for 2 ≤ k ≤ d,∣∣∣ d∑
k=1

(−1)k+1αk(λ)R̂h−k − R̂h
∣∣∣ ≤ ∆ for d+ 1 ≤ h ≤ 3d.

6: Predict R̃h as:

R̃h =

{
R̂h for 1 ≤ h ≤ d∑d
k=1(−1)k+1αk(λ̂)R̃h−k for d+ 1 ≤ h ≤ H

.

7: return: Estimate of the value function Ṽ =
∑H
h=1 R̃h.

D.2 Adaptive error propagation bound

The main technical innovation that leads to the adaptive upper bound in Theorem 3 is the following
bound on the propagated error in the hth step prediction. The bound in (30) adapts to the eigenvalues
λ and λ̂, which define the auto-regressions for {Rh} and {R̃h} respectively.

Lemma 13 (Adaptive error propagation bound). Let λ, λ̂ ∈ Cd be such that max{|λ1|, |λ̂1|} ≤ 1.
Further, with the initial values {R1, . . . , Rd} and {R̃1, . . . , R̃d}, let the sequence {R̃h} and {Rh}
be given by

Rh =

d∑
k=1

(−1)k+1αk(λ) ·Rh−k and R̃h =

d∑
k=1

(−1)k+1αk(λ̂) · R̃h−k,
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where the coefficients αk(λ̂) and αk(λ) are given in Definition 1. Then, for all h ≥ 1,

|R̃h −Rh| ≤ 22dh ·
d∏
k=2

(h−1∑
j=0

|λk|j
)
·
d∏
k=2

(h−1∑
j=0

|λ̂k|j
)
· max
h′≤3d

|Rh′ − R̃h′ |. (30)

We defer the proof to Appendix D.2.2.

D.2.1 Supporting technical results for the proof of Lemma 13

Lemma 14. Given any vectors u, v ∈ Rd and a diagonalizable matrix A ∈ Rd×d with eigenvalues
λ1, . . . , λd such that |λ1| = 1, let zm,k be defined such that

zm,k =

{
u>Amv when k = 0

zm,k−1 − λd+1−k · zm−1,k−1 when 1 ≤ k ≤ d, .

where k ≤ min{d,m}. Then, zm,d = 0 for all m ≥ d. Furthermore, for any k ≤ d, the following
inequality holds:

|zd,k| ≤ 2k max
1≤i≤d

|u>Aiv|.

Proof. We prove the two statements separately below.

(a) We first show that zm,d = 0 for all m ≥ d. Since, the matrix A is diagonalizable, we have

A = QΛQ−1,

where Λ = diag(λ1, . . . , λd) and where Q ∈ Rd×d is the matrix whose kth column is an
eigenvector qk corresponding to the eigenvalue λk. In order to prove this, we will show
that for any m ≥ 0 and k ≤ min(d,m),

zm,k = uTQDm,kQ
−1v, (31)

where the matrix Dm,k ∈ Rd×d is diagonal with entries given by

[Dm,k]i,i =

{
0 if d+ 1− k ≤ i ≤ d
λm−ki

∏k
k′=1(λi − λd+1−k′) otherwise.

(32)

Specifically, the diagonal entry [Dm,k]i,i = 0 for i ≥ d+ 1− k. Observe that for m, k ≥ 1

and i < d+ 1− k, the following relation holds:

[Dm,k]i,i = λm−ki

k∏
k′=1

(λi − λd+1−k′)

= (λi − λd+1−k)λm−ki

k−1∏
k′=1

(λi − λd+1−k′)

= λm−k+1
i

k−1∏
k′=1

(λi − λd+1−k′)− λd+1−k λ
m−k
i

k−1∏
k′=1

(λi − λd+1−k′)

= [Dm,k−1]i,i − λd+1−k [Dm−1,k−1]i,i. (33)

Also, for m, k ≥ 1 and i = d+ 1− k, the following relation holds:

[Dm,k]i,i = 0

= λm−k+1
d+1−k

k−1∏
k′=1

(λi − λd+1−k′)− λd+1−k λ
m−k
d+1−k

k−1∏
k′=1

(λi − λd+1−k′)

= [Dm,k−1]d+1−k,d+1−k − λd+1−k [Dm−1,k−1]d+1−k,d+1−k. (34)
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For i > d+ 1− k, by definition, we have

[Dm,k]i,i = [Dm−1,k]i,i = [Dm−1,k−1]i,i = 0. (35)

We prove (31) by an induction over the set of tuples (m, k). The induction proceeds in a
row-first manner by first keeping m fixed and increasing k from 1 to d; we then increase m
to m + 1 and proceed with the next row in the set of tuples (m, k). For the base case, for
k = 0 and any m ≥ 0,

zm,0 = uTAmv
(i)
= uTQΛmQ−1v

(ii)
= uTQDm,0Q

−1v,

where the equality (i) follows by using the fact that A = QΛQ−1 and the inequality in (ii)
is given by the definition of the matrix Dm,0.

We next prove the induction step. For any m ≥ 0 and k ≤ d, suppose that (31) holds
for every tuple (m′, k′) where m′ < m and k′ ≤ min(m′, d), and for every tuple (m, k′)
where 0 ≤ k′ < k. In the following, we will show that the relation (31) will hold for the
tuple (m, k) as well. Using the definition of zm,k, we get that

zm,k = zm,k−1 − λd+1−k zm−1,k−1

= uTQDm,k−1Q
−1v − λd+1−ku

TQDm−1,k−1Q
−1v (Equation 31)

= uTQ(Dm,k−1 − λd+1−kDm−1,k−1)Q−1v

= uTQ(Dm,k)Q−1v. (Equations 33, 34, and 35)

This completes the induction step, thereby proving that (31) holds for all m ≥ 0 and
k ≤ min(d,m). Setting k = d in relation (31) givesDm,d = diag(0, . . . , 0) for anym ≥ d
and thus the following:

zm,d = uTQDm,dQ
−1v = 0.

(b) In the following, we will show that for any m ≥ d and k ≤ min{d,m},

|zm,k| ≤ 2k∆, (36)

where ∆ := max{|uTAv|, . . . , |uTAdv|}.
We prove (36) by an induction over the set of tuples (m, k). The induction proceeds in a
row-first manner by first keeping m fixed and increasing k from 1 to d; we then increase m
to m + 1 and proceed with the next row in the set of tuples (m, k). For the base case, we
note that for k = 0 and any m ≤ d,

|zm,0| ≤ uTAmv ≤ max{|uTAv|, . . . , |uTAdv|} = ∆.

We next show the induction step. Given any m and k such that k ≤ min{d,m}, assume
that (36) holds for every tuple (m′, k′) where m′ < m and k′ ≤ min(m′, d), and for every
tuple (m, k′) where 0 ≤ k′ < k. In the following, we will show that the relation (36) holds
for the tuple (m, k) as well. Using the definition of zm,k, we get that

|zm,k| = |zm,k−1 − λd+1−k · zm−1,k−1|
≤ |zm,k−1|+ |λd+1−k||zm−1,k−1|
≤ |zm,k−1|+ |zm−1,k−1|,

where the last line holds because |λd+1−k| ≤ 1. Using the bound of (36) for the tuples
(m, k − 1) and (m− 1, k − 1), we obtain:

|zm,k| ≤ 2k−1∆ + 2k−1∆ ≤ 2k∆.

This completes the induction step, hence proving (36) for all m ≥ d and k ≤ min{d,m}.
Finally, setting m = d in (36) gives us the desired result.
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Lemma 15. Let A ∈ Rd×d be a matrix with eigenvalues (λ1, . . . , λd) such that |λ1| = 1 and
|λk| ≤ 1, for all k ∈ [d]. Then, for any two vectors u ∈ Rd and v ∈ Rd and any m ≥ d + 1, the
following inequality holds:

|uTAmv| ≤ 2d ·
d∏
k=2

(m−d∑
j=0

|λk|j
)
·max

{
|uTAv|, . . . , |uTAdv|

}
.

Proof. We will first prove the result when the matrixA has distinct eigenvalues. We will later extend
the proof for general matrices A.

Simpler setting: When A has distinct eigenvalues. We first introduce some notation to be used
in the proof. Fix the vectors u, v ∈ Rd. For any m ≥ 1, and k ≤ min{d,m}, define zm,k ∈ R as
follows:

zm,k =

{
uTAmv when k = 0

zm,k−1 − λd+1−k · zm−1,k−1 when 1 ≤ k ≤ d. . (37)

Further, define ∆ := max
{
|uTAv|, . . . , |uTAdv|

}
. Since the matrix A has distinct eigenvalues, A

is diagonalizable and thus by Lemma 14, the following inequality holds for any k ≤ d:

|zd,k| ≤ 2k∆ ≤ 2d∆. (38)

In order to prove the desired result, we first show that for any k ≤ d− 1, and any m ≥ d,

|zm,k| ≤ 2d∆ ·
d−k∏
k′=2

(m−d∑
j=0

|λk′ |j
)
. (39)

(39) can be shown by induction over k. For the base case, when k = d − 1, we note that for any
m > d,

|zm,d−1| = |zm,d + λ1 · zm−1,d−1|
= |λ1||zm−1,d−1|
≤ |zm−1,d−1|,

where the first line follows from the definition of zm,d, and the equality in the second line holds
because zm,d = 0 for all m ≥ d (see Lemma 14). The inequality in the last line above is given by
the fact that |λd| ≤ 1. Repeating the above m− d times, we get that

|zm,d−1| ≤ |zd,d−1| ≤ 2d−1∆,

where the second inequality above follows from the bound (38).

We next show the induction step. For any k ≤ d − 2, suppose (39) holds for all k′ > k and all
m ≥ d. In the following, we will show that (39) also holds for k. Using the definition of zm,k+1

from (37), we obtain:

|zm,k| = |zm,k+1 + λd−k · zm−1,k| ≤ |zm,k+1|+ |λd−k||zm−1,k|.

Reiterating the above m− d times by upper-bounding |zm−1,k| yields:

|zm,k| ≤
m−d−1∑
j=0

|λd−k|j |zm−j,k+1|+ |λd−k|m−d|zd,k|.

Plugging in the bound (39) for |zm−j,k+1| and the bound (38) for |zd,k| in the above, we get that

|zm,k| ≤
m−d−1∑
j=0

|λd−k|j2d∆ ·
d−k−1∏
k′=2

(m−j−d∑
j′=0

|λk′ |j
′)

+ |λd−k|m−d2d∆

≤ 2d∆
(m−d−1∑

j=0

|λd−k|j + |λd−k|m−d
)
·
d−k−1∏
k′=2

(m−d∑
j′=0

|λk′ |j
′)
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= 2d∆ ·
d−k∏
k′=2

(m−d∑
j=0

|λk′ |j
)
,

where the inequality in the second line follows from the fact that
∑m−d
j′=0 |λk′ |j

′ ≥ 1. This completes
the induction step, thereby proving that (39) holds for all k ≤ d− 1. The final statement follows by
setting k = 0 in (39).

Extension to general matrices A. We now prove the result for a general matrix A by using the
fact that matrices with distinct eigenvalues are dense in the space of d×dmatrices. From Theorem 5,
we note that for every ε > 0, there exists a matrixBε with distinct eigenvalues, denoted by λε ∈ Cd,
such that:

(a) ‖Am − (Bε)m‖ ≤ ε for all m ≥ 1.

(b) |λε1| = 1 and |λεk| ≤ 1 for all k ∈ [d].

(c) ‖Bε‖∞ ≤ ‖A‖∞.

Using the above proof for the matrixBε which has distinct eigenvalues, we get that for allm ≥ d+1,

|uT (Bε)mv| ≤ 2d
d∏
k=2

(m−d∑
j=0

|λεk|j
)
·max

{
|uT (Bε)v|, . . . , |uT (Bε)dv|

}
. (40)

Furthermore, an application of Theorem 6 implies that the eigenvalues of the matrix A and Bε are
related as:

max
j

min
i
|λi − λεj | ≤ (‖A‖+ ‖Bε‖)1−1/d‖A−B‖1/d

≤ (d2‖A‖∞ + d2‖Bε‖∞)1−1/d‖A−B‖1/d

≤ (2d2‖A‖∞)(1−1/d) · ε1/d,

where the inequality in the second line above follows from the fact that for any matrix B, ‖B‖ ≤
‖B‖F ≤ d2‖B‖∞. The inequality in the third line above is given by the fact that ‖Bε‖∞ ≤ ‖A‖∞.
Thus, if ε ≤ 1

2d2‖A‖∞ ·minλi 6=λj |λi − λj |, the above bound implies that the eigenvalues of Bε are
such that

|λk − λεk| ≤ (2d2‖A‖∞)(1−1/d) · ε1/d, (41)

for all k ∈ [d].

Finally, using the fact that ‖Am − (Bε)m‖ ≤ ε for all m ≥ 1 and the bound on the deviation in
eigenvalues from (41) in the relation (40), and taking the limit as ε approaches 0, we get that,

|uTAmv| ≤ 2d
d∏
k=2

(m−d∑
j=0

|λk|j
)
·max

{
|uTAv|, . . . , |uTAdv|

}
.

This completes the proof of the lemma for general d× d matrices A.

Theorem 5 (Modification of Corollary 1 in Hartfiel [1992]; Theorem 1 in [Hartfiel, 1995]). Let A
be a d × d matrix with eigenvalues λ ∈ Cd such that |λ1| = 1 and |λk| ≤ 1 for all k ∈ [d]. Then,
for every ε > 0, there exists a matrix Bε such that:

(a) Bε has distinct eigenvalues.

(b) ‖Am − (Bε)m‖ ≤ ε for all m ≥ 1.

(c) |λ1(Bε)| = 1 and |λk(Bε)| ≤ 1 for all k ∈ [d].

(d) ‖Bε‖∞ ≤ ‖A‖∞.
Theorem 6 (Theorem 8.1.1. in Bhatia [2013]). Let A,B be d× d with eigenvalues λ1, . . . , λd and
λ′1, . . . , λ

′
d respectively. Then,

max
j

min
i
|λi − λ′j | ≤ (‖A‖+ ‖B‖)1−1/d‖A−B‖1/d.
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D.2.2 Proof of Lemma 13

We are finally ready to prove the adaptive error propagation bound given in Lemma 13.

Proof of Lemma 13 . Using Lemma 11 for the sequences {Rh} and {R̃h} respectively, we get that
for any m ≥ 0,

Rd+m = 〈U,P (λ)mV 〉

and

R̃d+m = 〈Ũ , P (λ̂)mṼ 〉,

where the matrices P (λ), P (λ̂) ∈ Rd×d are defined according to Definition 2 and the vectors
U, Ũ , V, Ṽ ∈ Rd are independent of λ and m. Thus, for any m ≥ 0,

|Rm+d − R̃m+d| = |〈U,P (λ)mV 〉 − 〈Ũ , P (λ̂)mV 〉|
= |〈Ū , P̄mV̄ 〉|, (42)

where the vectors Ū , β̄ ∈ R2d and the block diagonal matrix P̄ ∈ R2d×2d are defined as

V̄ :=

[
V

−Ṽ

]
, Ū :=

[
U

−Ũ

]
and P̄ :=

[
P (λ) 0

0 P (λ̂)

]
.

An application of Lemma 10 implies that the eigenvalues of the matrix P (λ) and the matrix P (λ̂)

are given by λ and λ̂ respectively. Since the matrix P̄ is block-diagonal, we note that the set of
eigenvalues of the matrix P̄ is given by λ̄ = (λ1, λ̂1, . . . , λd, λ̂d). Note that the vector λ̄ is not
sorted except for the first two coordinates, however |λ̄k| ≤ 1 for all k ∈ [2d]. Using Lemma 15 for
the 2d× 2d matrix P̄ and the vectors Ū and β̄, we get that for any m ≥ 2d+ 1,

|〈Ū , P̄mV̄ 〉| ≤ 22d ·
2d∏
k=2

(m−2d∑
j=0

|λ̄k|j
)
·max{|〈Ū , P̄ V̄ 〉|, . . . , |〈Ū , P̄ 2dV̄ 〉|}

≤ 22d ·m ·
d∏
k=2

(m−1∑
j=0

|λk|j
)
·
d∏
k=2

(m−1∑
j=0

|λ̂k|j
)
· max
m′≤2d

|〈Ū , P̄m
′
V̄ 〉|, (43)

where the inequality in the last line uses the fact that |λk| ≤ 1 and |λ̂k| ≤ 1 for all k ∈ [d], and from
thus

∑m−1
j=0 |λ̂k|j ≤ m. Using the bound (43) in the relation (42), we get that for any h ≥ 3d+ 1,

|Rh − R̃h| ≤ |〈Ū , P̄h−dV 〉|

≤ 22dh

d∏
k=2

(h−1∑
j=0

|λk|j
)
·
d∏
k=2

(h−1∑
j=0

|λ̂k|j
)
· max
m′≤2d

|〈Ū , P̄m
′
V̄ 〉|

(i)
= 22dh ·

d∏
k=2

(h−1∑
j=0

|λk|j
)
·
d∏
k=2

(h−1∑
j=0

|λ̂k|j
)
· max
m′≤2d

|Rd+m′ − R̃d+m′ |

≤ 22dh ·
d∏
k=2

(h−1∑
j=0

|λk|j
)
·
d∏
k=2

(h−1∑
j=0

|λ̂k|j
)
· max
h′≤3d

|Rh′ − R̃h′ |,

where the equality (i) follows due to relation (42).

D.3 Proof of Theorem 3

Before delving into the proof of Theorem 3, we first note the following technical lemma which
concerns with the feasability and properties of the solutions of optimization problem (29) in Algo-
rithm 4.
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Lemma 16. Let λ ∈ Cd such that |λk| ≤ 1 for all k ∈ [d]. Using the initial values R1, . . . , Rd, let
Rh be defined as

Rh =

d∑
k=1

(−1)k+1αk(λπ)Rh−k. (44)

Further, let R̂1, R̂2, . . . , R̂3d denote the estimates for R1, . . . , R3d respectively, such that

max
h≤3d

|R̂h −Rh| ≤ η, (45)

where η := min
{√

8K3d log(6d|Π|/δ)
n , 4K3d log(6d|Π|/δ)

n

}
. Then,

(a) The optimization problem (29) in Algorithm 4 has a solution λ̂ ∈ Cd such that |λ̂1| = 1 and

d∏
k=2

(H−1∑
j=0

|λ̂k|j
)
≤

d∏
k=2

(H−1∑
j=0

|λk|j
)
.

(b) Further, let R̃h be predictions according to line 7 in Algorithm 4 using the solution λ̂. Then,

max
h′≤3d

|R̃h −Rh| ≤ 2d · (64e)d · η.

Proof. In the following, we provide the proof for part-(a) of the lemma. The proof of part-(b) follows
exactly along the lines of a similar statement proven in Lemma 12.

Proof of part-(a). We prove this by showing that the vector λ ∈ Rd satisfies all the constraints of
the optimization problem in (29). First note that |λ1| = 1 and |λk| ≤ 1 for all k ≤ d, by definition.
Furthermore, for any h ≤ 3d,

|
d∑
k=1

(−1)k+1αk(λ)R̂h−k − R̂h|
(i)
= |

d∑
k=1

(−1)k+1αk(λ)(R̂h−k −Rh−k)− (R̂h −Rh)|

(ii)

≤
d∑
k=1

|αk(λ)| · |R̂h−k −Rh−k|+ |R̂h −Rh|

(iii)

≤ d · 4d · η + η

≤ 2d · 4d · η.

where the equality (i) follows from the relation (18) and the inequality (ii) follows from Triangle
inequality. The inequality (iii) follows by plugging in the bound from Lemma 6 for |αk(λ)| and

using the bound in (45). Plugging in the value of η = min
{√

8K3d log(6d|Π|/δ)
n , 4K3d log(6d|Π|/δ)

n

}
in the above bound, we get that

|
d∑
k=1

(−1)k+1αk(λ)R̂h−k − R̂h| ≤ 2d · 4d ·min
{√8K3d log(6d|Π|/δ)

n
,

4K3d log(6d|Π|/δ)
n

}
.

(46)

Thus, the vector λ ∈ C is a feasible solution to the optimization problem in (29). Next, noting the
fact that (29) is a minimization problem, we get that for the returned solution λ̂ must satisfy

d∏
k=2

(H−1∑
j=0

|λ̂k|j
)
≤

d∏
k=2

(H−1∑
j=0

|λk|j
)
.
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We are now ready to prove our adaptive upper bound in Theorem 3. The proof is very similar to the
proof of Theorem 1 given in Appendix C.5. The main technical difference is that we use an adaptive
error propagation bound, given in Lemma 13, instead of the error propagation bound from Lemma 3
to control the error in the predicted rewards.

Proof of Theorem 3 . Starting from Lemma 2, we get that with probability at least 1 − δ, for every
policy π ∈ Π, our estimate R̂πh computed in line 4 of Algorithm 4 satisfies the error bound

max
h′≤3d

|R̂πh′ −Rπh′ | ≤ min

{√
8K3d log(6d|Π|/δ)

n
,

4K3d log(6d|Π|/δ)
n

}
. (47)

Now, consider any policy π ∈ Π, and let λ̂π , ∆̂π , R̃πh and Ṽ π denote the corresponding local
variables in the AdaValEstimate when invoked in Algorithm 4 for the policy π. Further, let λπ
denote the eigenvalues of the transition matrix Tπ . As a consequence of Lemma 1, the expected
rewards Rπh satisfy an autoregression where the coefficients are determined by λπ . Specifically, for
any h ≥ d+ 1,

Rπh =

d∑
k=1

(−1)k+1αk(λπ) ·Rπh−k.

Furthermore, by definition (see line 6 of Algorithm 4), the predicted rewards R̃πh also satisfy a
similar autoregression where the coefficients are determined by λ̂π , the solution of the optimization
problem in (29) for the policy π. We have, for any h ≥ d+ 1,

R̃πh =

d∑
k=1

(−1)k+1αk(λ̂π) · R̃πh−k

where R̃h′ := R̂h′ for h′ ≤ d. Additionally, also note that Tπ is a stochastic matrix and thus
|λπk | ≤ 1 for all k ∈ [d]. By definition, we also have that |λ̂πk | ≤ 1. Thus, using the error propagation
bound in Lemma 13 for the sequences {Rπh} and {R̃πh}, we get that for any h ≥ 1,

|R̃πh −Rπh| ≤ 4dh ·
d∏
k=2

(h−1∑
j=0

|λπk |j
)
·
d∏
k=2

(h−1∑
j=0

|λ̂πk |j
)
· max
h′≤3d

|R̃h′ −Rh′ |

≤ 4dh ·
d∏
k=2

(h−1∑
j=0

|λπk |j
)2

· max
h′≤3d

|R̃h′ −Rh′ |, (48)

where the inequality in the second line above follows from the fact that
d∏
k=2

(H−1∑
j=0

|λ̂πk |j
)
≤

d∏
k=2

(H−1∑
j=0

|λπk |j
)

as a consequence of Lemma 16-(a) for the policy π. Next, Lemma 16-(b) for the policy π implies
that the predicted rewards R̃πh′ satisfy the error bound

max
h′≤3d

|R̃πh′ −Rπh′ | ≤ 2d · (64e)d · max
h′≤3d

|R̂πh′ −Rπh′ |

≤ 2d · (64e)d · η,
where η denotes the right hand side of (47). Plugging the above in (48), we get that

|R̃πh −Rπh| ≤ 2dh(256e)d ·
d∏
k=2

(h−1∑
j=0

|λπk |j
)2

· η. (49)

for any h ≥ 1. Thus, the error in the estimated value Ṽ π for the policy π is bounded by

|Ṽ π − V π| = |
H∑
h=1

(R̃πh −Rπh)|
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≤
H∑
h=1

|R̃πh −Rπh|

≤
H∑
h=1

2dh(256e)d ·
d∏
k=2

(h−1∑
j=0

|λπk |j
)2

· η

≤ 2dH2(256e)d ·
d∏
k=2

(H−1∑
j=0

|λπk |j
)2

· η

≤ 2dH2(256e)d ·max
π′∈Π

d∏
k=2

(H−1∑
j=0

|λπ
′

k |j
)2

· η, (50)

where the inequality in the second last line follows by using the bound in (49).

Since π is arbitrary in the above chain of arguments, the error bound in (50) holds for all policies
π ∈ Π. Thus, for any π ∈ Π, the policy π̃ returned in line 4 of Algorithm 3 satisfies

V π̃ − V π = (Ṽ π − V π) + (Ṽ π̃ − Ṽ π) + (V π̃ − Ṽ π̃)

≥ (Ṽ π − V π) + (V π̃ − Ṽ π̃)

≥ −|Ṽ π − V π| − |V π̃ − Ṽ π̃|,

where the inequality in the second line follows from the fact that Ṽ π̃ ≥ Ṽ π for every π ∈ Π by the
definition of the policy π̃. Using the bound from (50) for policies π and π̃ ∈ Π in the above, we get
that

V π̃ ≥ V π − 4dH2(256e)d ·max
π′∈Π

d∏
k=2

(H−1∑
j=0

|λπ
′

k |j
)2

· η

≥ V π − 4dH2(256e)d ·max
π′∈Π

d∏
k=2

(H−1∑
j=0

|λπ
′

k |j
)2

·min
{√8K3d log(6d|Π|/δ)

n
,

4K3d log(6d|Π|/δ)
n

}

≥ V π − 4dH2(256e)d ·max
π′∈Π

d∏
k=2

(H−1∑
j=0

|λπ
′

k |j
)2
√

8K3d log(6d|Π|/δ)
n

where the inequality in the second line above follows by plugging in the value of η as the right hand
side of (47), and the inequality in the last line holds due to the fact that −min{a, b} ≥ −a for any
a, b ≥ 0.

Since the above holds for any π ∈ Π, we have that

V π̃ ≥ max
π∈Π

V π − 4dH2(256e)d ·max
π′∈Π

d∏
k=2

(H−1∑
j=0

|λπ
′

k |j
)2
√

8K3d log(6d|Π|/δ)
n

,

hence proving the desired statement.

D.4 Adaptivity to rank

We now describe how the learner can find the best policy in the class Π, that satisfies Assumption 1,
without knowing the value of the rank parameter. Let us denote the unknown rank parameter by
d∗. Our adaptive algorithm, given in Algorithm 5, follows from standard techniques in the model
selection literature. For every d ∈ [H], we compute an optimal policy π̃d assuming that the rank
d∗ = d. Then, for each d ∈ [H], we estimate the value function for the policy π̃d by drawing n/2H
fresh trajectories using that policy. Finally, we return the policy π̃ from the set {π̃d}d∈[H] with the
highest estimated value. The returned policy π̃ satisfies, with probability at least 1− δ,

V π̃ ≥ max
π∈Π

V π −O
((H

d∗

)2d∗
√

(8K)3d∗ log(6d|Π|/δ)
n

− 2

√
log(H) log(1/δ)

n

)
. (51)
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Algorithm 5 Adaptive policy search algorithm (adaptivity to rank)
Input: horizon H , rank d, number of episodes n, finite policy class Π

1: Collect a dataset D = {(xth, ath, rth)Hh=1}
n/2
t=1 by sampling n/2 trajectories where actions are

sampled from Uniform(A).
2: for d ∈ {1, 2, . . . ,H} do
3: for policy π ∈ Π do
4: Estimate Ṽ πd by calling ValEstimate(H, d,D, π).
5: Compute the policy π̃d ∈ argmaxπ∈Π Ṽ

π
d .

6: Collect n/2H more episodes using the policy π̃d and estimate the value V̄ π̃d using the
empirical average of the returned rewards.

7: Return: policy π̃ with best estimated value π̃ ∈ argmaxd∈[H] V̄
π̃d .

Note that, in Algorithm 5, we cap the value of d∗ by H . In the case, when d∗ > H , we can
directly estimate the expected reward for each policy by importance sampling upto H steps, and
thus compute the optimal policy in Π.

Finally, we can get an algorithm that adapts to both the unknown rank d∗ and the eigenspectrum
simultaneously by using the procedure AdaValEstimate (given in Algorithm 4) instead of the proce-
dure ValEstimate in Algorithm 5. This implies the following adaptive bound for well mixing MDPs.

Corollary 2 (Well mixing MDP). Given δ ∈ (0, 1), horizon H , a policy class Π and a MDP M.

(a) If for every policy π ∈ Π, the transition matrix Tπ has at most d∗ non-zero eigenvalues
such that the second largest eigenvalue |λπ2 | ≤ 1 − γ , where K and γ are not known to
the learner. Then, Algorithm 5 (run win AdaValEstimate instead of ValEstimate) returns a
policy π̃ such that, with probability at least 1− δ,

V π̃ ≥ max
π∈Π

V π − Õ
((K

γ

)2d∗ 1√
n

)
.

(b) If for every policy π ∈ Π, the mixing time of the transition matrix Tπ is bounded by τ ,
where τ is not known to the learner. Then, Algorithm 5 (run win AdaValEstimate instead of
ValEstimate) returns a policy π̃ such that, with probability at least 1− δ,

V π̃ ≥ max
π∈Π

V π − Õ
(K2τ

√
n

)
.

The exponential dependence in the mixing time in the above performance guaranee is unavoidable
without further assumptions as illustrated by our lower bounds construction in Section 5.
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E Lower bounds

E.1 Lower bound construction

We start by describing the lower bound construction, consisting of the policy class Π and the family
M of Markov decision processes with rank 2d+2. All MDPs in the family M have the observation
space X of finite (but very large) size N = |X | and action space A = {0, 1}, but have different
transition dynamics.

Policy class Π. The policy class Π ⊂ {X 7→ A} consists of K = (H/d)
d deterministic policies

that are sufficiently distinct from each other. Specifically, for any two distinct policies (π, π′) ∈ Π2,∑
x∈X

1{π(x) 6= π′(x)} ≥ N

4
.

Existence of such a policy class follows from the Gilbert-Varshamov bound (Lemma 18) when
8d log(H/d) ≤ N .

Family of MDPs M . Each MDPMπ,φ ∈M is indexed by a policy π ∈ Π (which will be optimal
in that MDP) and a function φ : X 7→ S that maps each observation in x ∈ X to one of the 2d + 2
hidden states given by S = {(1, g), (1, b), . . . , (d, g), (d, b),+,−}. In the following, we describe
the transition dynamics and the reward function for the MDP Mπ∗,φ.

Transition dynamics of Mπ,φ. The transition dynamics of Mπ,φ is governed by the mapping φ
and the dynamics in the 2d + 2 latent states. The dynamics in the latent states S is given by two
parallel chains, depicted in Figure 2. Each latent state, except for the final states + and −, have the
form (i, g) or (i, b) where i ∈ [d] denotes the index in the chain, and the notation g and b denotes
good states and bad states respectively. The initial observation x0 always corresponds to the hidden
state (1, g). At each time step, independent of the action taken, the chain index i increases by 1
with probability pi (defined later) or stays the same with probability (1 − pi). As long as the agent
follows actions according to π, the next latent state remains a good state (with the second component
g). However, as soon as the agent takes an action that π would not have taken, the second component
is set to b and then stays b forever. If the agent reaches latent state (d, g) it transitions to the latent
state + with probability 1

2 + ε and to the latent state− with probability 1
2 − ε. From (d, b), the agent

transitions to both the latent states + or − with equal probability. Finally, from the hidden state +,
the agent transitions to − in the next step with probability 1. The state − always transitions back to
itself independent of the action taken.

We next describe, how the above dynamics in the latent state space defines the transition dynamics
for the MDP Mπ,φ in the observation space. Define Xs := {x ∈ X | φ(x) = s} as the set of
observations from X that are mapped to latent state s ∈ S by the feature mapping φ, and define
Ds := Uniform(Xs) to denote the uniform distribution over the set Xs. The initial observation x0

is sampled independently from µ0 = D(1,g). The two parameters π and φ of MDP Mπ,φ define the
transition dynamics Tπ,φ as follows:

a) For any observations x ∈ X(i,g) of good latent states, where i ∈ [d− 1],

Tπ,φ(x, a) =

{
piD(i+1,g) + (1− pi)D(i,g) if a = π(x)

piD(i+1,b) + (1− pi)D(i,b) else
,

where the value of pi ∈ (0, 1) is set later and Tπ,φ(x, a) denotes the probability distribution
over the next observation x′ when taking action a at observation x.

b) For any observations x ∈ X(i,b) of bad latent states, where i ∈ [d− 1] and all a ∈ A,

Tπ,φ(x, a) = piD(i+1,b) + (1− pi)D(i,b).

c) For any observations x ∈ X(d,g) of the good goal state and all a ∈ A,

Tπ,φ(x, a) =

(
1

2
+ ε

)
D+ +

(
1

2
− ε
)
D−,

where the bias ε ∈ (0, 1/2) is set later.
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Figure 2: Latent state construction: contextual combination lock. As long as the agent follows
actions of the policy π that characterizes the MDP Mφ,π (blue arrows), the agent remains in good
states (i, g) and receives a Bernoulli(1/2 + ε) reward but otherwise transits to bad states (i, b) and
receives a Bernoulli(1/2) reward.

d) For any observation x ∈ X(d,b) of the bad goal state, and all a ∈ A,

Tπ,φ(x, a) =
1

2
D+ +

1

2
D−.

e) For any observation x ∈ X− ∪ X+ of latent states − and +, and all a ∈ A,

Tπ,φ(x, a) = D−.

Reward function for Mφ,π . For any observation x, the reward is 0 unless the latent state corre-
spond to x is +, in which case, the reward is 1. Specifically,

r(x, a) = 1{x ∈ X+} .

Initial observation in Mφ,π . The initial observation x0 is sampled uniformly at random from
X(1,g).

Additional MDP M0,φ. In addition to the above defined MDPs Mπ,φ, we define the MDP M0,φ

for every φ in the MDP where latent states with b and g behave exactly the same. Specifically, the
transition dynamics is given by

T0,φ(x, a) =


1
2D+ + 1

2D− if x ∈ X(d,b) ∪X(d,g)
p
2D(i+1,b) + 1−p

2 D(i,b) + p
2D(i+1,g) + 1−p

2 D(i,g) if x ∈ X(i,b) ∪X(i,g) for i ∈ [d− 1]

D− if x ∈ X+ ∪X−
.

Note that the actions taken do not affect the rewards or observations received in MDPs M0,φ and
thus every policy is an optimal policy.

The family of MDPs M is finally defined as

M := {Mπ,φ | π ∈ Π, φ ∈ X 7→ S} ∪ {M0,φ | φ ∈ X 7→ S}.

We note that the rank of each MDP in the class M is O(d) as show in the following lemma.

Lemma 17 (Rank bound for MDPs in M ). Let Mπ∗,φ be an MDP in M . Let π ∈ Π be any policy
and let Tππ∗,φ denote the induced transition matrix of the policy π in the MDPMπ∗,φ. Then, the rank
of the matrix Tππ∗,φ is bounded as

rank(Tππ∗,φ) ≤ 2d− 1 and rank(Tπ0,φ) ≤ 2d− 1 .
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Further, the non-zero eigenvalues of Tππ∗,φ and Tπ0,φ are given by
1− pi for s = (i, b) where i ∈ [d− 1]

(1− pi) Prx∼Unif(Xs)(π
∗(x) = π(x)) for s = (i, g) where i ∈ [d− 1]

1 for s = −.
and


1−pi

2 for s = (i, g) where i ∈ [d− 1]
1−pi

2 for s = (i, b) where i ∈ [d− 1]

0 for s ∈ {+, (d, g), (d, b))}
1 for s = −.

respectively.

Proof. We can write the transition probability from observation x to x′ as

Tππ∗,φ(x′|x) =1{π(x) = π∗(x)}Pgood(φ(x′)|s = φ(x))
1

|Xφ(x′)|

+ 1{π(x) 6= π∗(x)}Pbad(φ(x′)|s = φ(x))
1

|Xφ(x′)|

where Pgood ∈ RS×S and Pbad ∈ RS×S are the latent state transition kernels when the agent follows
a good action and bad action respectively. Without loss of generality, we can assume that latent
states are ordered as

(1, g), (2, g), . . . , (d, g), (1, b), (2, b), . . . , (d, b),+,−
in which case the agent can only move forward (or stay in the same state) in this order. Thus, when
writing Pgood and Pbad as matrices over S ×S in this order, they are upper-triangular matrices. Their
eigenvalues correspond to the entries on the diagonal and hence, the probability of staying in each
latent state is an eigenvalue, including 1− pi for states (i, b) all i ∈ [d− 1] for both Pgood and Pbad.
In matrix form, the transition matrix over observations can be written as

Tππ∗,φ =
|S|
|X |

IgoodΦTPgoodΦ +
|S|
|X |

IbadΦTPbadΦ,

where Φ ∈ RS×X with Φs,x = 1{φ(x) = s} is a matrix form of φ and Igood ∈ RX×X and
Ibad ∈ RX×X are diagonal matrices with entries [Igood]x,x = 1{π(x) = π∗(x)} and [Ibad]x,x =
1{π(x) 6= π∗(x)}, respectively. By the Weinstein–Aronszajn identity, the eigenvalues of Tππ∗,φ are
identical to the eigenvalues of

|S|
|X |

ΦIgoodΦTPgood +
|S|
|X |

ΦIbadΦTPbad = IS,goodPgood + IS,badPbad,

where IS,good ∈ RS×S and IS,bad ∈ RS×S are diagonal matrices that contain for each s ∈ S the
probability that policy π matches π∗ or does not match π∗ on observations of s, respectively. Finally,
IS,goodPgood + IS,badPbad is also an upper triangular matrix whose eigenvalues are the entries on the
diagonal. Therefore, the eigenvalues of this matrix and Tππ∗,φ are

1− pi for s = (i, b) where i ∈ [d− 1]

(1− pi) Prx∼Unif(Xs)(π
∗(x) = π(x)) for s = (i, g) where i ∈ [d− 1]

0 for s ∈ {+, (d, g), (d, b))}
1 for s = −.

Thus, the rank of Tππ∗,φ is at most 2d − 1. Analogously, we can show that the eigenvalues of Tπ0,φ
are 

1−pi
2 for s = (i, b) and (i, g) where i ∈ [d− 1]

0 for s ∈ {+, (d, g), (d, b))}
1 for s = −.

Thus, the rank of Tππ∗,φ is at most 2d− 1.
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Lemma 18 (Gilbert-Varshamov bound [Massart, 2007]). Let N > 1. There exists a subset V of
{0, 1}N of size |V| ≥ exp(N/8) such that

N∑
i=1

1{vi 6= v′i} ≥
N

4
(52)

for all v, v′ ∈ V .

E.2 Proof of Theorem 2

In the following, we provide the lower bound which states that the factor of Ω(Hd) in unavoidable
without making further assumptions. We restate Theorem 2 here with explicit constants:
Theorem 7. Let ε̃ ∈ (0, 1/26), δ ∈ (0, 1/2), d ≥ 4 and H ≥ 219d. There exists a realizable policy
class of size (H/d)d and a family of MDPs with rank at most 2d, finite observation space, horizon
H and two actions such that: Any algorithm that returns an ε̃-optimal policy in any MDP in this
family with probability at least 1− δ has to collect at least

1

12168 ·Hε̃2

( H

41d

)d/2
log
( 1

2δ

)
episodes in expectation in some MDP in this family.

Proof. Consider any (ε̃, δ)-PAC RL algorithm A . Our lower bound is based on the policy class Π
and the family of MDPs M constructed in Appendix E.1. We set |Π| = (H/d)d and pi = d/H for
all i ∈ [d].

We first define additional notation. Let the random variableG denote the first time-step in an episode
when an observation from the latent state (d, g) or (d, g) is observed. In order to reach these latent
states, the agent is required to do d − 1 latent state progressions, each happening with probability
p1, . . . , pd−1 respectively. Furthermore, for our constructions in Appendix E.1 of the classM, we
note that the distribution of G only depends on {pi}i<d, d and H , but is otherwise independent of
the MDP instance, the parameter ε and the played policy. In fact, when pi = d/H , an application of
Lemma 21 implies that

Pr(G ≤ H − 1) ≥ 1− exp(−2/5). (53)

Now, consider any MDP Mπ∗,φ ∈ M and let Vπ∗,φ(π) denote the expected return of the policy π
in the MDP Mπ∗,φ. From our MDP construction, we note that for the optimal policy π∗,

Vπ∗,φ(π∗) =
(1

2
+ ε
)

Pr(G ≤ H − 1).

Similarly, for any other policy π ∈ Π, we have1

Vπ∗,φ(π) =
1

2
Pr(G ≤ H − 1) + εEππ∗,φ

[
1{π(X1:G−1) = π∗(X1:G−1)}

]
Pr(G ≤ H − 1),

where {π(X1:G−1) = π∗(X1:G−1)} denotes the event that the action chosen by π agrees with
that chosen by π∗ on the observations X1:G−1 up to time step G − 1. Hence, we have that the
suboptimality gap for the policy π is

Vπ∗,φ(π∗)− Vπ∗,φ(π) = εPr(G ≤ H − 1) Prππ∗,φ(∃h ≤ G− 1 s.t. π(Xh) 6= π∗(Xh)) . (54)

Next, define the random variable τ to denote the number of episodes after which the algorithm
A terminates and let π̂ denote the policy returned on termination. Both, τ and π̂, depend on the
algorithm A and the underlying MDP on which A collects data from. Since the algorithm A is
(ε̃, δ)-PAC, we have that for any MDP Mπ∗,φ, with probability at least 1− δ,

Vπ∗,φ(π∗)− Vπ∗,φ(π̂) ≤ ε̃.
1Throughout the proof, for any random variable Y , we define the notation Eππ∗,φ[Y ] to denote the expecta-

tion of Y where the trajectory is drawn using the policy π in the MDP Mπ∗,φ.
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Using the relation in (54), and plugging in the bound in (53), in the above, we get that

εPr(G ≤ H − 1) Prπ̂π∗,φ(∃h ≤ G− 1 s.t. π̂(Xh) 6= π∗(Xh)) ≤ ε̃, (55)

must hold with probability at least 1 − δ for any MDP Mπ∗,φ. For our lower bound constructions,
we set

ε =
4ε̃

Pr(G ≤ H − 1)
≤ 13ε̃, (56)

and thus (55) implies that Prπ̂π∗,φ(π̂(X1:G−1) = π∗(X1:G−1)) ≥ 3/4 must hold with probability at
least 1− δ. Define the event

OptA
π∗,φ :=

{
Prπ̂π∗,φ(A1:G−1 = π∗(X1:G−1)) ≥ 3/4

}
.

The above analysis suggests that for any Mπ∗,φ

Prπ∗,φ

(
OptA

π∗,φ

)
≥ 1− δ. (57)

Next, for any π∗ ∈ Π, define the measure Prπ∗(Y ) = 1
|Φ|
∑
φ∈Φ Prπ∗,φ(Y ), i.e. the probability

measure induced by first picking φ uniformly at random from the set of all mappings Φ and then
considering the distribution induced by Mπ∗,φ. The measure Pr0(Y ) = 1

|Φ|
∑
φ∈Φ Pr0,φ(Y ) is

defined analogously for the MDP M0,φ. Thus, from (57), we have that for any π∗ ∈ Π,

Prπ∗(OptA
π∗,φ) ≥ 1− δ. (58)

We are now ready to prove the desired lower bound. Let

Tmax :=
1

δ
· 1

12168Hε̃2

( H

41d

)d/2
· log(1/2δ).

There are two natural scenarios: either (a) Prπ∗(τ > Tmax) > δ for some π∗ ∈ Π, or (b) Prπ∗(τ >
Tmax) ≤ δ for all π∗ ∈ Π. We analyse the two cases separately below.

Case-(a): Prπ∗(τ > Tmax) > δ for some π∗ ∈ Π. The lower bound follows immediately in
this case. Note that,

max
φ∈Φ

Eπ∗,φ[τ ] > Eπ∗ [τ ] ≥ Prπ∗(τ > Tmax) · Tmax ≥ δTmax .

Hence, there exists an MDP in Mπ∗,φ ∈ M for which the expected number of episodes collected
by the algorithm A is at least δTmax, which is the desired lower bound.

Case-(b): Prπ∗(τ > Tmax) ≤ δ for all π∗ ∈ Π. Due to (58), for any policy π∗ ∈ Π, we have:

Prπ∗(τ ≤ Tmax ∧OptA
π∗,φ) = Prπ∗(OptA

π∗,φ)− Prπ∗(τ > Tmax ∧OptA
π∗,φ)

≥ 1− 2δ.

The above condition intuitively states that the policy returned by the algorithm will, with high prob-
ability, match the actions of the optimal policy for G− 1 time steps for any policy π∗ ∈ Π. On the
other hand, we show in Lemma 25 through a packing argument that the expected number of policies
that can be matched for G− 1 steps when observations are drawn uniformly is bounded, i.e.

Eunif
[∑
π∗

1{π∗(X1:G) = π(X1:G)}
]
≤ (41 log(H/d))dH + 2 ,

where the notation Eunif [·] denotes that X1:G are drawn independently from uniform(X ). We
denote this bound by C = (41 log(H/d))

d
H + 2. We show in Lemma 19 through a careful

information-theoretic argument that the expected stopping time of the algorithm A on instances
M0,φ is bounded from below as

E0[τ ] ≥ 1

8ε2

( |Π|
C
− 8

3

)
log(1/2δ)−

(
2Tmax +

7

12ε2
log(1/2δ)

)
· |Π|
C
·∆(Tmax) ,
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where ∆(Tmax) := 4T 2
maxH

2|S|/N accounts for the differences in observation distributions in
different instances of M .

Plugging in the value of |Π| and C, we note that

|Π|
C
≥ (H/d)

d

2H(41 log(H/d))
d

=
1

2H

( H

41d log(H/d)

)d
≥ 1

2H

( H

41d

)d/2
.

Additionally, for d ≥ 4 and H/d ≥ 219, we have 8/3 ≤ (H/41d)
d/2
/4H . Combining these

bounds yields

E0[τ ] ≥ 1

6084Hε̃2

( H

41d

)d/2
log(1/2δ)−

(
2Tmax +

7

12ε2
log(1/2δ)

)
· |Π|
C
·∆(Tmax),

Finally this bound only depends on the number of observations N through ∆(Tmax) which goes to
zero as N → ∞. Therefore, we can pick N large enough such that the second term becomes small
enough and thus

E0[τ ] ≥ 1

12168Hε̃2

( H

41d

)d/2
log(1/2δ) .

Since this bound holds on average over all MDPs M0,φ ∈M, this lower bound must also hold in at
least one specific M0,φ ∈M. This gives us the desired statement.

For the rest of the section, we will build on the notation introduced in the above proof. The following
technical lemma gives a lower bound on E0[τ ] for the case-(b) above.
Lemma 19. Let A be any (ε̃, δ)-PAC RL algorithm. Let Tmax ∈ N and assume that Prπ∗(τ ≤
Tmax ∧OptA

π∗,φ) ≥ 1− 2δ holds for all π∗ ∈ Π. Further, let C > 0 denote an upper-bound on the
number of policy matches per episode, i.e., for all π ∈ Π,

Eunif

[∑
π∗

1{π∗(X1:G) = π(X1:G)}
]
≤ C.

Then the expected stopping time τ for the algorithm A over MDP instances M0,φ where φ is drawn
randomly from Φ is bounded from below as

E0[τ ] ≥ 1

8ε2

( |Π|
C
− 8

3

)
log(1/2δ)−

(
2Tmax +

7

12ε2
log(1/2δ)

)
· |Π|
C
·∆(Tmax) ,

where ∆(Tmax) = 4T 2
maxH

2|S|/N .

Proof. Let Gi denote the first timestep when the agent reaches the latent state (d, g) or (d, b) in the
ith episode collected by the algorithm A . We denote by

Nτ∧Tmax
π∗ =

τ∧Tmax∑
i=1

1{Ai,1:Gi−1 = π∗(Xi,1:Gi−1)}

the number of episodes among the first τ ∧ Tmax = min{τ, Tmax} episodes where the actions
Ai,1:Gi−1 played by A in the ith episode matches those of π∗ on the corresponding observations, un-
til the latent state (d, g) or (d, b) was reached. We first lower-bound the expected value of Nτ∧Tmax

π∗

under the measure induced by Pr0. To that end, we introduce auxiliary MDPs M0,π∗,φ that are
identical to Mπ∗,φ on all latent states except for (d, g). In M0,π∗,φ, we transition to both + and −
with equal probability from the latent state (d, g). 2 Analogous to Prπ∗ , we define Pr0,π∗ to denote
the law when φ is drawn uniformly from Φ beforehand and the underlying MDPS is M0,π∗,φ. We
also define Pr0 as the law when π∗ is additionally drawn uniformly at random from Π beforehand.
Finally, E0,π∗ [·] and E0[·] are defined as the expectations under Π0,π∗ and Pr0 respectively. Follow-
ing the standard machinery for lower-bounds [Garivier et al., 2019, Domingues et al., 2021], we get
that

E0[Nτ∧Tmax
π∗ ]

(i)

≥ E0,π∗ [N
τ∧Tmax
π∗ ]− Tmax∆(Tmax)

2Note that the MDPs M0,π∗,φ are only an analytical tool and do not belong to the class M .
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≥ E0,π∗ [N
τ∧Tmax
π∗ ] · kl(1/2, 1/2 + ε)

4ε2
− Tmax∆(Tmax)

=
1

4ε2
KL
(

Pr
Fτ∧Tmax
0,π∗ ,Pr

Fτ∧Tmax
π∗

)
− Tmax∆(Tmax),

where the inequality (i) follow from an application of Lemma 24. In the above, for any distributions
P and Q, the notation KL(P‖Q) denotes the KL-divergence between P and Q, and the superscript
Fτ∧Tmax

denotes the conditioning w.r.t. the natural filtration generated by the first τ∧Tmax episodes.
Further, define kl(p, q) to denote the KL-divergence of two Bernoulli random variables with means
p and q respectively. We now apply Lemma 1 of Garivier et al. [2019] which gives that for any
Fτ∧Tmax -measurable variable random variable Z with values in [0, 1], we have that

E0[Nτ∧Tmax
π∗ ] ≥ 1

4ε2
kl(E0,π∗ [Z],Eπ∗ [Z])− Tmax∆(Tmax)

(ii)

≥ 1

4ε2
(1− E0,π∗ [Z]) log

( 1

1− Eπ∗ [Z]

)
− 1

4ε2
log(2)− Tmax∆(Tmax)

(iii)

≥ 1

4ε2
(1− E0[Z]) log

( 1

1− Eπ∗ [Z]

)
− log(2)

4ε2

−
(
Tmax +

1

4ε2
log
( 1

1− Eπ∗ [Z]

))
∆(Tmax) (59)

where the inequality (ii) follows due to the fact that kl(p, q) ≥ (1− p) log(1/(1− q))− log(2), and
the inequality (iii) holds from an application of Lemma 24. Next, define the random variable Zπ∗
as

Zπ∗ = Prπ∗
(
τ ≤ Tmax ∧OptAπ∗,φ | Fτ∧Tmax

)
and note that Zπ∗ is Fτ∧Tmax

-measurable by construction. Thus, plugging Z = Zπ∗ in (59) and
using the fact that Eπ∗ [Zπ∗ ] = Prπ∗(τ ≤ Tmax ∧OptAπ∗,φ) ≥ 1− 2δ (by assumption), we get that

E0[Nτ∧Tmax
π∗ ] ≥ 1

4ε2
(1− E0[Zπ∗ ]) log(1/2δ)− log(2)

4ε2
−
(
Tmax +

1

4ε2
log(1/2δ)

)
∆(Tmax),

Summing the above for all policies π∗ ∈ Π yields that∑
π∗∈Π

E0[Nτ∧Tmax
π∗ ] ≥ 1

4ε2

(
|Π| −

∑
π∗∈Π

E0[Zπ∗ ]
)

log(1/2δ)

− |Π| log(2)

4ε2
−
(
Tmax +

log(1/2δ)

4ε2

)
|Π|∆(Tmax). (60)

We further lower bound the above by deriving an upper bound on
∑
π∗∈Π E0[Zπ∗ ]. Note that for

any π∗ ∈ Π,

Zπ∗ = Prπ∗
(
τ ≤ Tmax ∧OptA

π∗,φ | Fτ∧Tmax

)
(i)
= Eπ∗

[
1{τ ≤ Tmax}1

{
Prπ̂π∗,φ(π̂(X1:G−1) = π∗(X1:G−1)) ≥ 3/4

}
| Fτ∧Tmax

]
(ii)

≤ 4

3
Eπ∗

[
1{τ ≤ Tmax}Prπ̂π∗,φ(π̂(X1:G−1) = π∗(X1:G−1)) | Fτ∧Tmax

]
where the equality (i) above follows from the definition of OptA

π∗,φ, and the inequality in (ii)
holds from an application of Markov’s inequality and using the fact that 1{τ ≤ Tmax} is Fτ∧Tmax -
measurable (by construction). Note that when τ ≤ Tmax (the only outcomes where the random
variable inside the expectation can be non-zero), we also have that π̂ is Fτ∧Tmax

-measurable.3 Thus,
the only randomness in Prπ̂π∗,φ above is due to φ which affects the distribution of the observations
X1:G−1 inside Prπ̂π∗,φ. However, note that this distribution is exactly the distribution of observations

3This assumes a deterministic algorithm but we can handle stochastic algorithms by simply conditioning on
π̂ (and therefore the internal randomness of the algorithm) as well.
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in the (τ + 1)th episode if we assume (without loss of generality) that the algorithm plays π̂ in that
episode. Thus, we can write the right hand side in the above as

Zπ∗ ≤
4

3
1{τ ≤ Tmax}Prπ∗

(
π∗(Xτ+1,1:Gτ+1−1) = π̂(Xτ+1,1:Gτ+1−1) | Fτ∧Tmax

)
.

An application of Lemma 23 in the above implies that

Zπ∗ ≤
4

3
1{τ ≤ Tmax}

(
Prunif(π

∗(X1:G−1) = π̂(X1:G−1)) +
2|S|H2(Tmax + 1)

N

)
, (61)

which further implies that∑
π∗∈Π

E0[Zπ∗ ] ≤
4

3
E0

[ ∑
π∗∈Π

Prunif(π
∗(X1:G−1) = π̂(X1:G−1))

]
+

4

3
|Π|∆(Tmax)

=
4

3
C +

4

3
|Π|∆(Tmax), (62)

where the value of C and ∆(Tmax) are given in the lemma statement. Plugging the above bound in
(60), we get that∑
π∗∈Π

E0[Nτ∧Tmax
π∗ ] ≥ 1

4ε2

(
|Π| − 4

3
C
)

log(1/2δ)− |Π| log(2)

4ε2
−
(
Tmax +

7 log(1/2δ)

12ε2

)
|Π|∆(Tmax).

(63)

Relating policy matches to stopping time: In the following, we show an upper bound on∑
π∗∈Π E0[Nτ∧Tmax

π∗ ] that, when taken together with the above lower bound, gives us the desired
lower bound on E0[τ ]. We note that

∑
π∗∈Π

E0[Nτ∧Tmax
π∗ ] =

Tmax∑
t=1

E0

[
1{τ > t− 1}

∑
π∗∈Π

1{At,1:Gt−1 = π∗(At,1:Gt−1)}
]

=

Tmax∑
t=1

E0

[
1{τ > t− 1}E0

[ ∑
π∗∈Π

1{πt(Xt,1:Gt−1) = π∗(Xt,1:Gt−1)} | πt,Ft−1

]]
(i)

≤
Tmax∑
t=1

E0

[
1{τ > t− 1}Eunif

[ ∑
π∗∈Π

1{πt(X1:G−1) = π∗(X1:G−1)}
]]

+ Tmax|Π|∆(Tmax)

(ii)

≤
Tmax∑
t=1

E0[1{τ > t− 1}C] + Tmax|Π|∆(Tmax)

≤ CE0[τ ∧ Tmax] + Tmax|Π|∆(Tmax)

≤ CE0[τ ] + Tmax|Π|∆(Tmax) (64)

where the inequality (i) follows from an application of Lemma 23 and the inequality (ii) follows
from the definition of C given in the lemma statement.

Combining the lower bound in (63) with the upper bound in (64) and rearranging the terms yields
that

E0[τ ] ≥ 1

4ε2

( |Π|
C
− 4

3

)
log(1/2δ)− |Π|

C

1

4ε2
log(2)−

(
2Tmax +

7

12ε2
log(1/2δ)

) |Π|
C

∆(Tmax)

≥ 1

8ε2

( |Π|
C
− 8

3

)
log(1/2δ)−

(
2Tmax +

7

12ε2
log(1/2δ)

) |Π|
C

∆(Tmax)

where the last inequality is due to the fact that δ ≤ 1 ≤ exp(2)/4 and thus log(1/2δ) ≥ 2 log(2).
This concludes the desired statement.
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E.3 Proof of Theorem 4 (eigenspectrum dependent lower bounds)

We here restate Theorem 4 with explicit constants:

Theorem 8 (Adaptive lower bound). Let ε̃ ∈ (0, 1
16 ), δ ∈ (0, 1

2 ), d ≥ 4 and (λi)i∈[d−1] ∈ [0, 1]d−1

satisfy(16

3
(15(d− 1))d−1

)2

≤
d−1∏
i=1

1

1− λi
≤ 8

7
exp(H/2) and

d−1∑
i=1

1

1− λi
≤ H

4 ln(4d)
.

Then, there is a realizable policy class and family of MDPs with rank at most Θ(d), finite observation
space, horizon H and two actions such that: For each i ∈ [d], policy π and MDP M in this class,
there is an eigenvalue of the induced transition matrix TπM in [λi/2, λi]. Furthermore, any algorithm
that returns, with probability at least 1 − δ an ε-optimal policy for any MDP in this family, has to
collect at least

1

1100ε̃2

( 1

15(d− 1)

)d−1

√√√√d−1∏
i=1

1

1− λi
log(1/2δ)

episodes in expectation in some MDP in this family.

Proof. This theorem follows immediately from setting pi = 1− λi with Lemma 10 and Lemma 20
below.

Lemma 20. Let ε̃ ∈ (0, 1/16) and letM be the family of MDPs defined in the proof of Theorem 2
but where the probability p for progression in latent states (i, g) and (i, b) is set to pi ∈ (0, 1). If(16

3
(15(d− 1))d−1

)2

≤
d−1∏
i=1

1

pi
≤ 8

7
exp(H/2) and

d−1∑
i=1

1

pi
≤ H

4 ln(4d)
.

then any learner that returns an ε̃-optimal policy in every MDP in this class with probability at least
1− δ has to collect at least

1

1100ε̃2

( 1

15(d− 1)

)d−1

√√√√d−1∏
i=1

1

pi
log(1/2δ)

episodes in expectation in at least one MDP in the family.

Proof. We follow the proof of Theorem 2 but set

Tmax :=
1

δ
· 1

1100ε̃2

( 1

15(d− 1)

)d−1

√√√√d−1∏
i=1

1

pi
log(1/2δ) .

Then one of two cases can happen: Either there is an MDPM ∈M in the class where the algorithm
samples in expectation at least EM [τ ] ≥ δTmax episodes, or

Prπ∗(τ ≤ Tmax ∧OptA
π∗,φ) ≥ 1− 2δ

holds for all π∗ ∈ Π where OptA
π∗,φ = {Prπ̂π∗,φ(A1:G−1 = π∗(X1:G−1)) ≥ 3/4} denote this

event, where the policy returned by the algorithm π̂ is ε̃-optimal in Mπ∗,φ. Since the first case
immediately gives us the desired lower bound, in the following, we consider the case that Prπ∗(τ ≤
Tmax ∧OptA

π∗,φ) ≥ 1− 2δ holds for every policy π∗ ∈ Π.

An application of Lemma 26 gives us

Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)}
]
≤ C ,
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for any policy π with C = 2 + |Π| ·
∏d−1
i=1

(
pi

log |Π|
log(8/7)

)
as long as

|Π| ≤ 8

7
exp(H/2).

Applying Lemma 19, the expected stopping time τ of algorithm A on instances M0,φ is bounded
from below as

E0[τ ] ≥ 1

8ε2

( |Π|
C
− 8

3

)
log(1/2δ)−

(
2Tmax +

7

12ε2
log(1/2δ)

) |Π|
C

∆(Tmax) .

We now set |Π| =
∏d−1
i=1

1
pi

and bound the ratio

|Π|
C
≥ min

{
1

4

d−1∏
i=1

1

pi
,

∏d−1
i=1

1
pi(

ln
∏d−1
i=1

1
pi

)d−1

(
ln

8

7

)d−1}

≥ min

{
1

4

d−1∏
i=1

1

pi
,

√√√√d−1∏
i=1

1

pi

(
ln 8

7

2(d− 1)

)d−1}

≥
( 1

15(d− 1)

)d−1

√√√√d−1∏
i=1

1

pi

where the inequality in the second line follows from ln(y) ≤ 2(d−1)y
1

2(d−1) and the last line above
is due to the fact that |Π| ≥ 1 and d ≥ 2. Now,

|Π| =
d−1∏
i=1

1

pi
≥
(16

3
[15(d− 1)]d−1

)2

is sufficient for |Π|C ≥
16
3 which yields

E0[τ ] ≥ 1

16ε2

|Π|
C

log(1/2δ)−
(

2Tmax +
7

12ε2
log(1/2δ)

) |Π|
C

∆(Tmax) .

Since ∆(Tmax) is the only term that depends on N , we can pick N large enough so that the first
term dominates and

E0[τ ] ≥ 1

17ε2

|Π|
C

log(1/2δ) ≥ 1

17ε2

( 1

15(d− 1)

)d−1

√√√√d−1∏
i=1

1

pi
log(1/2δ).

It only remains to resolve the 1/ε2 to 1/ε̃2. To that end, we now bound the probability of reaching
the goal state by the end of the episode by

Pr(G ≤ H − 1) ≥ Pr
(
G ≤

d−1∑
i=1

2

pi
ln

2d

1/2

)
≥ 1

2
,

because by Lemma 21, the probability that the agent spends more than 2
pi

ln 2d
1/2 time steps in states

(i, b) or (i, g) is bounded by 1
2d . Thus,

ε =
4ε̃

Pr(G ≤ H − 1)
≤ 8ε̃.

which yields the final bound

E0[τ ] ≥ 1

1100ε̃2

( 1

15(d− 1)

)d−1

√√√√d−1∏
i=1

1

pi
log(1/2δ).

Since bound on the stopping time holds on average over instances M0,φ, there must be at least one
MDP instance for which the expected stopping time adheres to this lower-bound. This proves the
desired adaptive lower bound.
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Lemma 21. Let the progression probabilities pi = p for all i ∈ [d − 1] where p ∈ (0, 1). Further,
let G denote the time step within the episode at which a goal step is reached. For any δ ∈ (0, 1)

Pr
(
G ≤ 2d

p
ln

1

δ

)
≥ 1− δ .

Proof. The event that G is at least n + 1 is equivalent to at most d − 2 state progressions within n
trials which each happen with probability p. Let Xi ∈ {0, 1} be the indicator for a state progression
at time i. Then

Pr(G ≥ n+ 1) = Pr
( n∑
i=1

Xi ≤ d− 2
)

= Pr
( n∑
i=1

Xi ≤ np
(
1−

(d− 2

np
− 1
)))

≤ exp
(
−np

2

(d− 2

np
− 1
)2)

by a multiplicative Chernoff bound. This yields for all δ ∈ (0, 1)

Pr
(
G ≥ 2d

p
ln 1/δ

)
≥ 1− δ .

E.4 Change of observation distributions

Lemma 22. Let Fi,h−1 = σ
(
Fi−1, {Xi,h′ , Ai,h′ , Ri,h′}h′∈[h−1]

)
be the sigma-field of everything

observable up to before the h’th observation in episode i. Then

‖Pr0,π∗(Xi,h|Fi,h−1)− Prunif(Xi,h)‖1 ≤ 2
|S|Hi
N

‖Prπ∗(Xi,h|Fi,h−1)− Prunif(Xi,h)‖1 ≤ 2
|S|Hi
N

‖Pr0(Xi,h|Fi,h−1)− Prunif(Xi,h)‖1 ≤ 2
|S|Hi
N

,

where Prunif(Xi,h) is the uniform distribution over all possible observations X .

Proof. We prove the statement for Pr0,π∗ but the others can be proven analogously.

Let Fi,h−1 = σ
(
Fi− 1, {Xi,h′ , Ai,h′ , Ri,h′}h′∈[h−1]

)
be the sigma-field of everything

observable up to before the h’th observation in episode i. Further, F ′i,h−1 =

σ
(
Fi,h−1, {Sk,l}k∈[i−1],l∈[H], {Si,l}l∈[h]

)
is the sigma-field that in addition includes all latent state

labels up to Si,h.

Since F ′i,h determines the latent state mapping φ for the observations encountered so far but all
assignment of the remaining observations remains equally likely, we can write the conditional dis-
tribution of observation Xi,h in closed form as

Pr0,π∗
(
Xi,h = x|F ′i,h−1

)
=


1

N/|S| if x ∈ X sobs

0 if x ∈ Xobs \ X sobs(
1− |X sobs|

N/|S|
)

1
N−|Xobs| if x ∈ X \ Xobs

where Xobs are all observations encountered so far and X sobs are all observations encountered in Si,h
so far. Now

∣∣Pr0,π∗
(
Xi,h = x|F ′i,h−1

)
− Prunif(Xi,h = x)

∣∣ =


1

N/|S| −
1
N if x ∈ X sobs

1
N if x ∈ Xobs \ X sobs∣∣∣ 1
N −

(
1− |X sobs|

N/|S|
)

1
N−|Xobs|

∣∣∣ if x ∈ X \ Xobs

and thus∥∥Pr0,π∗
(
Xi,h|F ′i,h−1

)
− Prunif(Xi,h)

∥∥
1
≤ 2 max{|S||X sobs|, |Xobs|}

N
≤ 2|S|TmaxH

N
.

51



Since Pr0,π∗(Xi,h|Fi,h−1) = E0,π∗(Pr0,π∗(Xi,h|F ′i,h−1)|Fi,h−1) by marginalization, we also have

‖Pr0,π∗(Xi,h|Fi,h−1)− Prunif(Xi,h)‖1 ≤
2|S|TmaxH

N

which means that as long as Tmax � N , the conditional distribution of the current observations
remains close to Uniform(X ).

Lemma 23. Let Fi = σ
(
{Xk,h′ , Ak,h′ , Rk,h′}h′∈[H],k∈[i]

)
denote the natural filtration at the end

of episode i. Then

‖Prπ∗(Xi,1:H |Fi−1)− Prunif(Xi,1:H)‖1 ≤
2|S|H2i

N

‖Pr0(Xi,1:H |Fi−1)− Prunif(Xi,1:H)‖1 ≤
2|S|H2i

N
,

where Prunif(Xi,1:H) is the product distribution of uniform distributions over all possible observa-
tions X .

Proof. The random variables Xi,1:H are Fi-measurable. We can therefore consider any event A ∈
Fi and show that

|Prπ∗(A|Fi−1)− Prunif(A)| ≤ |S|H
2i

N

|Pr0(A|Fi−1)− Prunif(A)| ≤ |S|H
2i

N

analogously to Lemma 24 below. The result then follows immediately from the identity of `1 norm
and total variation.

Lemma 24. Let A ∈ FTmax
be any event that is FTmax

-measurable, where FTmax
is the sigma-field

induced by everything up to Tmax episodes. Then

|Pr0(A)− Pr0,π∗(A)| ≤ ∆(Tmax) =
4T 2

maxH
2|S|

N
.

Proof. Denote by Prt,h,unif
0,π∗ the distribution that matches Pr0,π∗ but where all observations after the

h’th observation in episode t are drawn uniformly random from X . First, since A ∈ FTmax and
Pr0,π∗(B) = PrTmax,unif

0,π∗ (B) for all events B ∈ FTmax , we have

Pr0,π∗(A) = PrTmax,H,unif
0,π∗ (A) .

We now peel off one time step at a time by showing that
∣∣∣Prt,h,unif

0,π∗ (A)− Prt,h+1,unif
0,π∗ (A)

∣∣∣ ≤ 2|S|Ht
N .

By the definition of these probabilities, the following chain of equations holds:

Prt,h,unif
0,π∗ (A)

= Et,h,unif
0,π∗

[
Prt,h,unif

0,π∗ (A|Xt,h,Ft,h−1)
]

= Et,h,unif
0,π∗

[
Prt,h−1,unif

0,π∗ (A|Xt,h,Ft,h−1)
]

= Et,h,unif
0,π∗

[∑
x∈X

Prt,h−1,unif
0,π∗ (A|Xt,h = x,Ft,h−1) Prt,h,unif

0,π∗ (Xt,h = x|Ft,h−1)
]

= Et,h,unif
0,π∗

[∑
x∈X

Prt,h−1,unif
0,π∗ (A|Xt,h = x,Ft,h−1) Prt,h−1,unif

0,π∗ (Xt,h = x|Ft,h−1)
]

+ Et,h,unif
0,π∗

[∑
x∈X

Prt,h−1,unif
0,π∗ (A|Xt,h = x,Ft,h−1)

(
Prt,h,unif

0,π∗ (Xt,h = x|Ft,h−1)− Prt,h−1,unif
0,π∗ (Xt,h = x|Ft,h−1)

)]
= Prt,h−1,unif

0,π∗ (A) + Et,h,unif
0,π∗

[∑
x∈X

Prt,h−1,unif
0,π∗ (A|Xt,h = x,Ft,h−1)(Pr0,π∗(Xt,h = x|Ft,h−1)− Prunif(Xt,h = x))

]
.

Thus, by rearranging terms, we have

|Prt,h,unif
0,π∗ (A)− Prt,h−1,unif

0,π∗ (A)| ≤ Et,h,unif
0,π∗

[
‖Pr0,π∗(Xt,h|Ft,h−1)− Prunif(Xt,h)‖1

]
≤ 2|S|Ht

N
,
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where the last inequality follows from Lemma 22. We now consider

Pr0,π∗(A)− Pr1,0,unif
0,π∗ (A) = PrTmax,H,unif

0,π∗ (A)− Pr1,0,unif
0,π∗ (A)

=

H∑
h=1

Tmax∑
t=1

Prt,h,unif
0,π∗ (A)− Prt,h−1,unif

0,π∗ (A)

where Prt,0,unif
0,π∗ = Prt−1,H,unif

0,π∗ and apply the bound to each term to arrive at

|Pr0,π∗(A)− Pr1,0,unif
0,π∗ (A)| ≤ 2T 2

maxH
2|S|

N
.

Note that for the distribution Pr1,0,unif
0,π∗ all observations are drawn uniformly at random and the re-

wards do not depend on the actions. Thus, Pr1,0,unif
0,π∗ = Pr1,0,unif

0 and we can derive analogously to
above that

|Pr0(A)− Pr1,0,unif
0 (A)| = |Pr0(A)− Pr1,0,unif

0,π∗ (A)| ≤ 2T 2
maxH

2|S|
N

.

Combining both bounds using the triangle inequality yields the desired statement

|Pr0(A)− Pr0,π∗(A)| ≤ 4T 2
maxH

2|S|
N

.

E.5 Bounds on expected policy matches per episode

Lemma 25 (Bound on expected policy matches with equal pi). Let π : X 7→ A any policy (that
does not need to be in the given policy class Π) and H ≥ 62d. Further, set |Π| = (H/d)

d
, and

p = d
H . Then

Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)}
]
≤
(

41 log(H/d)
)d
H + 2 ,

where Prunif draws all H observations X1:H i.i.d. from Uniform(X ) and G as usual.

Proof. For any h ∈ N with d ≤ h ≤ H , the following holds:

Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)}
]

= Pr(G ≤ h)Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)} | G ≤ h
]

+ Pr(G > h)Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)} | G > h
]

≤ |Π|Pr(G ≤ h) + Eunif

[∑
π∗

1{π∗(X1:h = π(X1:h)}
]

≤ (h− d+ 1)|Π|
(2peh

d

)d−1

+ Eunif

[∑
π∗

1{π∗(X1:h = π(X1:h)}
]
,

where the last inequality applies Lemma 27. Note that by the construction of Π, there can only be
one policy in Π which agrees with π on more than 7

8N observations in X . With all other policies,
π has to disagree on at least 1/8 fraction of all possible observations. To see this, assume that
there were two policies π1 6= π2 in Π for which ‖π − πi‖ < N/8. Then by triangle inequality
‖π1 − π2‖ < N/4 which contradicts the construction of Π. Thus, we can further bound the quantity
of interest as

Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)}
]
≤ (h− d+ 1)|Π|

(2peh

d

)d−1

+ 1 + (|Π| − 1)

(
7

8

)h
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≤ |Π|h
(2peh

d

)d−1

+ 1 + |Π| exp(−h log(8/7)) . (65)

We use the worst-case choices of |Π|, p and h as

|Π| =
(
H

d

)d
, h =

log |Π|
log(8/7)

, p =
d

H
.

Since the RHS of Equation 65 is non-decreasing in p and Π, a bound with these exact values is also
valid when p and Π are smaller. Note that under these choicesH ≥ 62dwhich implies Hd ≥ 15 ln H

d
is sufficient for h ≤ H − 1.

With these choices, the last term of Equation 65 is bounded by 1, i.e., |Π| exp
(
−h log 8

7

)
= 1, and

the first term is bounded as

|Π|h
(2peh

d

)d−1
=
( 2e

log(8/7)

)d(p
d

)d−1|Π|(log |Π|)d

≤ 41d
(Hd
d

log
H

d

)d(p
d

)d−1 ≤
(
41 log(H/d)

)d
H .

Lemma 26 (Bound on expected policy matches with arbitrary pi). Let the probability for progres-
sions be p1, . . . , pd−1 and let π : X 7→ A any policy (that does not need to be in the given policy
class Π). Further, assume that

|Π| ≤ exp
(H

2
log

8

7

)
.

Then

Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)}
]
≤ 2 + |Π|

d−1∏
i=1

(
pi

log |Π|
log(8/7)

)
,

where Prunif draws all H observations X1:H i.i.d. from Uniform(X ) and G as usual.

Proof. For any h ∈ N with d ≤ h ≤ H , the following holds:

Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)}
]

= Pr(G ≤ h)Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)} | G ≤ h
]

+ Pr(G > h)Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)} | G > h
]

≤ |Π|Pr(G ≤ h) + Eunif

[∑
π∗

1{π∗(X1:h = π(X1:h)}
]

≤ |Π|hd−1
d−1∏
i=1

pi + Eunif

[∑
π∗

1{π∗(X1:h = π(X1:h)}
]
,

where the last inequality applies Lemma 28. Note that by the construction of Π, there can only be
one policy in Π which agrees with π on more than 7

8N observations in X . With all other policies,
π has to disagree on at least 1/8 fraction of all possible observations. To see this, assume that
there were two policies π1 6= π2 in Π for which ‖π − πi‖ < N/8. Then by triangle inequality
‖π1 − π2‖ < N/4 which contradicts the construction of Π. Thus, we can further bound the quantity
of interest as

Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)}
]
≤ |Π|hd−1

d−1∏
i=1

pi + 1 + (|Π| − 1)

(
7

8

)h

≤ |Π|hd−1
d−1∏
i=1

pi + 1 + |Π| exp(−h log(8/7)) . (66)
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We now set h = log |Π|
log(8/7) which gives

Eunif

[∑
π∗

1{π∗(X1:G = π(X1:G)}
]
≤ 2 + |Π|

d−1∏
i=1

(
pi

log |Π|
log(8/7)

)
. (67)

Lemma 27. Let the progression probabilities pi = p for all i ∈ [d− 1] where p ∈ (0, 1). The time
step G within the episode at which a goal step is reached satisfies

Pr(G ≤ h) ≤ (h− d+ 1)
(2peh

d

)d−1

.

Proof. For G = i, there must be exactly d − 1 progressions in the i − 1 previous time steps, each
happening with probability p. Therefore

Pr(G = i) =

(
i− 1

d− 1

)
pd−1(1− p)i−d.

Thus,

Pr(G ≤ h) =

h∑
i=d

Pr(G = i) =

h∑
i=d

(
i− 1

d− 1

)
pd−1(1− p)h−d

≤
h∑
i=d

(
i− 1

d− 1

)
pd−1 ≤

h∑
i=d

(e(i− 1)

d− 1

)d−1

pd−1,

≤ (h− d+ 1)
(2peh

d

)d−1

,

where the first inequality in the above is given by ignoring terms smaller than one, and the second
inequality is due to the fact that any n, k, we have

(
n
k

)
≤ (en/k)

k for 0 ≤ k ≤ n.

Lemma 28. Let the probability for progressions be p1, . . . , pd−1. The time stepG within the episode
at which a goal step is reached then satisfies

Pr(G ≤ h) ≤ hd−1
d−1∏
i=1

pi

Proof. For the eventG ≤ h to happen, there must have been a progression in each of the d−1 states
within h trials. Therefore

Pr(G ≤ h) ≤
d−1∏
i=1

(1− (1− pi)h−1) ≤
d−1∏
i=1

((h− 1)pi) ≤
d−1∏
i=1

(hpi) .
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