Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance

SUPPLEMENTARY DOCUMENT

A Lemmas and Discussions

A. 1 Key Lemmas

In this subsection, we present some key lemmas used in the proof of our main theorems, which are helpful when considering stochastic problems with infinite variance.

The concept of uncorrelatedness has long been used by probabilists as a trick when computing and estimating variance. For example, consider a sequence of uncorrelated random vectors $\left\{\boldsymbol{X}_{t}\right\}_{t \in \mathbb{N}^{+}}$ (e.g. square-integrable martingale difference). Then

$$
\begin{equation*}
\mathbb{E}\left[\left|\boldsymbol{X}_{1}+\ldots+\boldsymbol{X}_{t}\right|^{2}\right]=\mathbb{E}\left[\left|\boldsymbol{X}_{1}\right|^{2}\right]+\ldots+\mathbb{E}\left[\left|\boldsymbol{X}_{t}\right|^{2}\right] \tag{A.1}
\end{equation*}
$$

Indeed, this type of expansion is used in Polyak and Juditsky [1992] to show L^{2} convergence in the normality analysis of stochastic approximation problems.

However, correlatedness is only defined when random elements have finite variance. The following lemma provides an infinite-variance version of expansion (A.1), stating that the p-th moment ($p<2$) of a martingale without square-integrability assumption can also be bounded simpliciter by the sum of the p-th moments of its differences, at the cost of a multiplicative constant that may depend only on p and the dimension n. It is a generalization of the recent study Cherapanamjeri et al. [2020, Lemma 4.2].
Lemma 7. Suppose $p \in[0,1]$ and let $\left\{\boldsymbol{S}_{t}\right\}_{t \in \mathbb{N}}$ be an n-dimensional martingale adapted to the filtration $\left\{\mathcal{F}_{t}\right\}_{t \in \mathbb{N}}$, with $\mathbb{E}\left[\left|\boldsymbol{S}_{t}\right|^{1+p}\right]<\infty$ for every t and $\boldsymbol{S}_{0}=0$. Let $\boldsymbol{X}_{i}=\boldsymbol{S}_{i}-\boldsymbol{S}_{i-1}$. Then

$$
\mathbb{E}\left[\left|\boldsymbol{S}_{t}\right|^{1+p}\right] \leqslant 2^{1-p} n^{1-\frac{1+p}{2}} \sum_{i=1}^{t} \mathbb{E}\left[\left|\boldsymbol{X}_{i}\right|^{1+p}\right]
$$

Next, we present a Taylor-expansion-type inequality for the function $\|\boldsymbol{x}\|_{p}^{p}$. Recall that we have defined the signed power of a vector in (3.1).
Lemma 8. Let $p \in[1,2]$. For any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n},\|\boldsymbol{x}+\boldsymbol{y}\|_{p}^{p} \leqslant\|\boldsymbol{x}\|_{p}^{p}+4\|\boldsymbol{y}\|_{p}^{p}+p \boldsymbol{y}^{\top} \boldsymbol{x}^{\langle p-1\rangle}$.
This inequality traces back to Krasulina [1969], where the one-dimensional version $|x+y|^{p} \leqslant$ $|x|^{p}+C|y|^{p}+p y x^{p-1} \operatorname{sign}(x)$ is used ${ }^{3}$ to derive an L^{p} rate of convergence for the one-dimensional stochastic approximation process with step-size $1 / t$. In our current study, this lemma is used not only to derive L^{p} rate of convergence for general infinite-variance process in \mathbb{R}^{n} with variable step-size scheme (Theorem 3), but also in the proof of the equivalent definitions of p-PD (Theorem 10).

Finally, we quote Fabian [1967, Lemma 4.2], which we shall use to calculate the exact convergence rate (see also Chung [1954]).
Lemma 9 (Fabian [1967], Lemma 4.2). Let $\left\{b_{t}\right\}_{t \in \mathbb{N}}, A, B, \alpha, \beta$ be real numbers such that $0<\alpha<1$, $A>0$ and suppose the recursion

$$
b_{t+1}=b_{t}\left(1-A t^{-\alpha}\right)+B t^{-\alpha-\beta}
$$

holds. Then, $b_{t}=\Theta\left(t^{-\beta}\right)$.

A. 2 Discussions on p-Positive Definiteness and Uniform p-Positive Definiteness

Let us now focus on $p-\mathrm{PD}$ and uniform p-PD conditions which are defined in Definition 1, Definition 2 (also see Assumption 1). The next theorem provides several equivalent characterizations of p-PD condition, which will be used in the proof of L^{p} convergence.

[^0]Theorem 10 (Equivalent definitions of p-PD). Let \mathbf{Q} be a symmetric matrix. The following are equivalent when $p \in[1,2]$.
i) There exist $\delta, L>0$, such that $\|\mathbf{I}-t \mathbf{Q}\|_{p}^{p} \leqslant 1-L t$ for all $t \in[0, \delta)$.
ii) There exists $\lambda>0$ such that for all $\boldsymbol{v} \in \mathbb{R}^{n}, \boldsymbol{v}^{\top} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle} \geqslant \lambda\|\boldsymbol{v}\|_{p}^{p}$.
iii) For all $\boldsymbol{v} \in S_{p}, \boldsymbol{v}^{\top} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle}>0$.
iv) For all $\boldsymbol{v} \in S_{p}$, there exists $t_{0}>0$ such that $\left\|\boldsymbol{v}-t_{0} \mathbf{Q} \boldsymbol{v}\right\|_{p}<1$.

Next, we provide several equivalent characterizations of uniform $p-\mathrm{PD}$.
Theorem 11 (Equivalent definitions of uniform $p-\mathrm{PD}$). Let \mathcal{M} be a bounded set of symmetric matrices. The following are equivalent when $p \in[1,2]$.
i) There exist $\delta, L>0$, such that $\|\mathbf{I}-t \mathbf{Q}\|_{p}^{p} \leqslant 1-L t$ for all $t \in[0, \delta)$ and $\mathbf{Q} \in \mathcal{M}$.
ii) There exists $\lambda>0$ such that for all $\boldsymbol{v} \in \mathbb{R}^{n}$ and $\mathbf{Q} \in \mathcal{M}, \boldsymbol{v}^{\top} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle} \geqslant \lambda\|\boldsymbol{v}\|_{p}^{p}$.
iii) For all $\boldsymbol{v} \in S_{p}$ and $\mathbf{Q} \in \overline{\mathcal{M}}, \boldsymbol{v}^{\top} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle}>0$.
iv) For all $\boldsymbol{v} \in S_{p}$ and $\mathbf{Q} \in \overline{\mathcal{M}}$, there exists $t_{0}>0$ such that $\left\|\boldsymbol{v}-t_{0} \mathbf{Q} \boldsymbol{v}\right\|_{p}<1$.

We notice that some mild assumptions can indeed imply p-PD. For example, we will show that diagonal dominance implies p-PD. Recall that a symmetric matrix $\mathbf{Q}=\left(q_{i j}\right)_{n \times n}$ is called diagonally dominant (with non-negative diagonal) if for every $i \in[n]$,

$$
q_{i i}-\sum_{j \in[n] \backslash\{i\}}\left|q_{i j}\right|>0 .
$$

Further, we say that a non-empty set \mathcal{M} of symmetric matrices is uniformly diagonally dominant (with non-negative diagonal) if

$$
\inf _{\left(q_{i j}\right)_{n \times n} \in \mathcal{M}} \min _{i \in[n]}\left(q_{i i}-\sum_{j \in[n] \backslash\{i\}}\left|q_{i j}\right|\right)>0
$$

We have the following observations which we shall prove in Section B. First, we observe that the uniform p-PD assumption is weaker than the notion of uniform diagonally dominance (with non-negative diagonal).
Proposition 12. A uniformly diagonally dominant (with non-negative diagonal) set of symmetric matrices is uniformly $p-P D$ for every $p \in[1,2]$.

Next, we notice that the result in Proposition 12 is tight for $p=1$.
Proposition 13. Uniform 1-PD is equivalent to uniform diagonal dominance (with non-negative diagonal).

Finally, we observe that the notion of uniform 2-PD is weaker than uniform p-PD for any $p \in[1,2]$.
Proposition 14. Let $p \in[1,2]$. Uniform p-PD implies uniform 2-PD.

B Omitted Proofs

In this section, we first prove the lemmas, theorems, and propositions in Section A, then prove the theorems in Sections 3 and 4. Throughout this section, we denote by $\boldsymbol{\delta}_{t}$ the error of the approximation $\boldsymbol{x}_{t}-\boldsymbol{x}^{*}$, and by $\overline{\boldsymbol{\delta}}_{t}$ the averaged error $\left(\boldsymbol{\delta}_{0}+\ldots+\boldsymbol{\delta}_{t-1}\right) / t$. The gradient $\boldsymbol{\nabla} f(\boldsymbol{x})$ and the Hessian $\boldsymbol{\nabla}^{2} f(\boldsymbol{x})$ will be written as $\boldsymbol{R}(\boldsymbol{x})$ and $\boldsymbol{\nabla} \boldsymbol{R}(\boldsymbol{x})$ respectively, not only for notational simplicity, but also to stress the fact that our results can be applied to any instance of stochastic approximation (2.1) including SGD.

Proof of Lemma 7 We first prove the $n=1$ case. Suppose $\left\{S_{t}\right\}$ is a one-dimensional martingale and $X_{i}=S_{i}-S_{i-1}$. Notice that the function $g(x)=|x|^{1+p}$ satisfies the inequality (see e.g. Cherapanamjeri et al. [2020, Lemma A.3]):

$$
\left|g^{\prime}(x)-g^{\prime}(y)\right| \leqslant 2^{1-p} g^{\prime}(|x-y|)
$$

where the weak derivative $g^{\prime}(x)=\operatorname{sign}(x)$ is used in the inequality above in the case of $p=0$, where

$$
\operatorname{sign}(x):=\left\{\begin{array}{lll}
1 & \text { if } \quad x>0 \\
-1 & \text { if } \quad x<0 \\
0 & \text { if } \quad x=0
\end{array}\right.
$$

Furthermore, by $\mathbb{E}\left[X_{i} g^{\prime}\left(S_{i-1}\right) \mid \mathcal{F}_{i-1}\right]=g^{\prime}\left(S_{i-1}\right) \mathbb{E}\left[X_{i} \mid \mathcal{F}_{i-1}\right]=0$, we have

$$
\begin{align*}
\mathbb{E}\left[g\left(S_{t}\right)\right] & =\sum_{i=1}^{t} \mathbb{E}\left[\int_{S_{i-1}}^{S_{i}} g^{\prime}(x) \mathrm{d} x\right] \\
& =\sum_{i=1}^{t} \mathbb{E}\left[X_{i} g^{\prime}\left(S_{i-1}\right)+\int_{S_{i-1}}^{S_{i}}\left[g^{\prime}(x)-g^{\prime}\left(S_{i-1}\right)\right] \mathrm{d} x\right] \\
& =\sum_{i=1}^{t} \mathbb{E}\left[\int_{S_{i-1}}^{S_{i}}\left[g^{\prime}(x)-g^{\prime}\left(S_{i-1}\right)\right] \mathrm{d} x\right] \\
& =\sum_{i=1}^{t} \mathbb{E}\left[\int_{0}^{X_{i}}\left[g^{\prime}\left(S_{i-1}+\tau\right)-g^{\prime}\left(S_{i-1}\right)\right] \mathrm{d} \tau\right] \\
& =\sum_{i=1}^{t} \mathbb{E}\left[\int_{0}^{\left|X_{i}\right|}\left|g^{\prime}\left(S_{i-1}+\operatorname{sign}\left(X_{i}\right) \tau\right)-g^{\prime}\left(S_{i-1}\right)\right| \mathrm{d} \tau\right] \\
& \leqslant 2^{1-p} \sum_{i=1}^{t} \mathbb{E}\left[\int_{0}^{\left|X_{i}\right|} g^{\prime}(\tau) \mathrm{d} \tau\right] \\
& =2^{1-p} \sum_{i=1}^{t} \mathbb{E}\left[g\left(\left|X_{i}\right|\right)\right] . \tag{B.1}
\end{align*}
$$

Next, for the higher dimension $n>1$, we denote by S_{i}^{j} (resp. X_{i}^{j}) the j-th entry of the vector \boldsymbol{S}_{i} (resp. \boldsymbol{X}_{i}). We can apply the inequality (B.1) obtained above to S_{t}^{j} by taking a $(1+p)$-norm,

$$
\begin{aligned}
\mathbb{E}\left[\left\|\boldsymbol{S}_{t}\right\|_{1+p}^{1+p}\right] & =\sum_{j=1}^{n} \mathbb{E}\left[\left|S_{t}^{j}\right|^{1+p}\right] \\
& \leqslant \sum_{j=1}^{n} 2^{1-p} \sum_{i=1}^{t} \mathbb{E}\left[\left|X_{i}^{j}\right|^{1+p}\right] \\
& =2^{1-p} \sum_{i=1}^{t} \sum_{j=1}^{n} \mathbb{E}\left[\left|X_{i}^{j}\right|^{1+p}\right] \\
& =2^{1-p} \sum_{i=1}^{t} \mathbb{E}\left[\left\|\boldsymbol{X}_{i}\right\|_{1+p}^{1+p}\right]
\end{aligned}
$$

Finally, the inequalities

$$
|\boldsymbol{x}| \leqslant\|\boldsymbol{x}\|_{1+p} \leqslant n^{\frac{1}{1+p}-\frac{1}{2}}|\boldsymbol{x}|
$$

give our desired result:

$$
\mathbb{E}\left[\left|\boldsymbol{S}_{t}\right|^{1+p}\right] \leqslant 2^{1-p} n^{1-\frac{1+p}{2}} \sum_{i=1}^{t} \mathbb{E}\left[\left|\boldsymbol{X}_{i}\right|^{1+p}\right]
$$

The proof is complete.
Proof of Lemma 8 By the inequality that $|1+a|^{p} \leqslant 1+a p+4|a|^{p}$ for any $p \in[1,2]$ and $a \in \mathbb{R}$, we have that for any $p \in[1,2]$ and $x, y \in \mathbb{R}$,

$$
\begin{equation*}
|x+y|^{p} \leqslant|x|^{p}+p y|x|^{p-1} \operatorname{sign}(x)+4|y|^{p} \tag{B.2}
\end{equation*}
$$

Next, for any $\boldsymbol{x}=\left(x^{1}, \ldots, x^{n}\right)^{\top}, \boldsymbol{y}=\left(y^{1}, \ldots, y^{n}\right)^{\top} \in \mathbb{R}^{n}$, by taking the p-norm and applying the inequality (B.2), we obtain

$$
\begin{aligned}
\|\boldsymbol{x}+\boldsymbol{y}\|_{p}^{p} & =\sum_{i=1}^{n}\left|x^{i}+y^{i}\right|^{p} \\
& \leqslant \sum_{i=1}^{n}\left(\left|x^{i}\right|^{p}+p y^{i}\left|x^{i}\right|^{p-1} \operatorname{sign}\left(x^{i}\right)+4\left|y^{i}\right|^{p}\right) \\
& =\|\boldsymbol{x}\|_{p}^{p}+4\|\boldsymbol{y}\|_{p}^{p}+p \sum_{i=1}^{n} y^{i}\left|x^{i}\right|^{p-1} \operatorname{sign}\left(x^{i}\right) \\
& =\|\boldsymbol{x}\|_{p}^{p}+4\|\boldsymbol{y}\|_{p}^{p}+p \boldsymbol{y}^{\top} \boldsymbol{x}^{\langle p-1\rangle},
\end{aligned}
$$

which completes the proof.
Since Theorem 10 is just a special case of Theorem 11, we will only prove the latter. Before we proceed, let us first state a useful technical lemma.

Lemma 15. Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$ and consider the function $\varphi(t)=\|\boldsymbol{u}+t \boldsymbol{v}\|_{p}^{p}=\sum_{i=1}^{n}\left|u^{i}+v^{i} t\right|^{p}$. The function φ is convex and has the following derivative (when $1<p \leqslant 2$) or subderivative (when $p=1$):

$$
\varphi^{\prime}(t)=\sum_{i=1}^{n} p\left|u^{i}+v^{i} t\right|^{p-1} \operatorname{sign}\left(u^{i}+v^{i} t\right) v^{i}=p \boldsymbol{v}^{\top}(\boldsymbol{u}+t \boldsymbol{v})^{\langle p-1\rangle}
$$

The proof of Lemma 15 is straightforward and is hence omitted here.
Now we are ready to prove Theorem 11.
Proof of Theorem 11 We shall show that i$) \Longrightarrow$ iv) \Longrightarrow iii) \Longrightarrow ii) \Longrightarrow i).
i) \Longrightarrow iv) Take a sequence $\left\{\mathbf{Q}_{1}, \mathbf{Q}_{2}, \ldots\right\} \subseteq \mathcal{M}$ such that $\lim _{m \rightarrow \infty} \mathbf{Q}_{m}=\mathbf{Q}$. iv) follows from $\left\|\mathbf{I}-(\delta / 2) \mathbf{Q}_{m}\right\|_{p}^{p} \leqslant 1-L \bar{\delta} / 2$.
iv) \Longrightarrow iii) For all $\boldsymbol{v} \in S_{p}$ and $\mathbf{Q} \in \overline{\mathcal{M}}$, consider the function $\varphi(t)=\|\boldsymbol{v}-t \mathbf{Q} \boldsymbol{v}\|_{p}^{p}$. According to Lemma $15, \varphi(t)$ is convex. Furthermore, $\varphi\left(t_{0}\right)<1=\varphi(0)$. Hence it follows that $\varphi^{\prime}(0)<0$; that is, $\boldsymbol{v}^{\top} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle}>0$.
iii) \Longrightarrow ii) Since the function $(\boldsymbol{v}, \mathbf{Q}) \mapsto \boldsymbol{v}^{\top} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle}$ is continuous, it maps the compact set $S_{p} \times \overline{\mathcal{M}}$ to a compact set. Hence there exists some $\lambda>0$ such that for all $\boldsymbol{v} \in S_{p}$ and $\mathbf{Q} \in \overline{\mathcal{M}}, \boldsymbol{v}^{\boldsymbol{\top}} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle} \geqslant \lambda$. Now, for every $\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{0\}$, by setting $\boldsymbol{v}=\boldsymbol{u} /\|\boldsymbol{u}\|_{p}$, we get $\boldsymbol{u}^{\top} \mathbf{Q} \boldsymbol{u}^{\langle p-1\rangle} \geqslant \lambda\|\boldsymbol{u}\|_{p}^{p}$.
ii) \Longrightarrow i) For arbitrary $\boldsymbol{v} \in \mathbb{R}^{n}$ and $\mathbf{Q} \in \mathcal{M}$, by Lemma 8 we have $\|(\mathbf{I}-t \mathbf{Q}) \boldsymbol{v}\|_{p}^{p}=$ $\|\boldsymbol{v}-t \mathbf{Q} \boldsymbol{v}\|_{p}^{p} \leqslant\|\boldsymbol{v}\|_{p}^{p}+4 t^{p}\|\mathbf{Q} \boldsymbol{v}\|_{p}^{p}-p t\left(\boldsymbol{v}^{\top} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle}\right) \leqslant\|\boldsymbol{v}\|_{p}^{p}+4 t^{p}\|\mathbf{Q}\|_{p}^{p}\|\boldsymbol{v}\|_{p}^{p}-$ $p t \lambda\|\boldsymbol{v}\|_{p}^{p}$. This implies i).

The proof is complete.

Proof of Proposition $12 \quad$ Let $\mathbf{Q} \in \mathcal{M}$ and $\boldsymbol{v} \in \mathbb{R}^{n}$.

$$
\begin{aligned}
\boldsymbol{v}^{\top} \mathbf{Q} \boldsymbol{v}^{\langle p-1\rangle} & =\sum_{i=1}^{n} q_{i i}\left|v^{i}\right|^{p}+\sum_{i<j} q_{i j}\left(v^{i}\left|v^{j}\right|^{p-1} \operatorname{sign}\left(v^{j}\right)+v^{j}\left|v^{i}\right|^{p-1} \operatorname{sign}\left(v^{i}\right)\right) \\
& \geqslant \sum_{i=1}^{n} q_{i i}\left|v^{i}\right|^{p}-\sum_{i<j}\left|q_{i j}\right|\left(\left|v^{i}\right|\left|v^{j}\right|^{p-1}+\left|v^{j} \| v^{i}\right|^{p-1}\right) \\
& \geqslant \sum_{i=1}^{n} q_{i i}\left|v^{i}\right|^{p}-\sum_{i<j}\left|q_{i j}\right|\left(\left|v^{i}\right|^{p}+\left|v^{j}\right|^{p}\right) \\
& =\sum_{i=1}^{n}\left|v^{i}\right|^{p}\left(q_{i i}-\sum_{j \neq i}\left|q_{i j}\right|\right)
\end{aligned}
$$

where we used the inequality $x^{p}+y^{p} \geqslant x^{p-1} y+y^{p-1} x$ for any $p \geqslant 1$ and $x, y \geqslant 0^{4}$ to get the third line from the second line above. Hence the uniform p-PD of \mathcal{M} follows from the item ii) of Theorem 11. The proof is complete.
Proof of Proposition 13 Suppose \mathcal{M} is uniform 1-PD. By the item i) of Theorem 11, there exists $\delta, L>0$ such that $\|\mathbf{I}-t \mathbf{Q}\|_{1} \leqslant 1-L t$ for all $t \in[0, \delta)$ and $\mathbf{Q} \in \mathcal{M}$. Let $\mathbf{Q}=\left(q_{i j}\right)_{n \times n}$ and notice that

$$
\|\mathbf{I}-t \mathbf{Q}\|_{1}=\max _{i \in[n]}\left(\left|1-t q_{i i}\right|+\sum_{j \in[n] \backslash\{i\}} t\left|q_{i j}\right|\right)
$$

It follows that

$$
\min _{i \in[n]}\left(q_{i i}-\sum_{j \in[n] \backslash\{i\}}\left|q_{i j}\right|\right) \geqslant L>0
$$

Hence \mathcal{M} is uniformly diagonally dominant (with non-negative diagonal). The proof is complete.
Proof of Proposition 14 Suppose \mathcal{M} is uniformly p-PD but not uniformly 2-PD. Then, there exists a sequence $\left\{\mathbf{Q}_{1}, \mathbf{Q}_{2}, \ldots\right\} \subseteq \mathcal{M}$ such that the smallest eigenvalues λ_{m} of \mathbf{Q}_{m} satisfy

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lambda_{m} \leqslant 0 \tag{B.3}
\end{equation*}
$$

For each $m \in \mathbb{N}^{+}$, there exists an $\boldsymbol{v}_{m} \in \mathbb{R}^{n} \backslash\{0\}$ such that $\mathbf{Q}_{m} \boldsymbol{v}_{m}=\lambda_{m} \boldsymbol{v}_{m}$. Hence

$$
\boldsymbol{v}_{m}^{\top} \mathbf{Q}_{m} \boldsymbol{v}_{m}^{\langle p-1\rangle}=\lambda_{m} \boldsymbol{v}_{m}^{\top} \boldsymbol{v}_{m}^{\langle p-1\rangle}=\lambda_{m}\left\|\boldsymbol{v}_{m}\right\|_{p}^{p}
$$

But by the item ii) of Theorem 11, there exists $\lambda>0$ such that $\lambda_{m} \geqslant \lambda$. This contradicts (B.3). The proof is complete.
Proof of Theorem 3 We use a technique similar to Krasulina [1969]. Define the function

$$
\boldsymbol{T}_{t}(\boldsymbol{x})=\left(T_{t}^{1}(\boldsymbol{x}), \ldots, T_{t}^{n}(\boldsymbol{x})\right)^{\top}=\boldsymbol{x}-\boldsymbol{x}^{*}-\gamma_{t+1} \boldsymbol{R}(x)
$$

An n-dimensional (and corrected) version of the first inequality in the proof of Krasulina [1969, Theorem 2] can be obtained by applying Lemma 8 to our stochastic approximation scheme,

$$
\begin{align*}
\left\|\boldsymbol{x}_{t+1}-\boldsymbol{x}^{*}\right\|_{p}^{p} & =\left\|\boldsymbol{T}_{t}\left(\boldsymbol{x}_{t}\right)-\gamma_{t+1} \boldsymbol{\xi}_{t+1}\right\|_{p}^{p} \\
& \left.\leqslant\left\|\boldsymbol{T}_{t}\left(\boldsymbol{x}_{t}\right)\right\|_{p}^{p}+4 \gamma_{t+1}^{p}\left\|\boldsymbol{\xi}_{t+1}\right\|_{p}^{p}+p \gamma_{t+1} \sum_{i=1}^{n} \xi_{t+1}^{i}\left|T_{t}^{i}\left(\boldsymbol{x}_{t}\right)\right|^{p-1} \operatorname{sign} T_{t}^{i}\left(\boldsymbol{x}_{t}\right)(\}\right) \tag{B.4}
\end{align*}
$$

Since $\mathbb{E}\left[\xi_{t+1}^{i}\left|T_{t}^{i}\left(\boldsymbol{x}_{t}\right)\right|^{p-1} \operatorname{sign} T_{t}^{i}\left(\boldsymbol{x}_{t}\right) \mid \boldsymbol{x}_{t}\right]=\left|T_{t}^{i}\left(\boldsymbol{x}_{t}\right)\right|^{p-1} \operatorname{sign} T_{t}^{i}\left(\boldsymbol{x}_{t}\right) \mathbb{E}\left[\xi_{t+1}^{i} \mid \boldsymbol{x}_{t}\right]=0$, by taking expectations in (B.4), we get

$$
\begin{aligned}
\mathbb{E}\left[\left\|\boldsymbol{\delta}_{t+1}\right\|_{p}^{p}\right] & =\mathbb{E}\left[\left\|\boldsymbol{x}_{t+1}-\boldsymbol{x}^{*}\right\|_{p}^{p}\right] \\
& \leqslant \mathbb{E}\left[\left\|\boldsymbol{T}_{t}\left(\boldsymbol{x}_{t}\right)\right\|_{p}^{p}\right]+4 \gamma_{t+1}^{p} \mathbb{E}\left[\left\|\boldsymbol{\xi}_{t+1}\right\|_{p}^{p}\right] \\
& =\mathbb{E}\left[\left\|\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right)-\gamma_{t+1} \boldsymbol{R}\left(\boldsymbol{x}_{t}\right)\right\|_{p}^{p}\right]+4 \gamma_{t+1}^{p} \mathbb{E}\left[\left\|\boldsymbol{\xi}_{t+1}\right\|_{p}^{p}\right]
\end{aligned}
$$

[^1]By the mean value theorem, there exists $\boldsymbol{x}_{t}^{b} \in\left\{\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right): 0 \leqslant \tau \leqslant 1\right\}$, such that $\boldsymbol{R}\left(\boldsymbol{x}_{t}\right)=\nabla \boldsymbol{R}\left(\boldsymbol{x}_{t}^{\mathrm{b}}\right)\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right)$, and then

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right)-\gamma_{t+1} \boldsymbol{R}\left(\boldsymbol{x}_{t}\right)\right\|_{p}^{p}\right]+4 \gamma_{t+1}^{p} \mathbb{E}\left[\left\|\boldsymbol{\xi}_{t+1}\right\|_{p}^{p}\right] \\
& =\mathbb{E}\left[\left\|\left(\mathbf{I}-\gamma_{t+1} \nabla \boldsymbol{R}\left(\boldsymbol{x}_{t}^{b}\right)\right)\left(\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right)\right\|_{p}^{p}\right]+4 \gamma_{t+1}^{p} \mathbb{E}\left[\left\|\boldsymbol{\xi}_{t+1}\right\|_{p}^{p}\right] \\
& \leqslant \mathbb{E}\left[\left\|\mathbf{I}-\gamma_{t+1} \nabla \boldsymbol{R}\left(\boldsymbol{x}_{t}^{b}\right)\right\|_{p}^{p} \cdot\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\right\|_{p}^{p}\right]+4 \gamma_{t+1}^{p} \mathbb{E}\left[\left\|\boldsymbol{\xi}_{t+1}\right\|_{p}^{p}\right] \\
& \leqslant \mathbb{E}\left[\left\|\mathbf{I}-\gamma_{t+1} \nabla \boldsymbol{R}\left(\boldsymbol{x}_{t}^{b}\right)\right\|_{p}^{p} \cdot\left\|\boldsymbol{\delta}_{t}\right\|_{p}^{p}\right]+C_{0} \gamma_{t+1}^{p}\left(1+\mathbb{E}\left[\left\|\boldsymbol{\delta}_{t}\right\|_{p}^{p}\right]\right),
\end{aligned}
$$

where the last inequality follows from

$$
\begin{align*}
\mathbb{E}\left[\left|\boldsymbol{m}_{t+1}\right|^{p} \mid \mathcal{F}_{t}\right] & \leqslant \mathbb{E}\left[\left|\boldsymbol{m}_{t+1}\right|^{2} \mid \mathcal{F}_{t}\right]^{p / 2} \leqslant\left[K\left(1+\left|\boldsymbol{x}_{t}\right|^{2}\right)\right]^{p / 2} \tag{B.5}\\
& \leqslant K^{p / 2}\left(1+\left|\boldsymbol{x}_{t}\right|^{p}\right) \leqslant K^{p / 2}\left(1+2^{p-1}\left(\left|\boldsymbol{\delta}_{t}\right|^{p}+\left|\boldsymbol{x}^{*}\right|^{p}\right)\right)
\end{align*}
$$

where we used the inequality $(x+y)^{r} \leqslant x^{r}+y^{r}$ for any $x, y \geqslant 0,0 \leqslant r \leqslant 1$ to obtain the first inequality in the second line above, as well as the assumption $\mathbb{E}\left[\left|\boldsymbol{\zeta}_{1}\right|^{p}\right]<\infty$.
Note that $\left\|\mathbf{I}-\gamma_{t+1} \nabla \boldsymbol{R}\left(\boldsymbol{x}_{t}^{b}\right)\right\|_{p}^{p}$ can be estimated by the uniform p-PD assumption (see item i) of Theorem 11) since $\gamma_{t} \rightarrow 0$. For t sufficiently large,

$$
\left\|\mathbf{I}-\gamma_{t+1} \nabla \boldsymbol{R}\left(\boldsymbol{x}_{t}^{b}\right)\right\|_{p}^{p} \leqslant 1-L \gamma_{t+1}
$$

And there is a positive constant C_{1} such that $1-L \gamma_{t+1}+C_{0} \gamma_{t+1}^{p} \leqslant 1-C_{1} \gamma_{t+1}$ for t sufficiently large. Hence, we arrive at the following iterative bound

$$
\begin{equation*}
\mathbb{E}\left[\left\|\boldsymbol{\delta}_{t+1}\right\|_{p}^{p}\right] \leqslant\left(1-\gamma_{t+1} C_{1}\right) \cdot \mathbb{E}\left[\left\|\boldsymbol{\delta}_{t}\right\|_{p}^{p}\right]+C_{0} \gamma_{t+1}^{p} \tag{B.6}
\end{equation*}
$$

for t sufficiently large.
Next, let us substitute γ_{t+1} with $t^{-\rho}$ where $0<\rho<1$. Consider the iteration

$$
\begin{equation*}
\mu_{t+1}=\left(1-t^{-\rho} C_{1}\right) \cdot \mu_{t}+C_{0} t^{-\rho p} \tag{B.7}
\end{equation*}
$$

so that by (B.6), $\mathbb{E}\left[\left\|\boldsymbol{\delta}_{t}\right\|_{p}^{p}\right]=\mathcal{O}\left(\mu_{t}\right)$. By virtue of Lemma 9, we get

$$
\begin{equation*}
\mu_{t}=\Theta\left(t^{-\rho(p-1)}\right) \tag{B.8}
\end{equation*}
$$

Therefore, by (B.6), (B.7), and (B.8), we obtain the following rate of convergence:

$$
\mathbb{E}\left[\left\|\boldsymbol{\delta}_{t}\right\|_{p}^{p}\right]=\mathcal{O}\left(t^{-\rho(p-1)}\right)
$$

Next, since p-norms on \mathbb{R}^{n} are all equivalent, we can drop the subscript $\|\cdot\|_{p}$ and obtain

$$
\mathbb{E}\left[\left|\boldsymbol{\delta}_{t}\right|^{p}\right]=\mathcal{O}\left(t^{-\rho(p-1)}\right)
$$

Finally, by (B.5), we see that $\sup _{t \in \mathbb{N}^{+}} \mathbb{E}\left[\left|\boldsymbol{\xi}_{t}\right|^{p}\right] \leqslant \sup _{t \in \mathbb{N}^{+}} \mathbb{E}\left[2^{p-1}\left(\left|\boldsymbol{m}_{t}\right|^{p}+\left|\boldsymbol{\zeta}_{t}\right|^{p}\right)\right]<\infty$. The proof is complete.
\square Proof of Corollary 4 Under the assumptions of Corollary 4, the rate $\mathbb{E}\left[\left|\boldsymbol{\delta}_{t}\right|^{p}\right]=\mathcal{O}\left(t^{-\rho(p-1)}\right)$ holds for every $p \in[q, \alpha)$. We can thus apply Jensen's inequality to strengthen it. By Jensen's inequality and (3.4), we get

$$
\mathbb{E}\left[\left|\boldsymbol{\delta}_{t}\right|^{q}\right] \leqslant \mathbb{E}\left[\left|\boldsymbol{\delta}_{t}\right|^{p}\right]^{q / p}=\mathcal{O}\left(t^{-\rho(p-1) \frac{q}{p}}\right)
$$

By letting $p \nearrow \alpha$, we conclude that have for every $\varepsilon>0$,

$$
\mathbb{E}\left[\left|\boldsymbol{\delta}_{t}\right|^{q}\right]=o\left(t^{-\rho q \frac{\alpha-1}{\alpha}+\varepsilon}\right)
$$

The proof is complete.
Next, we state a series of technical lemmas as well as their proofs, which will be used in the proofs of Theorems 5 and 6.

Lemma 16. If $\gamma_{t} \asymp t^{-\rho}$ with $0<\rho<\kappa \leqslant 1$, then for all $\lambda>0$,

$$
\lim _{t \rightarrow \infty} t^{-\kappa} \sum_{j=1}^{t-1} \exp \left(-\lambda \sum_{i=j}^{t-1} \gamma_{i}\right)=0
$$

Proof. Notice that there exists some constant $B>0$ such that

$$
\sum_{i=j}^{t-1} \gamma_{i} \geqslant \frac{B}{\lambda}\left(t^{1-\rho}-j^{1-\rho}\right)
$$

It follows that

$$
t^{-\kappa} \sum_{j=1}^{t-1} \exp \left(-\lambda \sum_{i=j}^{t-1} \gamma_{i}\right) \leqslant t^{-\kappa} \sum_{j=0}^{t-1} \exp \left(-B t^{1-\rho}+B j^{1-\rho}\right)=\frac{\sum_{j=0}^{t-1} \exp \left(B j^{1-\rho}\right)}{t^{\kappa} \exp \left(B t^{1-\rho}\right)}
$$

By Stolz-Cesàro theorem, we have

$$
\begin{aligned}
\frac{\sum_{j=0}^{t-1} \exp \left(B j^{1-\rho}\right)}{t^{\kappa} \exp \left(B t^{1-\rho}\right)} & \asymp \frac{\exp \left(B t^{1-\rho}\right)}{(t+1)^{\kappa} \exp \left(B(t+1)^{1-\rho}\right)-t^{\kappa} \exp \left(B t^{1-\rho}\right)} \\
& =\frac{1}{(t+1)^{\kappa} \exp \left[B\left((t+1)^{1-\rho}-t^{1-\rho}\right)\right]-t^{\kappa}} \\
& =\frac{1}{(t+1)^{\kappa} \exp \left[B(1-\rho)(t+1)^{-\rho}+o\left(t^{-\rho}\right)\right]-t^{\kappa}} \\
& =\frac{1}{(t+1)^{\kappa}\left[1+B(1-\rho)(t+1)^{-\rho}+o\left(t^{-\rho}\right)\right]-t^{\kappa}} \\
& =\frac{1}{B(1-\rho)(t+1)^{\kappa-\rho}+o\left((t+1)^{\kappa-\rho}\right)} \\
& \rightarrow 0
\end{aligned}
$$

as $t \rightarrow \infty$. The proof is complete.
Lemma 17. Suppose $\gamma_{t} \asymp t^{-\rho}$ and $0<\rho<\kappa \leqslant 1$; let A be a positive definite symmetric matrix. Consider the matrix recursion in [Polyak and Juditsky, 1992, Lemma 1],

$$
\mathbf{X}_{j}^{j}=\mathbf{I}, \quad \mathbf{X}_{j}^{t+1}=\mathbf{X}_{j}^{t}-\gamma_{t} \mathbf{A} \mathbf{X}_{j}^{t}, \quad\left(j \in \mathbb{N}^{+}\right)
$$

and define

$$
\overline{\mathbf{X}}_{j}^{t}=\gamma_{j} \sum_{i=j}^{t-1} \mathbf{X}_{j}^{i}, \quad \boldsymbol{\Phi}_{j}^{t}=\mathbf{A}^{-1}-\overline{\mathbf{X}}_{j}^{t}
$$

Then the following limit holds,

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{\kappa}} \sum_{j=1}^{t-1}\left\|\boldsymbol{\Phi}_{j}^{t}\right\|=0
$$

Remark. Lemma 17 recovers [Polyak and Juditsky, 1992, Lemma 1] as the special case $\kappa=1$.
Proof of Lemma 17 Modeling after Polyak and Juditsky [1992]'s proof of their Lemma 1, we define $\mathbf{S}_{j}^{t}=\sum_{i=j}^{t-1}\left(\gamma_{i}-\gamma_{j}\right) \mathbf{X}_{j}^{i}$, and we have

$$
\boldsymbol{\Phi}_{j}^{t}=\mathbf{S}_{j}^{t}+\mathbf{A}^{-1} \mathbf{X}_{j}^{t}
$$

We will split the proofs into two parts. In the first part, we will prove $t^{-\kappa} \sum_{j=1}^{t-1}\left\|\mathbf{S}_{j}^{t}\right\| \rightarrow 0$ and then in the second part we will prove $t^{-\kappa} \sum_{j=1}^{t-1}\left\|\mathbf{X}_{j}^{t}\right\| \rightarrow 0$.
Part I. We first prove that $t^{-\kappa} \sum_{j=1}^{t-1}\left\|\mathbf{S}_{j}^{t}\right\| \rightarrow 0$.

By the Part 3 of Polyak and Juditsky [1992, Lemma 1] ${ }^{5}$, there exist some $\lambda>0$ and $K<\infty$ such that

$$
\begin{equation*}
\left\|\mathbf{X}_{j}^{t}\right\| \leqslant K \exp \left(-2 \lambda \sum_{i=j}^{t-1} \gamma_{i}\right)=K e^{-2 \lambda m_{j}^{t}} \tag{B.9}
\end{equation*}
$$

where m_{k}^{ℓ} stands for $\sum_{i=k}^{\ell-1} \gamma_{i}$. Now we have

$$
\begin{align*}
\left\|\mathbf{S}_{j}^{t}\right\| & =\left\|\sum_{i=1}^{t}\left(\gamma_{i}-\gamma_{j}\right) \mathbf{X}_{j}^{i}\right\| \\
& =\left\|\sum_{i=1}^{t}\left[\sum_{k=j}^{i-1}\left(\gamma_{k+1}-\gamma_{k}\right)\right] \mathbf{X}_{j}^{i}\right\| \\
& \leqslant C_{0} \sum_{i=j}^{t} \sum_{k=j}^{i-1} k^{-\rho-1} \exp \left(-2 \lambda m_{j}^{i}\right) \\
& \leqslant C_{0} j^{-1} \sum_{i=j}^{t} \sum_{k=j}^{i-1} k^{-\rho} \exp \left(-2 \lambda m_{j}^{i}\right) \\
& \leqslant C_{1} j^{-1} \sum_{i=j}^{t} m_{j}^{i} \exp \left(-2 \lambda m_{j}^{i}\right) \\
& =C_{1} j^{-1} \sum_{i=j}^{t} \frac{m_{j}^{i} e^{-2 \lambda m_{j}^{i}}\left(m_{j}^{i}-m_{j}^{i-1}\right)}{\gamma_{i}}, \tag{B.10}
\end{align*}
$$

where C_{0}, C_{1} are some positive constants.
Since the function $f_{w}(x)=x^{\rho} \exp \left(-w x^{1-\rho}\right)$ is bounded on $x \in[1, \infty)$ for every $w>0$, we have

$$
\frac{j^{-\rho}}{\gamma_{i}} \exp \left(-\lambda m_{j}^{i}\right) \leqslant C_{2} i^{\rho} j^{-\rho} \exp \left(-C_{3}\left(i^{1-\rho}-j^{1-\rho}\right)\right)=C_{2} f_{C_{3}}(i) / f_{C_{3}}(j) \leqslant C_{4},
$$

for some positive constants C_{2}, C_{3} and C_{4}. Hence, continuing upon (B.10),

$$
\left\|\mathbf{S}_{j}^{t}\right\| \leqslant C_{1} C_{4} j^{\rho-1} \sum_{i=j}^{t} m_{j}^{i} e^{-\lambda m_{j}^{i}}\left(m_{j}^{i}-m_{j}^{i-1}\right)
$$

Since the summation $\sum_{i=j}^{t} m_{j}^{i} e^{-\lambda m_{j}^{i}}\left(m_{j}^{i}-m_{j}^{i-1}\right)$ approximates $\int_{0}^{m_{j}^{t}} m e^{-\lambda m} \mathrm{~d} m$, it is bounded. Hence, for some positive constant C_{5},

$$
\left\|\mathbf{S}_{j}^{t}\right\| \leqslant C_{5} j^{\rho-1}
$$

which implies the desired limit

$$
\lim _{t \rightarrow \infty} t^{-\kappa} \sum_{j=1}^{t-1}\left\|\mathbf{S}_{j}^{t}\right\|=0
$$

Part II. It remains to prove that $t^{-\kappa} \sum_{j=1}^{t-1}\left\|\mathbf{X}_{j}^{t}\right\| \rightarrow 0$.
Combining (B.9) and Lemma 16, we have $t^{-\kappa} \sum_{j=1}^{t-1}\left\|\mathbf{X}_{j}^{t}\right\| \rightarrow 0$. Hence the proof of this lemma is complete.
Lemma 18. Given the assumption of Theorem 5 or Theorem 6,

$$
\frac{\boldsymbol{\xi}_{1}+\ldots \boldsymbol{\xi}_{t}}{t^{1 / \alpha}} \xrightarrow[t \rightarrow \infty]{\mathcal{D}} \mu .
$$

[^2]Proof. We recall the decomposition $\boldsymbol{\xi}_{t}=\boldsymbol{\zeta}_{t}+\boldsymbol{m}_{t}$, where $\left\{\boldsymbol{\zeta}_{t}\right\}$ are i.i.d. and $\boldsymbol{\zeta}_{1}$ is in the domain of normal attraction of an n-dimensional centered α-stable distribution so that

$$
\frac{\boldsymbol{\zeta}_{1}+\ldots+\boldsymbol{\zeta}_{t}}{t^{1 / \alpha}} \underset{t \rightarrow \infty}{\mathcal{D}} \mu .
$$

Hence, it suffices to show that $t^{-1 / \alpha}\left(\boldsymbol{m}_{1}+\ldots+\boldsymbol{m}_{t}\right) \rightarrow 0$ in L^{r}, for some $r \geqslant 1$.
By (3.3), there exists a constant $C>0$ such that

$$
\mathbb{E}\left[\left|\boldsymbol{m}_{t+1}\left(\boldsymbol{x}_{t}\right)\right|^{2} \mid \mathcal{F}_{t}\right] \leqslant K\left(1+\left|\boldsymbol{x}_{t}\right|^{2}\right) \leqslant K\left(1+2\left|\boldsymbol{x}^{*}\right|^{2}+2\left|\boldsymbol{\delta}_{t}\right|^{2}\right) \leqslant C\left(1+\left|\boldsymbol{\delta}_{t}\right|^{2}\right)
$$

Hence, by using the "Remark" on p. 151 of Neveu [1975] (cf. inequalities (20) of Anantharam and Borkar [2012]), we get

$$
\begin{align*}
\mathbb{E}\left[\left|\frac{\boldsymbol{m}_{1}+\ldots+\boldsymbol{m}_{t}}{t^{1 / \alpha}}\right|^{r}\right] & \leqslant \frac{C_{1}}{t^{r / \alpha}} \mathbb{E}\left[\left(\sum_{i=1}^{t} \mathbb{E}\left[\left|\boldsymbol{m}_{i}\right|^{2} \mid \mathcal{F}_{i-1}\right]\right)^{r / 2}\right] \\
& \leqslant \frac{C_{2}}{t^{r / \alpha}} \mathbb{E}\left[\left(\sum_{i=1}^{t}\left(1+\left|\boldsymbol{\delta}_{i-1}\right|^{2}\right)\right)^{r / 2}\right] \\
& \leqslant \frac{C_{2}}{t^{r / \alpha}} \mathbb{E}\left[t^{r / 2}+\sum_{i=1}^{t}\left|\boldsymbol{\delta}_{i-1}\right|^{r}\right] \tag{B.11}
\end{align*}
$$

where, for the last inequality, we use the fact that $(x+y)^{s} \leqslant x^{s}+y^{s}$ for any $x, y \geqslant 0,0 \leqslant s \leqslant 1$. If the assumption of Theorem 5 holds, take $r=p>(\alpha+\alpha \rho) /(1+\alpha \rho)$ in the inequalities (B.11) above. Then, by Theorem $3, \mathbb{E}\left[\left|\boldsymbol{\delta}_{t}\right|^{r}\right]=\mathcal{O}\left(t^{-\rho(r-1)}\right)=o\left(t^{r / \alpha-1}\right)$.
If the assumption of Theorem 6 holds, take $r=q>1 / \rho>\alpha /(1+\rho(\alpha-1))$ in the inequalities (B.11) above. Then by Corollary $4, \mathbb{E}\left[\left|\boldsymbol{\delta}_{t}\right|^{r}\right]=\tilde{\mathcal{O}}\left(t^{-\rho r(\alpha-1) / \alpha}\right)=o\left(t^{r / \alpha-1}\right)$.

In both cases, $t^{-1 / \alpha}\left(\boldsymbol{m}_{1}+\ldots+\boldsymbol{m}_{t}\right) \rightarrow 0$ in L^{r}. The proof is complete.
Finally, we are ready to prove Theorems 5 and 6.
Proof of Theorem 5 By Polyak and Juditsky [1992, Lemma 2]:

$$
\begin{equation*}
\frac{t}{t^{1 / \alpha}} \overline{\boldsymbol{\delta}}_{t}=\underbrace{\frac{1}{t^{1 / \alpha}} \mathbf{F}_{t} \boldsymbol{\delta}_{0}}_{\boldsymbol{I}_{t}^{(1)}}-\underbrace{\frac{1}{t^{1 / \alpha}} \sum_{j=1}^{t-1} \mathbf{A}^{-1} \boldsymbol{\xi}_{j}}_{\boldsymbol{I}_{t}^{(2)}}-\underbrace{\frac{1}{t^{1 / \alpha} \sum_{j=1}^{t-1} \mathbf{W}_{j}^{t} \boldsymbol{\xi}_{j}}}_{\boldsymbol{I}_{t}^{(3)}} \tag{B.12}
\end{equation*}
$$

where \mathbf{F}_{t} and \mathbf{W}_{j}^{t} are deterministic matrices with uniformly bounded operator 2-norms defined as

$$
\begin{align*}
\mathbf{F}_{t} & =\sum_{i=0}^{t-1} \prod_{k=1}^{i}\left(\mathbf{I}-\gamma_{k} \mathbf{A}\right) \tag{B.13}\\
\mathbf{W}_{j}^{t} & =\gamma_{j} \sum_{i=j}^{t-1} \prod_{k=j+1}^{i}\left(\mathbf{I}-\gamma_{k} \mathbf{A}\right)-\mathbf{A}^{-1} \tag{B.14}
\end{align*}
$$

We have $\boldsymbol{I}_{t}^{(1)} \rightarrow 0$ by the boundedness of \mathbf{F}_{t}. Next, take some κ such that

$$
\begin{equation*}
\max (\rho, 1 / \alpha)<\kappa \leqslant p / \alpha \tag{B.15}
\end{equation*}
$$

We shall prove that $\boldsymbol{I}_{t}^{(3)} \rightarrow 0$ in $L^{\alpha \kappa}$ (notice that $1<\alpha \kappa \leqslant p<\alpha$; cf. Polyak and Juditsky [1992, Proof of Theorem 1] where convergence in L^{2} is proven). By Theorem 3, $\sup _{j} \mathbb{E}\left[\left|\boldsymbol{\xi}_{j}\right|^{p}\right]<\infty$. Hence
we can compute, by virtue of Lemma 7, that

$$
\begin{aligned}
\mathbb{E}\left[\left|\boldsymbol{I}_{t}^{(3)}\right|^{\alpha \kappa}\right] & =\mathbb{E}\left[\left|\frac{1}{t^{1 / \alpha}} \sum_{j=1}^{t-1} \mathbf{W}_{j}^{t} \boldsymbol{\xi}_{j}\right|^{\alpha \kappa}\right] \leqslant \frac{C_{0}}{t^{\kappa}} \sum_{j=1}^{t-1} \mathbb{E}\left[\left|\mathbf{W}_{j}^{t} \boldsymbol{\xi}_{j}\right|^{\alpha \kappa}\right] \\
& \leqslant\left(\frac{C_{0}}{t^{\kappa}} \sum_{j=1}^{t-1}\left\|\mathbf{W}_{j}^{t}\right\|^{\alpha \kappa}\right) \sup _{j} \mathbb{E}\left[\left|\boldsymbol{\xi}_{j}\right|^{\alpha \kappa}\right] \leqslant\left(\frac{C_{0}}{t^{\kappa}} \sum_{j=1}^{t-1}\left\|\mathbf{W}_{j}^{t}\right\|\right) \sup _{j} \mathbb{E}\left[\left|\boldsymbol{\xi}_{j}\right|^{\alpha \kappa}\right] \\
& \leqslant \frac{C_{1}}{t^{\kappa}} \sum_{j=1}^{t-1}\left\|\mathbf{W}_{j}^{t}\right\|
\end{aligned}
$$

Notice that the matrices \mathbf{W}_{j}^{t} defined above correspond to $-\boldsymbol{\Phi}_{j}^{t}$ in Lemma 17. This infers that $\mathbb{E}\left[\left|\boldsymbol{I}_{t}^{(3)}\right|^{\alpha \kappa}\right] \leqslant \frac{K_{1}}{t^{\kappa}} \sum_{j=1}^{t-1}\left\|\mathbf{W}_{j}^{t}\right\| \rightarrow 0$ as $t \rightarrow \infty$.
Finally, Lemma 18 states that $\boldsymbol{I}_{t}^{(2)}$ converges weakly to an α-stable distribution. Hence we conclude the proof.
Proof of Theorem $6 \quad$ Denote by A the Hessian matrix $\boldsymbol{\nabla} \boldsymbol{R}\left(\boldsymbol{x}^{*}\right)=\boldsymbol{\nabla}^{2} f\left(\boldsymbol{x}^{*}\right)$. Consider a corresponding linear SA process with the same noise,

$$
\begin{equation*}
\boldsymbol{x}_{t+1}^{1}=\boldsymbol{x}_{t}^{1}-\gamma_{t+1}\left(\mathbf{A}\left(\boldsymbol{x}_{t}^{1}-\boldsymbol{x}^{*}\right)+\boldsymbol{\xi}_{t+1}\left(\boldsymbol{x}_{t}\right)\right) \tag{B.16}
\end{equation*}
$$

with $\boldsymbol{x}_{0}^{1}=\boldsymbol{x}_{0}$. We further define $\boldsymbol{\delta}_{t}^{1}=\boldsymbol{x}_{t}^{1}-\boldsymbol{x}^{*}$ and the averaging process $\overline{\boldsymbol{\delta}}_{t}^{1}=\left(\boldsymbol{\delta}_{0}^{1}+\ldots+\boldsymbol{\delta}_{t-1}^{1}\right) / t$.
Part I. We first prove that $t^{1-1 / \alpha}\left(\overline{\boldsymbol{\delta}}_{t}^{1}-\overline{\boldsymbol{\delta}}_{t}\right) \rightarrow 0$ almost surely.
By (B.12), we have

$$
\begin{equation*}
\frac{t}{t^{1 / \alpha}} \overline{\boldsymbol{\delta}}_{t}^{1}=\frac{1}{t^{1 / \alpha}} \mathbf{F}_{t} \boldsymbol{\delta}_{0}-\frac{1}{t^{1 / \alpha}} \sum_{j=1}^{t-1}\left(\mathbf{A}^{-1}+\mathbf{W}_{j}^{t}\right) \boldsymbol{\xi}_{j} \tag{B.17}
\end{equation*}
$$

where the matrices \mathbf{F}_{t} and \mathbf{W}_{j}^{t} are defined back in (B.13) and (B.14). For the non-linear process (2.1), it can be viewed as if it is a linear process with the j-th noise term being $\boldsymbol{\xi}_{j}+\boldsymbol{R}\left(\boldsymbol{x}_{j-1}\right)-\mathbf{A} \boldsymbol{\delta}_{j-1}$. Hence by (B.12), we have

$$
\begin{equation*}
\frac{t}{t^{1 / \alpha}} \overline{\boldsymbol{\delta}}_{t}=\frac{1}{t^{1 / \alpha}} \mathbf{F}_{t} \boldsymbol{\delta}_{0}-\frac{1}{t^{1 / \alpha}} \sum_{j=1}^{t-1}\left(\mathbf{A}^{-1}+\mathbf{W}_{j}^{t}\right)\left(\boldsymbol{\xi}_{j}+\boldsymbol{R}\left(\boldsymbol{x}_{j-1}\right)-\mathbf{A} \boldsymbol{\delta}_{j-1}\right) \tag{B.18}
\end{equation*}
$$

Combining (B.17) and (B.18) yields the difference (cf. Part 4 of Polyak and Juditsky [1992, Proof of Theorem 2])

$$
\begin{equation*}
\frac{t}{t^{1 / \alpha}}\left(\overline{\boldsymbol{\delta}}_{t}^{1}-\overline{\boldsymbol{\delta}}_{t}\right)=\frac{1}{t^{1 / \alpha}} \sum_{j=1}^{t-1}\left(\mathbf{A}^{-1}+\mathbf{W}_{j}^{t}\right)\left(\boldsymbol{R}\left(\boldsymbol{x}_{j-1}\right)-\mathbf{A} \boldsymbol{\delta}_{j-1}\right) \tag{B.19}
\end{equation*}
$$

We also recall the assumption that $\left|\boldsymbol{R}\left(\boldsymbol{x}_{j}\right)-\mathbf{A} \boldsymbol{\delta}_{j}\right| \leqslant K\left|\boldsymbol{\delta}_{j}\right|^{q}$. Hence, it suffices to show the following term vanishes almost surely as $t \rightarrow \infty$:

$$
J_{t}=\frac{1}{t^{1 / \alpha}} \sum_{j=1}^{t-1}\left|\boldsymbol{\delta}_{j}\right|^{q}
$$

To show this, first by our calculation of the rate of convergence in Corollary 4,

$$
\mathbb{E}\left[\sum_{j=1}^{t-1} \frac{1}{j^{1 / \alpha}}\left|\boldsymbol{\delta}_{j}\right|^{q}\right]=\sum_{j=1}^{t-1} \tilde{\mathcal{O}}\left(j^{-\rho q \frac{\alpha-1}{\alpha}-\frac{1}{\alpha}}\right)=\mathcal{O}(1)
$$

The last equality holds since $-\rho q \frac{\alpha-1}{\alpha}-\frac{1}{\alpha}<-1$. Hence, we have

$$
\begin{equation*}
\mathbb{P}\left[\sum_{j=1}^{t-1} \frac{1}{j^{1 / \alpha}}\left|\boldsymbol{\delta}_{j}\right|^{q}<\infty\right]=1 \tag{B.20}
\end{equation*}
$$

By Kronecker's lemma, (B.20) implies that $\mathbb{P}\left[\lim _{t \rightarrow \infty} J_{t}=0\right]=1$. This further implies that the left hand side of (B.19), $t^{1-1 / \alpha}\left(\overline{\boldsymbol{\delta}}_{t}^{1}-\overline{\boldsymbol{\delta}}_{t}\right)$, converges to 0 almost surely.
Part II. It remains to show that $t^{1-1 / \alpha} \overline{\boldsymbol{\delta}}_{t}^{1}$ converges weakly to an α-stable distribution.
Define $\overline{\boldsymbol{x}}_{t}^{1}=\left(\boldsymbol{x}_{0}^{1}+\ldots+\boldsymbol{x}_{t-1}^{1}\right) / t$. Since $t^{1-1 / \alpha}\left(\overline{\boldsymbol{x}}_{t}^{1}-\overline{\boldsymbol{x}}_{t}\right)=t^{1-1 / \alpha}\left(\overline{\boldsymbol{\delta}}_{t}^{1}-\overline{\boldsymbol{\delta}}_{t}\right) \rightarrow 0$ almost surely, it follows a fortiori that $\overline{\boldsymbol{x}}_{t}^{1}-\overline{\boldsymbol{x}}_{t} \rightarrow 0$ almost surely. Hence $\boldsymbol{x}_{t}^{1}-\boldsymbol{x}_{t} \rightarrow 0$ almost surely, due to the well-known theorem that a real-valued sequence converges to zero if and only if the average sequence converges to zero.

Therefore, for the noise decomposition $\boldsymbol{\xi}_{t+1}\left(\boldsymbol{x}_{t}\right)=\boldsymbol{\zeta}_{t+1}+\boldsymbol{m}_{t+1}\left(\boldsymbol{x}_{t}\right)$, the state-dependent component $\boldsymbol{m}_{t+1}\left(\boldsymbol{x}_{t}\right)$ satisfies not only (3.3), i.e.,

$$
\mathbb{E}\left[\left|\boldsymbol{m}_{t+1}\left(\boldsymbol{x}_{t}\right)\right|^{2} \mid \mathcal{F}_{t}\right] \leqslant K\left(1+\left|\boldsymbol{x}_{t}\right|^{2}\right)
$$

but also

$$
\mathbb{E}\left[\left|\boldsymbol{m}_{t+1}\left(\boldsymbol{x}_{t}\right)\right|^{2} \mid \mathcal{F}_{t}\right] \leqslant C\left(1+\left|\boldsymbol{x}_{t}^{1}\right|^{2}\right)
$$

Hence, combining the discussion above and Lemma 18, we know that the linear recursion (B.16) defines a process that satisfies Theorem 5. (The only difference is that κ, instead of (B.15), can be taken from the range $(\rho, 1)$ under the assumption of the current theorem, since by Theorem 3, $\sup _{t \in \mathbb{N}^{+}} \mathbb{E}\left[\left|\boldsymbol{\xi}_{t}\right|^{p}\right]<\infty$ for every $1 \leqslant p<\alpha$.) It then follows from Theorem 5 that $t^{1-1 / \alpha} \overline{\boldsymbol{\delta}}_{t}^{1}$ converges weakly to an α-stable distribution.
The proof is complete.

C Additional Technical Background

C. $1 \quad$ Properties of α-Stable Distributions

An α-stable distributed random variable X is denoted by $X \sim \mathcal{S}_{\alpha}(\sigma, \theta, \mu)$, where $\alpha \in(0,2]$ is the tail-index, $\theta \in[-1,1]$ is the skewness parameter, $\sigma \geqslant 0$ is the scale parameter, and $\mu \in \mathbb{R}$ is called the location parameter. An α-stable random variable X is uniquely characterized by its characteristic function: $\mathbb{E}[\exp (i u X)]=e^{-\sigma^{\alpha}|u|^{\alpha}\left(1-i \theta \operatorname{sgn}(u) \tan \left(\frac{\pi \alpha}{2}\right)\right)+i \mu u}$, if $\alpha \neq 1$ and $\mathbb{E}[\exp (i u X)]=e^{-\sigma|u|\left(1+i \theta \frac{2}{\pi} \operatorname{sgn}(u) \log |u|\right)+i \mu u}$, if $\alpha=1$, for any $u \in \mathbb{R}$. The mean of X coincides with μ if $\alpha>1$, and otherwise the mean of X is undefined. The skewness parameter θ is a measure of asymmetry. We say that X follows a symmetric α-stable distribution denoted as $\mathcal{S} \alpha \mathcal{S}(\sigma)=\mathcal{S}_{\alpha}(\sigma, 0,0)$ if $\theta=0$ (and $\mu=0$). The tail-index parameter $\alpha \in(0,2]$ determines the tail thickness of the distribution, and $\sigma>0$ measures the spread of X around its mode. When $\alpha<2$, α-stable distributions have heavy tails so that their moments are finite only up to the order α. More precisely, let $X \sim \mathcal{S}_{\alpha}(\sigma, \theta, \mu)$ with $0<\alpha<2$. Then $\mathbb{E}\left[|X|^{p}\right]<\infty$ for any $0<p<\alpha$ and $\mathbb{E}\left[|X|^{p}\right]=\infty$ for any $p \geqslant \alpha$, which implies infinite variance (see e.g. [Samorodnitsky and Taqqu, 1994, Property 1.2 .16$]$). When $0<\alpha<2$, the left tail and right tail of X are described by the formulas:

$$
\lim _{x \rightarrow \infty} x^{\alpha} \mathbb{P}(X>x)=\frac{1+\theta}{2} C_{\alpha} \sigma^{\alpha}, \quad \lim _{x \rightarrow \infty} x^{\alpha} \mathbb{P}(X<-x)=\frac{1-\theta}{2} C_{\alpha} \sigma^{\alpha}
$$

where $C_{\alpha}:=(1-\alpha) /(\Gamma(2-\alpha) \cos (\pi \alpha / 2))$ if $\alpha \neq 1$ and $C_{\alpha}:=2 / \pi$ if $\alpha=1$, (see e.g. [Samorodnitsky and Taqqu, 1994, Property 1.2.15]). The family of α-stable distributions include normal, Lévy and Cauchy distributions as special cases, and can be used to model many complex stochastic phenomena [Sarafrazi and Yazdi, 2019, Fiche et al., 2013, Farsad et al., 2015].

C. 2 Domains of Attraction of Stable Distributions

Let X_{i} be an i.i.d. sequence with a common distribution whose distribution function is denoted as F, and let $S_{n}:=X_{1}+X_{2}+\cdots+X_{n}$. Suppose that for some normalizing constants $a_{n}>0$ and b_{n}, the sequence $S_{n} / a_{n}-b_{n}$ has a non-degenerate limit distribution with distribution function G, i.e.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n} / a_{n}-b_{n} \leqslant x\right)=G(x) \tag{C.1}
\end{equation*}
$$

for all continuity points x of G, then such limit distributions G are stable distributions and the set of distribution functions F such that $S_{n} / a_{n}-b_{n}$ converges to a particular stable distribution is called its domain of attraction.

Next, let us provide a sufficient and necessary condition for being in the domain of attraction of a stable distribution. The class of distribution functions F for which $S_{n} / a_{n}-b_{n}$ converges to $\mathcal{S} \alpha \mathcal{S}(\sigma)$ is called the α-stable domain of attraction, and we denote it as $F \in D_{\alpha}$. Before we proceed, let us recall that a positive measurable function f is regularly varying if there exists a constant $\gamma \in \mathbb{R}$ such that $\lim _{t \rightarrow \infty} \frac{f(t x)}{f(t)}=x^{\gamma}$, for every $x>0$. In this case, we denote $f \in R V_{\gamma}$, and we say a function f is slowly varying if $f \in R V_{0}$.
Define the characteristic functions $\phi(u):=\int_{-\infty}^{\infty} e^{i u x} d F(x)$ and $\psi(u):=\int_{-\infty}^{\infty} e^{i u x} d G(x)$, and also define $\lambda(u):=\phi(1 / u)$ and $g(u):=\psi(1 / u)$ for $u \in[-\infty, \infty] \backslash\{0\}$. We also denote $U(x):=\operatorname{Re} \lambda(x)$ and $V(x):=\operatorname{Im} \lambda(x)$. By Lévy's continuity theorem for characteristic functions (see e.g. Feller [1971, Chapter XV.3]), the convergence in (C.1) is equivalent to $\lim _{n \rightarrow \infty} \exp \left(-i b_{n} / u\right) \lambda^{n}\left(a_{n} u\right)=g(u)$, $u \in[-\infty, \infty] \backslash\{0\}$ uniformly on neighborhoods of $\pm \infty$. Based on this, one can show that (see e.g.) if (C.1) holds, then $|g(u)|^{2}=\exp \left(-c|u|^{-\alpha}\right)$ for some $\alpha \in(0,2]$ and $c>0$ and moreover $-\log |\lambda| \in R V_{-\alpha}$, i.e. $-\log |\lambda|$ is regularly varying with index $-\alpha$. Next, we state a sufficient and necessary condition for being in the α-stable domain of attraction.
Theorem 19 (Geluk and de Hann [2000], Theorem 1). Suppose $0<\alpha<2$. Every α-stable random variable X has a characteristic function of the form:

$$
\mathbb{E}[\exp (i u X)]=\exp \left(-\left\{|u|^{\alpha}+i u(2 p-1)\{(1-\alpha) \tan (\alpha \pi / 2)\} \frac{|u|^{\alpha-1}-1}{\alpha-1}\right\}\right)
$$

for some $0 \leqslant p \leqslant 1$ with $(1-\alpha) \tan (\pi / 2)$ defined to be $2 / \pi$ at $\alpha=1$. The following statements are equivalent:
(i) $F \in D_{\alpha}$.
(ii) $1-F(x)+F(-x) \in R V_{-\alpha}$ and there exists a constant $p \in[0,1]$ such that

$$
\lim _{x \rightarrow \infty} \frac{1-F(x)}{1-F(x)+F(-x)}=p
$$

(iii) $1-U(x) \in R V_{-\alpha}$ and there exists a constant $p \in[0,1]$ such that

$$
\lim _{x \rightarrow \infty} \frac{x u V(x u)-x V(x)}{x(1-U(x))}=(2 p-1)(1-\alpha) \tan \left(\frac{\alpha \pi}{2}\right) \frac{|u|^{1-\alpha}-1}{1-\alpha}, \quad u \in \mathbb{R} \backslash\{0\}
$$

Furthermore, [Geluk and de Hann, 2000, Theorem 1] showed that if any of (i), (ii), (iii) holds, then $\lim _{x \rightarrow \infty} \frac{1-U(x)}{1-F(x)+F(-x)}=\Gamma(1-\alpha) \cos (\alpha \pi / 2)$ and $\lim _{x \rightarrow \infty} \frac{V(x)-x^{-1} \int_{0}^{x}(1-F(y)-F(-y)) \mathrm{d} y}{1-F(x)+F(-x)}=$ $(2 p-1)\left(\Gamma(1-\alpha) \sin (\alpha \pi / 2)-\frac{1}{1-\alpha}\right)$.
Let us illustrate [Geluk and de Hann, 2000, Theorem 1] with an example of Pareto distribution, which is a power-law distribution widely applied in various fields. A random variable X is said to follow a Pareto distribution (of type I) if there exists some $c>0$ such that $\mathbb{P}(X>x)=(x / c)^{-\alpha}$ for any $x \geqslant c$ and $\mathbb{P}(X>x)=1$ for any $x<c$. In this case, $F(x)=1-(x / c)^{-\alpha}$ for any $x \geqslant c$ and $F(x)=0$ for any $x<c$. It follows that $1-F(x)+F(-x) \in R V_{-\alpha}$ and $\lim _{x \rightarrow \infty} \frac{1-F(x)}{1-F(x)+F(-x)}=1$. Therefore, $F \in D_{\alpha}$ and the Pareto distribution is in the α-stable domain of attraction.
When the tail-index $\alpha \in(0,2)$, the logarithm of the characteristic function (i.e. $\log \mathbb{E}\left[e^{i u X}\right]$) of an α-stable random variable X is of the form (see [Gnedenko and Kolmogorov, 1954, equation (12), page 168]):

$$
\begin{equation*}
i \gamma u+c_{1} \int_{-\infty}^{0}\left[e^{i u x}-1-\frac{i u x}{1+x^{2}}\right] \frac{\mathrm{d} x}{|x|^{1+\alpha}}+c_{2} \int_{0}^{\infty}\left[e^{i u x}-1-\frac{i u x}{1+x^{2}}\right] \frac{\mathrm{d} x}{x^{1+\alpha}} \tag{C.2}
\end{equation*}
$$

where $c_{1}, c_{2} \geqslant 0$ and $\gamma \in \mathbb{R}$. Since the characteristic function uniquely characterizes a probability distribution, the triplet $\left(c_{1}, c_{2}, \alpha\right)$ uniquely determines an α-stable law up to a constant shift $\gamma \in \mathbb{R}$ when $0<\alpha<2$. [Gnedenko and Kolmogorov, 1954, Theorem 2, page 175] provides another
sufficient and necessary condition for being in the domain of attraction of an α-stable distribution, which complements [Geluk and de Hann, 2000, Theorem 1]. Suppose $0<\alpha<2$. Then, the distribution function $F(x)$ belongs to the domain of attraction of an α-stable distribution if and only if the following conditions hold: (i) $\lim _{x \rightarrow \infty} \frac{F(-x)}{1-F(x)}=\frac{c_{1}}{c_{2}}$. (ii) For every constant $\kappa>$ $0, \lim _{x \rightarrow \infty} \frac{1-F(x)+F(-x)}{1-F(\kappa x)+F(-\kappa x)}=\kappa^{\alpha}$. In the case of a Pareto distribution (of type I), for some $c>0$, we have $F(x)=1-(x / c)^{-\alpha}$ for any $x \geqslant c$ and $F(x)=0$ for any $x<c$. Then we can check that $\lim _{x \rightarrow \infty} \frac{F(-x)}{1-F(x)}=0$ and for every constant $\kappa>0, \lim _{x \rightarrow \infty} \frac{1-F(x)+F(-x)}{1-F(\kappa x)+F(-\kappa x)}=$ $\lim _{x \rightarrow \infty} \frac{(x / c)^{-\alpha}}{(\kappa x / c)^{-\alpha}}=\kappa^{\alpha}$. Thus, the Pareto distribution belongs to the domain of attraction of an α-stable distribution.

Finally, let us provide a sufficient and necessary condition for being in the domain of normal attraction of a stable distribution.
Theorem 20 (Gnedenko and Kolmogorov [1954], Theorem 5, page 181). Suppose $0<\alpha<2$. The distribution function $F(x)$ belongs to the domain of attraction of an α-stable distribution characterized by (C.2) if and only if

$$
\begin{align*}
& F(x)=\left(c_{1} a^{\alpha}+\alpha_{1}(x)\right) \frac{1}{|x|^{\alpha}}, \quad \text { for } x<0 \tag{C.3}\\
& F(x)=1-\left(c_{2} a^{\alpha}+\alpha_{2}(x)\right) \frac{1}{x^{\alpha}}, \quad \text { for } x>0 \tag{C.4}
\end{align*}
$$

where $a>0$ is a positive constant and $\alpha_{1}(x), \alpha_{2}(x)$ are functions satisfying $\lim _{x \rightarrow-\infty} \alpha_{1}(x)=$ $\lim _{x \rightarrow \infty} \alpha_{2}(x)=0$. Indeed, the constant a in (2.2), (C.3) and (C.4) is the same.

In the case of a Pareto distribution (of type I), for some $c>0$, we have $F(x)=1-(x / c)^{-\alpha}$ for any $x \geqslant c$ and $F(x)=0$ for any $x<c$. Then we can check that (C.3) and (C.4) hold with $c_{1}=0$, $\alpha_{1}(x) \equiv 0, c_{2}=1, \alpha_{2}(x) \equiv 0$ and $a=c$. Thus, the Pareto distribution belongs to the domain of normal attraction of an α-stable distribution.

[^0]: ${ }^{3}$ The paper Krasulina [1969] contains a minor error in ignoring the signum function $\operatorname{sign}(x)$ in this inequality. Our proof of Theorem 3 can be thought of its correction as well as extension.

[^1]: ${ }^{4}$ To see this, notice that for any $p \geqslant 1$ and $x, y \geqslant 0, x^{p}+y^{p}-x^{p-1} y-y^{p-1} x=\left(x^{p-1}-y^{p-1}\right)(x-y) \geqslant 0$.

[^2]: ${ }^{5}$ We can directly use this inequality since our assumption on step-size $\gamma_{t} \asymp t^{-\rho}, 0<\rho<1$ can meet Polyak and Juditsky [1992, Assumption 2.2].

