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A Lemmas and Discussions

A.1 Key Lemmas

In this subsection, we present some key lemmas used in the proof of our main theorems, which are
helpful when considering stochastic problems with infinite variance.

The concept of uncorrelatedness has long been used by probabilists as a trick when computing and
estimating variance. For example, consider a sequence of uncorrelated random vectors {Xt}t∈N+

(e.g. square-integrable martingale difference). Then

E
[
|X1 + . . .+Xt|2

]
= E

[
|X1|2

]
+ . . .+ E

[
|Xt|2

]
. (A.1)

Indeed, this type of expansion is used in Polyak and Juditsky [1992] to show L2 convergence in the
normality analysis of stochastic approximation problems.

However, correlatedness is only defined when random elements have finite variance. The following
lemma provides an infinite-variance version of expansion (A.1), stating that the p-th moment (p < 2)
of a martingale without square-integrability assumption can also be bounded simpliciter by the sum
of the p-th moments of its differences, at the cost of a multiplicative constant that may depend only
on p and the dimension n. It is a generalization of the recent study Cherapanamjeri et al. [2020,
Lemma 4.2].
Lemma 7. Suppose p ∈ [0, 1] and let {St}t∈N be an n-dimensional martingale adapted to the
filtration {Ft}t∈N, with E[|St|1+p] <∞ for every t and S0 = 0. LetXi = Si − Si−1. Then

E
[
|St|1+p

]
6 21−pn1−

1+p
2

t∑
i=1

E
[
|Xi|1+p

]
.

Next, we present a Taylor-expansion-type inequality for the function ‖x‖pp. Recall that we have
defined the signed power of a vector in (3.1).

Lemma 8. Let p ∈ [1, 2]. For any x,y ∈ Rn, ‖x+ y‖pp 6 ‖x‖pp + 4‖y‖pp + pyTx〈p−1〉.

This inequality traces back to Krasulina [1969], where the one-dimensional version |x + y|p 6
|x|p +C|y|p + pyxp−1 sign(x) is used3 to derive an Lp rate of convergence for the one-dimensional
stochastic approximation process with step-size 1/t. In our current study, this lemma is used not only
to derive Lp rate of convergence for general infinite-variance process in Rn with variable step-size
scheme (Theorem 3), but also in the proof of the equivalent definitions of p-PD (Theorem 10).

Finally, we quote Fabian [1967, Lemma 4.2], which we shall use to calculate the exact convergence
rate (see also Chung [1954]).
Lemma 9 (Fabian [1967], Lemma 4.2). Let {bt}t∈N, A,B, α, β be real numbers such that 0 < α < 1,
A > 0 and suppose the recursion

bt+1 = bt(1−At−α) +Bt−α−β

holds. Then, bt = Θ(t−β).

A.2 Discussions on p-Positive Definiteness and Uniform p-Positive Definiteness

Let us now focus on p-PD and uniform p-PD conditions which are defined in Definition 1, Definition 2
(also see Assumption 1). The next theorem provides several equivalent characterizations of p-PD
condition, which will be used in the proof of Lp convergence.

3The paper Krasulina [1969] contains a minor error in ignoring the signum function sign(x) in this inequality.
Our proof of Theorem 3 can be thought of its correction as well as extension.
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Theorem 10 (Equivalent definitions of p-PD). Let Q be a symmetric matrix. The following are
equivalent when p ∈ [1, 2].

i) There exist δ, L > 0, such that ‖I− tQ‖pp 6 1− Lt for all t ∈ [0, δ).

ii) There exists λ > 0 such that for all v ∈ Rn, vTQv〈p−1〉 > λ‖v‖pp.

iii) For all v ∈ Sp, vTQv〈p−1〉 > 0.

iv) For all v ∈ Sp, there exists t0 > 0 such that ‖v − t0Qv‖p < 1.

Next, we provide several equivalent characterizations of uniform p-PD.

Theorem 11 (Equivalent definitions of uniform p-PD). Let M be a bounded set of symmetric
matrices. The following are equivalent when p ∈ [1, 2].

i) There exist δ, L > 0, such that ‖I− tQ‖pp 6 1− Lt for all t ∈ [0, δ) and Q ∈M.

ii) There exists λ > 0 such that for all v ∈ Rn and Q ∈M, vTQv〈p−1〉 > λ‖v‖pp.

iii) For all v ∈ Sp and Q ∈M, vTQv〈p−1〉 > 0.

iv) For all v ∈ Sp and Q ∈M, there exists t0 > 0 such that ‖v − t0Qv‖p < 1.

We notice that some mild assumptions can indeed imply p-PD. For example, we will show that
diagonal dominance implies p-PD. Recall that a symmetric matrix Q = (qij)n×n is called diagonally
dominant (with non-negative diagonal) if for every i ∈ [n],

qii −
∑

j∈[n]\{i}

|qij | > 0.

Further, we say that a non-empty setM of symmetric matrices is uniformly diagonally dominant
(with non-negative diagonal) if

inf
(qij)n×n∈M

min
i∈[n]

qii − ∑
j∈[n]\{i}

|qij |

 > 0.

We have the following observations which we shall prove in Section B. First, we observe that
the uniform p-PD assumption is weaker than the notion of uniform diagonally dominance (with
non-negative diagonal).

Proposition 12. A uniformly diagonally dominant (with non-negative diagonal) set of symmetric
matrices is uniformly p-PD for every p ∈ [1, 2].

Next, we notice that the result in Proposition 12 is tight for p = 1.

Proposition 13. Uniform 1-PD is equivalent to uniform diagonal dominance (with non-negative
diagonal).

Finally, we observe that the notion of uniform 2-PD is weaker than uniform p-PD for any p ∈ [1, 2].

Proposition 14. Let p ∈ [1, 2]. Uniform p-PD implies uniform 2-PD.

B Omitted Proofs

In this section, we first prove the lemmas, theorems, and propositions in Section A, then prove the
theorems in Sections 3 and 4. Throughout this section, we denote by δt the error of the approximation
xt − x∗, and by δt the averaged error (δ0 + . . .+ δt−1)/t. The gradient ∇f(x) and the Hessian
∇2f(x) will be written as R(x) and ∇R(x) respectively, not only for notational simplicity, but
also to stress the fact that our results can be applied to any instance of stochastic approximation (2.1)
including SGD.
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Proof of Lemma 7 We first prove the n = 1 case. Suppose {St} is a one-dimensional martingale
and Xi = Si − Si−1. Notice that the function g(x) = |x|1+p satisfies the inequality (see e.g.
Cherapanamjeri et al. [2020, Lemma A.3]):

|g′(x)− g′(y)| 6 21−pg′(|x− y|),

where the weak derivative g′(x) = sign(x) is used in the inequality above in the case of p = 0, where

sign(x) :=


1 if x > 0,

−1 if x < 0,

0 if x = 0.

Furthermore, by E[Xig
′(Si−1) | Fi−1] = g′(Si−1)E[Xi | Fi−1] = 0, we have

E[g(St)] =

t∑
i=1

E

[∫ Si

Si−1

g′(x)dx

]

=

t∑
i=1

E

[
Xig

′(Si−1) +

∫ Si

Si−1

[g′(x)− g′(Si−1)]dx

]

=

t∑
i=1

E

[∫ Si

Si−1

[g′(x)− g′(Si−1)]dx

]

=

t∑
i=1

E

[∫ Xi

0

[g′(Si−1 + τ)− g′(Si−1)]dτ

]

=

t∑
i=1

E

[∫ |Xi|
0

|g′(Si−1 + sign(Xi)τ)− g′(Si−1)|dτ

]

6 21−p
t∑
i=1

E

[∫ |Xi|
0

g′(τ)dτ

]

= 21−p
t∑
i=1

E[g(|Xi|)]. (B.1)

Next, for the higher dimension n > 1, we denote by Sji (resp. Xj
i ) the j-th entry of the vector Si

(resp. Xi). We can apply the inequality (B.1) obtained above to Sjt by taking a (1 + p)-norm,

E
[
‖St‖1+p1+p

]
=

n∑
j=1

E
[∣∣∣Sjt ∣∣∣1+p]

6
n∑
j=1

21−p
t∑
i=1

E
[∣∣∣Xj

i

∣∣∣1+p]

= 21−p
t∑
i=1

n∑
j=1

E
[∣∣∣Xj

i

∣∣∣1+p]

= 21−p
t∑
i=1

E
[
‖Xi‖1+p1+p

]
.

Finally, the inequalities
|x| 6 ‖x‖1+p 6 n

1
1+p−

1
2 |x|

give our desired result:

E
[
|St|1+p

]
6 21−pn1−

1+p
2

t∑
i=1

E
[
|Xi|1+p

]
.
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The proof is complete.

Proof of Lemma 8 By the inequality that |1 + a|p 6 1 + ap+ 4|a|p for any p ∈ [1, 2] and a ∈ R,
we have that for any p ∈ [1, 2] and x, y ∈ R,

|x+ y|p 6 |x|p + py|x|p−1 sign(x) + 4|y|p. (B.2)

Next, for any x = (x1, . . . , xn)T,y = (y1, . . . , yn)T ∈ Rn, by taking the p-norm and applying the
inequality (B.2), we obtain

‖x+ y‖pp =

n∑
i=1

∣∣xi + yi
∣∣p

6
n∑
i=1

(∣∣xi∣∣p + pyi
∣∣xi∣∣p−1 sign(xi) + 4

∣∣yi∣∣p)
= ‖x‖pp + 4‖y‖pp + p

n∑
i=1

yi
∣∣xi∣∣p−1 sign(xi)

= ‖x‖pp + 4‖y‖pp + pyTx〈p−1〉,

which completes the proof.

Since Theorem 10 is just a special case of Theorem 11, we will only prove the latter. Before we
proceed, let us first state a useful technical lemma.

Lemma 15. Let u,v ∈ Rn and consider the function ϕ(t) = ‖u+ tv‖pp =
∑n
i=1 |ui + vit|p. The

function ϕ is convex and has the following derivative (when 1 < p 6 2) or subderivative (when
p = 1):

ϕ′(t) =

n∑
i=1

p
∣∣ui + vit

∣∣p−1 sign
(
ui + vit

)
vi = pvT(u+ tv)〈p−1〉.

The proof of Lemma 15 is straightforward and is hence omitted here.

Now we are ready to prove Theorem 11.

Proof of Theorem 11 We shall show that i) =⇒ iv) =⇒ iii) =⇒ ii) =⇒ i).

i) =⇒ iv) Take a sequence {Q1,Q2, . . .} ⊆ M such that limm→∞Qm = Q. iv) follows
from ‖I− (δ/2)Qm‖pp 6 1− Lδ/2.

iv) =⇒ iii) For all v ∈ Sp and Q ∈M, consider the function ϕ(t) = ‖v− tQv‖pp. According
to Lemma 15, ϕ(t) is convex. Furthermore, ϕ(t0) < 1 = ϕ(0). Hence it follows
that ϕ′(0) < 0; that is, vTQv〈p−1〉 > 0.

iii) =⇒ ii) Since the function (v,Q) 7→ vTQv〈p−1〉 is continuous, it maps the compact
set Sp ×M to a compact set. Hence there exists some λ > 0 such that for all
v ∈ Sp and Q ∈ M, vTQv〈p−1〉 > λ. Now, for every u ∈ Rn \ {0}, by setting
v = u/‖u‖p, we get uTQu〈p−1〉 > λ‖u‖pp.

ii) =⇒ i) For arbitrary v ∈ Rn and Q ∈ M, by Lemma 8 we have ‖(I − tQ)v‖pp =

‖v− tQv‖pp 6 ‖v‖pp + 4tp‖Qv‖pp− pt(vTQv〈p−1〉) 6 ‖v‖pp + 4tp‖Q‖pp‖v‖pp−
ptλ‖v‖pp. This implies i).

The proof is complete.
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Proof of Proposition 12 Let Q ∈M and v ∈ Rn.

vTQv〈p−1〉 =

n∑
i=1

qii|vi|p +
∑
i<j

qij(v
i|vj |p−1 sign(vj) + vj |vi|p−1 sign(vi))

>
n∑
i=1

qii|vi|p −
∑
i<j

|qij |(|vi||vj |p−1 + |vj ||vi|p−1)

>
n∑
i=1

qii|vi|p −
∑
i<j

|qij |(|vi|p + |vj |p)

=

n∑
i=1

|vi|p
qii −∑

j 6=i

|qij |

,
where we used the inequality xp + yp > xp−1y + yp−1x for any p > 1 and x, y > 04 to get the
third line from the second line above. Hence the uniform p-PD ofM follows from the item ii) of
Theorem 11. The proof is complete.

Proof of Proposition 13 SupposeM is uniform 1-PD. By the item i) of Theorem 11, there exists
δ, L > 0 such that ‖I− tQ‖1 6 1− Lt for all t ∈ [0, δ) and Q ∈M. Let Q = (qij)n×n and notice
that

‖I− tQ‖1 = max
i∈[n]

|1− tqii|+ ∑
j∈[n]\{i}

t|qij |

.
It follows that

min
i∈[n]

qii − ∑
j∈[n]\{i}

|qij |

 > L > 0.

HenceM is uniformly diagonally dominant (with non-negative diagonal). The proof is complete.

Proof of Proposition 14 Suppose M is uniformly p-PD but not uniformly 2-PD. Then, there
exists a sequence {Q1,Q2, . . .} ⊆ M such that the smallest eigenvalues λm of Qm satisfy

lim
m→∞

λm 6 0. (B.3)

For each m ∈ N+, there exists an vm ∈ Rn \ {0} such that Qmvm = λmvm. Hence

vTmQmv
〈p−1〉
m = λmv

T
mv
〈p−1〉
m = λm‖vm‖pp.

But by the item ii) of Theorem 11, there exists λ > 0 such that λm > λ. This contradicts (B.3). The
proof is complete.

Proof of Theorem 3 We use a technique similar to Krasulina [1969]. Define the function

T t(x) =
(
T 1
t (x), . . . , Tnt (x)

)T
= x− x∗ − γt+1R(x).

An n-dimensional (and corrected) version of the first inequality in the proof of Krasulina [1969,
Theorem 2] can be obtained by applying Lemma 8 to our stochastic approximation scheme,

‖xt+1 − x∗‖pp =
∥∥T t(xt)− γt+1ξt+1

∥∥p
p

6 ‖T t(xt)‖pp + 4γpt+1

∥∥ξt+1

∥∥p
p

+ pγt+1

n∑
i=1

ξit+1

∣∣T it (xt)∣∣p−1 signT it (xt).(B.4)

Since E
[
ξit+1|T it (xt)|p−1 signT it (xt) | xt

]
= |T it (xt)|p−1 signT it (xt)E[ξit+1 | xt] = 0, by taking

expectations in (B.4), we get

E
[
‖δt+1‖pp

]
= E

[
‖xt+1 − x∗‖pp

]
6 E

[
‖T t(xt)‖pp

]
+ 4γpt+1E

[∥∥ξt+1

∥∥p
p

]
= E

[
‖(xt − x∗)− γt+1R(xt)‖pp

]
+ 4γpt+1E

[∥∥ξt+1

∥∥p
p

]
.

4To see this, notice that for any p > 1 and x, y > 0, xp+yp−xp−1y−yp−1x = (xp−1−yp−1)(x−y) > 0.
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By the mean value theorem, there exists x[t ∈ {x∗ + τ(xt − x∗) : 0 6 τ 6 1}, such that
R(xt) = ∇R(x[t)(xt − x∗), and then

E
[
‖(xt − x∗)− γt+1R(xt)‖pp

]
+ 4γpt+1E

[∥∥ξt+1

∥∥p
p

]
= E

[∥∥∥(I− γt+1∇R(x[t))(xt − x∗)
∥∥∥p
p

]
+ 4γpt+1E

[∥∥ξt+1

∥∥p
p

]
6 E

[∥∥∥I− γt+1∇R(x[t)
∥∥∥p
p
· ‖xt − x∗‖pp

]
+ 4γpt+1E

[∥∥ξt+1

∥∥p
p

]
6 E

[∥∥∥I− γt+1∇R(x[t)
∥∥∥p
p
· ‖δt‖pp

]
+ C0γ

p
t+1

(
1 + E

[
‖δt‖pp

])
,

where the last inequality follows from

E[|mt+1|p | Ft] 6 E
[
|mt+1|2 | Ft

]p/2
6
[
K
(
1 + |xt|2

)]p/2
(B.5)

6 Kp/2(1 + |xt|p) 6 Kp/2
(
1 + 2p−1(|δt|p + |x∗|p)

)
,

where we used the inequality (x + y)r 6 xr + yr for any x, y > 0, 0 6 r 6 1 to obtain the first
inequality in the second line above, as well as the assumption E[|ζ1|p] <∞.

Note that
∥∥I− γt+1∇R(x[t)

∥∥p
p

can be estimated by the uniform p-PD assumption (see item i) of
Theorem 11) since γt → 0. For t sufficiently large,∥∥∥I− γt+1∇R(x[t)

∥∥∥p
p
6 1− Lγt+1.

And there is a positive constant C1 such that 1− Lγt+1 + C0γ
p
t+1 6 1− C1γt+1 for t sufficiently

large. Hence, we arrive at the following iterative bound

E
[
‖δt+1‖pp

]
6 (1− γt+1C1) · E

[
‖δt‖pp

]
+ C0γ

p
t+1 (B.6)

for t sufficiently large.

Next, let us substitute γt+1 with t−ρ where 0 < ρ < 1. Consider the iteration

µt+1 = (1− t−ρC1) · µt + C0t
−ρp, (B.7)

so that by (B.6), E
[
‖δt‖pp

]
= O(µt). By virtue of Lemma 9, we get

µt = Θ
(
t−ρ(p−1)

)
. (B.8)

Therefore, by (B.6), (B.7), and (B.8), we obtain the following rate of convergence:

E[‖δt‖pp] = O
(
t−ρ(p−1)

)
.

Next, since p-norms on Rn are all equivalent, we can drop the subscript ‖ · ‖p and obtain

E[|δt|p] = O
(
t−ρ(p−1)

)
.

Finally, by (B.5), we see that supt∈N+ E[|ξt|p] 6 supt∈N+ E[2p−1(|mt|p + |ζt|p)] <∞. The proof
is complete. Proof of Corollary 4 Under the assumptions of Corollary 4,
the rate E[|δt|p] = O

(
t−ρ(p−1)

)
holds for every p ∈ [q, α). We can thus apply Jensen’s inequality to

strengthen it. By Jensen’s inequality and (3.4), we get

E[|δt|q] 6 E[|δt|p]q/p = O
(
t−ρ(p−1)

q
p

)
.

By letting p↗ α, we conclude that have for every ε > 0,

E[|δt|q] = o
(
t−ρq

α−1
α +ε

)
.

The proof is complete.

Next, we state a series of technical lemmas as well as their proofs, which will be used in the proofs of
Theorems 5 and 6.
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Lemma 16. If γt � t−ρ with 0 < ρ < κ 6 1, then for all λ > 0,

lim
t→∞

t−κ
t−1∑
j=1

exp

−λ t−1∑
i=j

γi

 = 0.

Proof. Notice that there exists some constant B > 0 such that
t−1∑
i=j

γi >
B

λ

(
t1−ρ − j1−ρ

)
.

It follows that

t−κ
t−1∑
j=1

exp

−λ t−1∑
i=j

γi

 6 t−κ
t−1∑
j=0

exp
(
−Bt1−ρ +Bj1−ρ

)
=

∑t−1
j=0 exp(Bj1−ρ)

tκ exp(Bt1−ρ)
.

By Stolz-Cesàro theorem, we have∑t−1
j=0 exp(Bj1−ρ)

tκ exp(Bt1−ρ)
� exp(Bt1−ρ)

(t+ 1)κ exp(B(t+ 1)1−ρ)− tκ exp(Bt1−ρ)

=
1

(t+ 1)κ exp[B((t+ 1)1−ρ − t1−ρ)]− tκ

=
1

(t+ 1)κ exp[B(1− ρ)(t+ 1)−ρ + o(t−ρ)]− tκ

=
1

(t+ 1)κ[1 +B(1− ρ)(t+ 1)−ρ + o(t−ρ)]− tκ

=
1

B(1− ρ)(t+ 1)κ−ρ + o((t+ 1)κ−ρ)

→ 0,

as t→∞. The proof is complete.
Lemma 17. Suppose γt � t−ρ and 0 < ρ < κ 6 1; let A be a positive definite symmetric matrix.
Consider the matrix recursion in [Polyak and Juditsky, 1992, Lemma 1],

Xj
j = I, Xt+1

j = Xt
j − γtAXt

j , (j ∈ N+)

and define

X
t

j = γj

t−1∑
i=j

Xi
j , Φt

j = A−1 −X
t

j .

Then the following limit holds,

lim
t→∞

1

tκ

t−1∑
j=1

‖Φt
j‖ = 0.

Remark. Lemma 17 recovers [Polyak and Juditsky, 1992, Lemma 1] as the special case κ = 1.

Proof of Lemma 17 Modeling after Polyak and Juditsky [1992]’s proof of their Lemma 1, we
define Stj =

∑t−1
i=j (γi − γj)Xi

j , and we have

Φt
j = Stj + A−1Xt

j .

We will split the proofs into two parts. In the first part, we will prove t−κ
∑t−1
j=1 ‖Stj‖ → 0 and then

in the second part we will prove t−κ
∑t−1
j=1 ‖Xt

j‖ → 0.

Part I. We first prove that t−κ
∑t−1
j=1 ‖Stj‖ → 0.
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By the Part 3 of Polyak and Juditsky [1992, Lemma 1]5, there exist some λ > 0 and K <∞ such
that

‖Xt
j‖ 6 K exp

−2λ

t−1∑
i=j

γi

 = Ke−2λm
t
j , (B.9)

where m`
k stands for

∑`−1
i=k γi. Now we have

∥∥Stj∥∥ =

∥∥∥∥∥
t∑
i=1

(γi − γj)Xi
j

∥∥∥∥∥
=

∥∥∥∥∥∥
t∑
i=1

i−1∑
k=j

(γk+1 − γk)

Xi
j

∥∥∥∥∥∥
6 C0

t∑
i=j

i−1∑
k=j

k−ρ−1 exp
(
−2λmi

j

)
6 C0j

−1
t∑
i=j

i−1∑
k=j

k−ρ exp
(
−2λmi

j

)
6 C1j

−1
t∑
i=j

mi
j exp

(
−2λmi

j

)
= C1j

−1
t∑
i=j

mi
je
−2λmij (mi

j −m
i−1
j )

γi
, (B.10)

where C0, C1 are some positive constants.

Since the function fw(x) = xρ exp(−wx1−ρ) is bounded on x ∈ [1,∞) for every w > 0, we have

j−ρ

γi
exp
(
−λmi

j

)
6 C2i

ρj−ρ exp(−C3(i1−ρ − j1−ρ)) = C2fC3
(i)/fC3

(j) 6 C4,

for some positive constants C2, C3 and C4. Hence, continuing upon (B.10),

∥∥Stj∥∥ 6 C1C4j
ρ−1

t∑
i=j

mi
je
−λmij (mi

j −mi−1
j ).

Since the summation
∑t
i=jm

i
je
−λmij (mi

j −m
i−1
j ) approximates

∫mtj
0

me−λmdm, it is bounded.
Hence, for some positive constant C5,

‖Stj‖ 6 C5j
ρ−1,

which implies the desired limit

lim
t→∞

t−κ
t−1∑
j=1

‖Stj‖ = 0.

Part II. It remains to prove that t−κ
∑t−1
j=1 ‖Xt

j‖ → 0.

Combining (B.9) and Lemma 16, we have t−κ
∑t−1
j=1 ‖Xt

j‖ → 0. Hence the proof of this lemma is
complete.
Lemma 18. Given the assumption of Theorem 5 or Theorem 6,

ξ1 + . . . ξt
t1/α

D−−−→
t→∞

µ.

5We can directly use this inequality since our assumption on step-size γt � t−ρ, 0 < ρ < 1 can meet Polyak
and Juditsky [1992, Assumption 2.2].
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Proof. We recall the decomposition ξt = ζt +mt, where {ζt} are i.i.d. and ζ1 is in the domain of
normal attraction of an n-dimensional centered α-stable distribution so that

ζ1 + . . .+ ζt
t1/α

D−−−→
t→∞

µ.

Hence, it suffices to show that t−1/α(m1 + . . .+mt)→ 0 in Lr, for some r > 1.

By (3.3), there exists a constant C > 0 such that

E
[
|mt+1(xt)|2 | Ft

]
6 K

(
1 + |xt|2

)
6 K(1 + 2|x∗|2 + 2|δt|2) 6 C(1 + |δt|2).

Hence, by using the “Remark” on p.151 of Neveu [1975] (cf. inequalities (20) of Anantharam and
Borkar [2012]), we get

E
[∣∣∣∣m1 + . . .+mt

t1/α

∣∣∣∣r] 6 C1

tr/α
E

( t∑
i=1

E
[
|mi|2 | Fi−1

])r/2
6

C2

tr/α
E

( t∑
i=1

(
1 + |δi−1|2

))r/2
6

C2

tr/α
E

[
tr/2 +

t∑
i=1

|δi−1|r
]
, (B.11)

where, for the last inequality, we use the fact that (x+ y)s 6 xs + ys for any x, y > 0, 0 6 s 6 1.
If the assumption of Theorem 5 holds, take r = p > (α+ αρ)/(1 + αρ) in the inequalities (B.11)
above. Then, by Theorem 3, E[|δt|r] = O(t−ρ(r−1)) = o(tr/α−1).

If the assumption of Theorem 6 holds, take r = q > 1/ρ > α/(1 + ρ(α − 1)) in the inequalities
(B.11) above. Then by Corollary 4, E[|δt|r] = Õ(t−ρr(α−1)/α) = o(tr/α−1).

In both cases, t−1/α(m1 + . . .+mt)→ 0 in Lr. The proof is complete.

Finally, we are ready to prove Theorems 5 and 6.

Proof of Theorem 5 By Polyak and Juditsky [1992, Lemma 2]:

t

t1/α
δt =

1

t1/α
Ftδ0︸ ︷︷ ︸

I
(1)
t

− 1

t1/α

t−1∑
j=1

A−1ξj︸ ︷︷ ︸
I
(2)
t

− 1

t1/α

t−1∑
j=1

Wt
jξj︸ ︷︷ ︸

I
(3)
t

, (B.12)

where Ft and Wt
j are deterministic matrices with uniformly bounded operator 2-norms defined as

Ft =

t−1∑
i=0

i∏
k=1

(I− γkA), (B.13)

Wt
j = γj

t−1∑
i=j

i∏
k=j+1

(I− γkA)−A−1. (B.14)

We have I(1)t → 0 by the boundedness of Ft. Next, take some κ such that

max(ρ, 1/α) < κ 6 p/α. (B.15)

We shall prove that I(3)t → 0 in Lακ (notice that 1 < ακ 6 p < α; cf. Polyak and Juditsky [1992,
Proof of Theorem 1] where convergence in L2 is proven). By Theorem 3, supj E[|ξj |p] <∞. Hence
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we can compute, by virtue of Lemma 7, that

E
[∣∣∣I(3)t ∣∣∣ακ] = E

∣∣∣∣∣∣ 1

t1/α

t−1∑
j=1

Wt
jξj

∣∣∣∣∣∣
ακ 6

C0

tκ

t−1∑
j=1

E
[∣∣Wt

jξj
∣∣ακ]

6

C0

tκ

t−1∑
j=1

∥∥Wt
j

∥∥ακ sup
j

E
[∣∣ξj∣∣ακ] 6

C0

tκ

t−1∑
j=1

∥∥Wt
j

∥∥ sup
j

E
[∣∣ξj∣∣ακ]

6
C1

tκ

t−1∑
j=1

∥∥Wt
j

∥∥.
Notice that the matrices Wt

j defined above correspond to −Φt
j in Lemma 17. This infers that

E
[
|I(3)t |ακ

]
6 K1

tκ

∑t−1
j=1 ‖Wt

j‖ → 0 as t→∞.

Finally, Lemma 18 states that I(2)t converges weakly to an α-stable distribution. Hence we conclude
the proof.

Proof of Theorem 6 Denote by A the Hessian matrix ∇R(x∗) = ∇2f(x∗). Consider a corre-
sponding linear SA process with the same noise,

x1
t+1 = x1

t − γt+1

(
A(x1

t − x∗) + ξt+1(xt)
)
, (B.16)

with x1
0 = x0. We further define δ1t = x1

t −x∗ and the averaging process δ
1

t = (δ10 + . . .+ δ1t−1)/t.

Part I. We first prove that t1−1/α
(
δ
1

t − δt
)
→ 0 almost surely.

By (B.12), we have
t

t1/α
δ
1

t =
1

t1/α
Ftδ0 −

1

t1/α

t−1∑
j=1

(
A−1 + Wt

j

)
ξj , (B.17)

where the matrices Ft and Wt
j are defined back in (B.13) and (B.14). For the non-linear process (2.1),

it can be viewed as if it is a linear process with the j-th noise term being ξj +R(xj−1)−Aδj−1.
Hence by (B.12), we have

t

t1/α
δt =

1

t1/α
Ftδ0 −

1

t1/α

t−1∑
j=1

(
A−1 + Wt

j

)(
ξj +R(xj−1)−Aδj−1

)
. (B.18)

Combining (B.17) and (B.18) yields the difference (cf. Part 4 of Polyak and Juditsky [1992, Proof of
Theorem 2])

t

t1/α

(
δ
1

t − δt
)

=
1

t1/α

t−1∑
j=1

(
A−1 + Wt

j

)
(R(xj−1)−Aδj−1). (B.19)

We also recall the assumption that |R(xj)−Aδj | 6 K|δj |q . Hence, it suffices to show the following
term vanishes almost surely as t→∞:

Jt =
1

t1/α

t−1∑
j=1

|δj |q.

To show this, first by our calculation of the rate of convergence in Corollary 4,

E

t−1∑
j=1

1

j1/α
|δj |q

 =

t−1∑
j=1

Õ
(
j−ρq

α−1
α −

1
α

)
= O(1).

The last equality holds since −ρqα−1α −
1
α < −1. Hence, we have

P

t−1∑
j=1

1

j1/α
|δj |q <∞

 = 1. (B.20)
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By Kronecker’s lemma, (B.20) implies that P[limt→∞ Jt = 0] = 1. This further implies that the left
hand side of (B.19), t1−1/α

(
δ
1

t − δt
)

, converges to 0 almost surely.

Part II. It remains to show that t1−1/αδ
1

t converges weakly to an α-stable distribution.

Define x1
t = (x1

0 + . . .+ x1
t−1)/t. Since t1−1/α

(
x1
t − xt

)
= t1−1/α

(
δ
1

t − δt
)
→ 0 almost surely,

it follows a fortiori that x1
t − xt → 0 almost surely. Hence x1

t − xt → 0 almost surely, due to the
well-known theorem that a real-valued sequence converges to zero if and only if the average sequence
converges to zero.

Therefore, for the noise decomposition ξt+1(xt) = ζt+1+mt+1(xt), the state-dependent component
mt+1(xt) satisfies not only (3.3), i.e.,

E
[
|mt+1(xt)|2 | Ft

]
6 K

(
1 + |xt|2

)
,

but also
E
[
|mt+1(xt)|2 | Ft

]
6 C

(
1 + |x1

t |2
)
.

Hence, combining the discussion above and Lemma 18, we know that the linear recursion (B.16)
defines a process that satisfies Theorem 5. (The only difference is that κ, instead of (B.15), can
be taken from the range (ρ, 1) under the assumption of the current theorem, since by Theorem 3,
supt∈N+ E[|ξt|p] < ∞ for every 1 6 p < α.) It then follows from Theorem 5 that t1−1/αδ

1

t
converges weakly to an α-stable distribution.

The proof is complete.

C Additional Technical Background

C.1 Properties of α-Stable Distributions

An α-stable distributed random variable X is denoted by X ∼ Sα(σ, θ, µ), where α ∈ (0, 2]
is the tail-index, θ ∈ [−1, 1] is the skewness parameter, σ > 0 is the scale parameter, and
µ ∈ R is called the location parameter. An α-stable random variable X is uniquely character-
ized by its characteristic function: E[exp(iuX)] = e−σ

α|u|α(1−iθsgn(u) tan(πα2 ))+iµu, if α 6= 1 and
E[exp(iuX)] = e−σ|u|(1+iθ

2
π sgn(u) log |u|)+iµu, if α = 1, for any u ∈ R. The mean of X coin-

cides with µ if α > 1, and otherwise the mean of X is undefined. The skewness parameter θ
is a measure of asymmetry. We say that X follows a symmetric α-stable distribution denoted as
SαS(σ) = Sα(σ, 0, 0) if θ = 0 (and µ = 0). The tail-index parameter α ∈ (0, 2] determines the
tail thickness of the distribution, and σ > 0 measures the spread of X around its mode. When
α < 2, α-stable distributions have heavy tails so that their moments are finite only up to the order α.
More precisely, let X ∼ Sα(σ, θ, µ) with 0 < α < 2. Then E[|X|p] < ∞ for any 0 < p < α and
E[|X|p] = ∞ for any p > α, which implies infinite variance (see e.g. [Samorodnitsky and Taqqu,
1994, Property 1.2.16]). When 0 < α < 2, the left tail and right tail of X are described by the
formulas:

lim
x→∞

xαP(X > x) =
1 + θ

2
Cασ

α, lim
x→∞

xαP(X < −x) =
1− θ

2
Cασ

α,

where Cα := (1 − α)/(Γ(2 − α) cos(πα/2)) if α 6= 1 and Cα := 2/π if α = 1, (see e.g.
[Samorodnitsky and Taqqu, 1994, Property 1.2.15]). The family of α-stable distributions include
normal, Lévy and Cauchy distributions as special cases, and can be used to model many complex
stochastic phenomena [Sarafrazi and Yazdi, 2019, Fiche et al., 2013, Farsad et al., 2015].

C.2 Domains of Attraction of Stable Distributions

Let Xi be an i.i.d. sequence with a common distribution whose distribution function is denoted as F ,
and let Sn := X1 +X2 + · · ·+Xn. Suppose that for some normalizing constants an > 0 and bn,
the sequence Sn/an − bn has a non-degenerate limit distribution with distribution function G, i.e.

lim
n→∞

P(Sn/an − bn 6 x) = G(x), (C.1)
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for all continuity points x of G, then such limit distributions G are stable distributions and the set of
distribution functions F such that Sn/an − bn converges to a particular stable distribution is called
its domain of attraction.

Next, let us provide a sufficient and necessary condition for being in the domain of attraction of a
stable distribution. The class of distribution functions F for which Sn/an − bn converges to SαS(σ)
is called the α-stable domain of attraction, and we denote it as F ∈ Dα. Before we proceed, let us
recall that a positive measurable function f is regularly varying if there exists a constant γ ∈ R such
that limt→∞

f(tx)
f(t) = xγ , for every x > 0. In this case, we denote f ∈ RVγ , and we say a function f

is slowly varying if f ∈ RV0.

Define the characteristic functions φ(u) :=
∫∞
−∞ eiuxdF (x) and ψ(u) :=

∫∞
−∞ eiuxdG(x), and also

define λ(u) := φ(1/u) and g(u) := ψ(1/u) for u ∈ [−∞,∞]\{0}. We also denoteU(x) := Reλ(x)
and V (x) := Imλ(x). By Lévy’s continuity theorem for characteristic functions (see e.g. Feller [1971,
Chapter XV.3]), the convergence in (C.1) is equivalent to limn→∞ exp(−ibn/u)λn(anu) = g(u),
u ∈ [−∞,∞]\{0} uniformly on neighborhoods of ±∞. Based on this, one can show that (see
e.g. ) if (C.1) holds, then |g(u)|2 = exp(−c|u|−α) for some α ∈ (0, 2] and c > 0 and moreover
− log |λ| ∈ RV−α, i.e. − log |λ| is regularly varying with index −α. Next, we state a sufficient and
necessary condition for being in the α-stable domain of attraction.
Theorem 19 (Geluk and de Hann [2000], Theorem 1). Suppose 0 < α < 2. Every α-stable random
variable X has a characteristic function of the form:

E[exp(iuX)] = exp

(
−
{
|u|α + iu(2p− 1){(1− α) tan(απ/2)} |u|

α−1 − 1

α− 1

})
,

for some 0 6 p 6 1 with (1− α) tan(π/2) defined to be 2/π at α = 1. The following statements are
equivalent:

(i) F ∈ Dα.

(ii) 1− F (x) + F (−x) ∈ RV−α and there exists a constant p ∈ [0, 1] such that

lim
x→∞

1− F (x)

1− F (x) + F (−x)
= p.

(iii) 1− U(x) ∈ RV−α and there exists a constant p ∈ [0, 1] such that

lim
x→∞

xuV (xu)− xV (x)

x(1− U(x))
= (2p− 1)(1− α) tan

(απ
2

) |u|1−α − 1

1− α
, u ∈ R\{0}.

Furthermore, [Geluk and de Hann, 2000, Theorem 1] showed that if any of (i), (ii), (iii) holds,

then limx→∞
1−U(x)

1−F (x)+F (−x) = Γ(1−α) cos(απ/2) and limx→∞
V (x)−x−1

∫ x
0
(1−F (y)−F (−y))dy

1−F (x)+F (−x) =

(2p− 1)
(

Γ(1− α) sin(απ/2)− 1
1−α

)
.

Let us illustrate [Geluk and de Hann, 2000, Theorem 1] with an example of Pareto distribution, which
is a power-law distribution widely applied in various fields. A random variable X is said to follow a
Pareto distribution (of type I) if there exists some c > 0 such that P(X > x) = (x/c)−α for any x > c
and P(X > x) = 1 for any x < c. In this case, F (x) = 1−(x/c)−α for any x > c and F (x) = 0 for
any x < c. It follows that 1− F (x) + F (−x) ∈ RV−α and limx→∞

1−F (x)
1−F (x)+F (−x) = 1. Therefore,

F ∈ Dα and the Pareto distribution is in the α-stable domain of attraction.

When the tail-index α ∈ (0, 2), the logarithm of the characteristic function (i.e. logE
[
eiuX

]
) of an

α-stable random variable X is of the form (see [Gnedenko and Kolmogorov, 1954, equation (12),
page 168]):

iγu+ c1

∫ 0

−∞

[
eiux − 1− iux

1 + x2

]
dx

|x|1+α
+ c2

∫ ∞
0

[
eiux − 1− iux

1 + x2

]
dx

x1+α
, (C.2)

where c1, c2 > 0 and γ ∈ R. Since the characteristic function uniquely characterizes a probability
distribution, the triplet (c1, c2, α) uniquely determines an α-stable law up to a constant shift γ ∈ R
when 0 < α < 2. [Gnedenko and Kolmogorov, 1954, Theorem 2, page 175] provides another
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sufficient and necessary condition for being in the domain of attraction of an α-stable distribution,
which complements [Geluk and de Hann, 2000, Theorem 1]. Suppose 0 < α < 2. Then, the
distribution function F (x) belongs to the domain of attraction of an α-stable distribution if and
only if the following conditions hold: (i) limx→∞

F (−x)
1−F (x) = c1

c2
. (ii) For every constant κ >

0, limx→∞
1−F (x)+F (−x)

1−F (κx)+F (−κx) = κα. In the case of a Pareto distribution (of type I), for some
c > 0, we have F (x) = 1 − (x/c)−α for any x > c and F (x) = 0 for any x < c. Then we
can check that limx→∞

F (−x)
1−F (x) = 0 and for every constant κ > 0, limx→∞

1−F (x)+F (−x)
1−F (κx)+F (−κx) =

limx→∞
(x/c)−α

(κx/c)−α = κα. Thus, the Pareto distribution belongs to the domain of attraction of an
α-stable distribution.

Finally, let us provide a sufficient and necessary condition for being in the domain of normal attraction
of a stable distribution.
Theorem 20 (Gnedenko and Kolmogorov [1954], Theorem 5, page 181). Suppose 0 < α < 2.
The distribution function F (x) belongs to the domain of attraction of an α-stable distribution
characterized by (C.2) if and only if

F (x) = (c1a
α + α1(x))

1

|x|α
, for x < 0, (C.3)

F (x) = 1− (c2a
α + α2(x))

1

xα
, for x > 0, (C.4)

where a > 0 is a positive constant and α1(x), α2(x) are functions satisfying limx→−∞ α1(x) =
limx→∞ α2(x) = 0. Indeed, the constant a in (2.2), (C.3) and (C.4) is the same.

In the case of a Pareto distribution (of type I), for some c > 0, we have F (x) = 1 − (x/c)−α for
any x > c and F (x) = 0 for any x < c. Then we can check that (C.3) and (C.4) hold with c1 = 0,
α1(x) ≡ 0, c2 = 1, α2(x) ≡ 0 and a = c. Thus, the Pareto distribution belongs to the domain of
normal attraction of an α-stable distribution.
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