
Fractal Structure and Generalization Properties of
Stochastic Optimization Algorithms

SUPPLEMENTARY DOCUMENT

This document provides additional material for the NeurIPS 2021 submission entitled “Fractal
Structure and Generalization Properties of Stochastic Optimization Algorithms”. The document is
organized as follows:

• Technical background for the proofs.
– In Section S1, we provide additional background on dimension theory. In particular

we define the Minkowski dimension and the local dimension for a measure. Then, we
provide three existing theoretical results that will be used in our proofs.

• Additional theoretical results.
– In Section S2, we provide an upper-bound on the Hausdorff dimension of the invariant

measure of SGD, when applied on support vector machines. This result is a continuation
of the results given in Section 4.

– In Section S3, we provide upper-bounds on the Hausdorff dimension of the invariant
measure of preconditioned SGD on different problems.

– In Section S4, we provide an upper-bound on the Hausdorff dimension of the invariant
measure of the stochastic Newton algorithm applied on linear regression.

– In Section S5, we illustrate the conditions (7) and (8) on a simple setup.
• Details of the experimental results.

– In Section S6, we provide the details of the algorithm that we developed for computing
the operator norm kI � ⌘r

2
R̃k(w)k for neural networks.

– In Section S7, we provide the details of the SGD hyperparameters, network architec-
tures, and information regarding hardware/run-time.

• Proofs.
– In Section S8, we provide the proofs all the theoretical results presented in the main

document and the supplementary document.

S1 Further Background on Dimension Theory

S1.1 Minkowski dimension of a measure

Based on the definition of the Minkowski dimension of sets as given in Section 2, we can define the
Minkowski dimension of a finite Borel measure µ, as follows [Pes08]:

dimMµ := lim
�!0

inf
�
dimMZ : µ(Z) � 1 � �

. (S1)

Note that in general, we have

dimMµ inf
�
dimMZ : µ(Z) = 1

,

where the inequality can be strict, see [Pes08, Chapter 7].

S1.2 Local dimensions of a measure

It is sometimes more convenient to consider a dimension notion that is defined in a pointwise manner.
Let µ be a finite Borel regular measure on Rd. The lower and upper local (or pointwise) dimensions
of µ at x 2 Rd are respectively defined as follows:

dim
loc

µ(x) := lim inf
r!0

log µ(B(x, r))

log r
, (S2)

dimlocµ(x) := lim sup
r!0

log µ(B(x, r))

log r
, (S3)

1

where B(x, r) denotes the ball with radius r about x. When the values of these dimensions agree, the
common value is called the local (or pointwise) dimension of µ at x, and is denoted by dimloc µ(x).
The local dimensions describe the power-law behavior of µ(B(x, r)) for small r [Fal97]. These
dimensions are closely linked to the Hausdorff dimension.

S1.3 Existing Results

The following result from [Ram06] upper-bounds the Hausdorff dimension of the invariant measure
of an IFS to the constituents of the IFS. We translate the result to our notation. Before we proceed, let
us first introduce open set conditions from [Ram06]. The IFS satisfies the open set condition (OSC)
if the IFS is contracting, and there exists an open set U such that hi(U) ⇢ U and hi(U)\hj(U) = ;

for i 6= j. The IFS satisfies the strong open set condition (SOSC) if the IFS satisfies OSC for some
open set U and if there exists some R1 > 0 such that dist(hi(U), hj(U)) � R1. The IFS satisfies
the regular open set condition (ROSC) if the IFS satisfies OSC for some open set U and in addition
there exist some R2, R3 > 0 such that vol(Br(x) \ U) � R3r

d for any r < R2, x 2 U . We have
the following result.
Theorem S2. [Ram06, Theorem 2.1] Consider the IFS (6) and assume that conditions (7) and (8)
are satisfied and hi are continuously differentiable with derivatives Jhi that are ↵-Hölder continuous
for some ↵ > 0. The invariant measure µW |Sn

of the IFS satisfies

dimHµW |Sn
 s where s :=

EPmb

i=1
pi

R
x2Rd log(kJhi(w)k)dµW |Sn

(w)
,

where E :=
Pmb

i=1
pi log(pi) is the (negative) entropy. Furthermore, if hi are conformal and either

SOSC or ROSC is satisfied, then we have

dimH(µW |Sn
) = dim

H
(µW |Sn

) = s.

The next two results link the Hausdorff and Minkowski dimensions of a measure to its local dimension.
Proposition S6. [Fal97, Propositions 10.3] For a finite Borel measure µ, the following identity
holds:

dimHµ = inf {s : dim
loc

µ(x) s for µ-almost all x} . (S4)

Theorem S3. [Pes08, Theorem 7.1] Let µ be a finite Borel measure on Rd. If dimlocµ(x) ↵ for
µ-almost every x, then dimMµ ↵.

The next theorem, called Egoroff’s theorem, will be used in our proofs repeatedly. It provides a
condition for measurable functions to be uniformly continuous in an almost full-measure set.
Theorem S4 (Egoroff’s Theorem). [Bog07, Theorem 2.2.1] Let (X,A, µ) be a space with a finite
nonnegative measure µ and let µ-measurable functions fn be such that µ-almost everywhere there
is a finite limit f(x) := limn!1 fn(x). Then, for every " > 0, there exists a set X" 2 A such that
µ (X\X") < " and the functions fn converge to f uniformly on X".

S2 Additional Analytical Estimates for SGD

Support vector machines. Given the data points zi = (ai, yi) with the input data ai and the output
yi 2 {�1, 1}, consider support vector machines with smooth hinge loss:

`(w, zi) := `�

�
yia

T
i w
�

+ �kwk
2
/2, (S5)

where � > 0 is a smoothing parameter, � > 0 is the regularization parameter and `�(z) :=

1 � z + � log(1 + e
� 1�z

�). This loss function is a smooth version of the hinge loss that can be
easier to optimize in some settings. In fact, it can be shown that as � ! 0, this loss converges to the
(non-smooth) hinge loss pointwise.
Proposition S7 (Support vector machines). Consider the support vector machines (S5). Assume the
step-size ⌘ <

1

�+kRk2/(4⇢) , where R := maxi kaik is finite. Then, we have:

dimHµW |Sn

log (n/b)

log(1/(1 � ⌘�))
. (S6)

2

S3 Analytical Estimates for Preconditioned SGD

We consider the pre-conditioned SGD methods

wk = wk�1 � ⌘H
�1

rR̃k(wk�1), (S7)

for a fixed square matrix H . Some choices of H includes a diagonal matrix, a block diagonal matrix
or the Fisher-information matrix (see e.g. [ZMG19]). We assume that H is a positive definite matrix,
and by Cholesky decomposition, we can write H = SS

T , where S is a real lower triangular matrix
with positive diagonal entries. If we have H = JJ

T , where J is the Jacobian, then the corresponding
least square problems is called the Gauss-Newton methods for least squares. Assume that H there
exist some m, M > 0 such that:

0 � mI � H � MI. (S8)

As illustrative examples; in the following, we will consider the setting where we divide Sn into
mb = n/b batches with each batch having b elements, and then we discuss how analytical estimates
on the (upper) Hausdorff dimension dimHµW |Sn

can be obtained for some particular problems
including least squares, regularized logistic regression, support vector machines, and one hidden-layer
network.

Least squares. We consider the least square problem with data points zi = (ai, yi) and the loss

`(w, zi) :=
1

2

�
a
T
i w � yi

�2
+

�

2
kwk

2
, (S9)

where � > 0 is a regularization parameter. If we apply preconditioned SGD this results in the
recursion (6) with

hi(w) = Miw + qi with Mi := I � ⌘�H
�1

� ⌘H
�1

Hi, (S10)

Hi :=
1

b

X
j2Si

aja
T
j , qi :=

⌘

b
H

�1
X

j2Si

ajyj ,

where aj 2 Rd are the input vectors, and yj are the output variables, and {Si}
mb
i=1

is a partition of
{1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb with mb = n/b. We have the following result.
Proposition S8 (Least squares). Consider the pre-conditioned SGD method (S7) for the least square
problem (S9). Assume that the step-size ⌘ <

m
R2+� , where R := maxi kaik is finite. Then, we have

the following upper bound for the Hausdorff dimension:

dimHµW |Sn

log (n/b)

log(1/(1 � ⌘M�1�))
. (S11)

Regularized logistic regression. We consider the regularized logistic regression problem with the
data points zi = (ai, yi) and the loss:

`(w, zi) := log
�
1 + exp

�
�yia

T
i w
��

+
�

2
kwk

2
, (S12)

where � > 0 is the regularization parameter.
Proposition S9 (Regularized logistic regression). Consider the pre-conditioned SGD method (S7)
for regularized logistic regression (S12). Assume that the step-size ⌘ < m/� and R := maxi kaik <

2
p

m�/M . Then, we have the following upper bound for the Hausdorff dimension:

dimHµW |Sn

log (n/b)

log(1/(1 � ⌘M�1� + 1

4
⌘m�1R2))

. (S13)

Next, we consider a non-convex formulation for robust regression. Consider the data points zi =
(ai, yi) and the loss:

`(w, zi) := ⇢ (yi � hw, aii) +
�

2
kwk

2
, (S14)

where � > 0 is a regularization parameter and ⇢ is a non-convex function. We have the following
result.

3

Proposition S10 (Non-convex formulation for robust regression). Consider the pre-conditioned
SGD method (S7) in the non-convex robust regression setting (S14). Assume that the step-size
⌘ <

m
�+R2(2/t0)

and R := maxi kaik <

p
�t0m/(2M). Then, we have the following upper bound

for the Hausdorff dimension:

dimHµW |Sn

log (n/b)

log(1/(1 � ⌘M�1� + ⌘m�1R2 2

t0
))

. (S15)

Support vector machines. We have the following result for pre-conditioned SGD when applied to
the support vector machines problem (S5).
Proposition S11 (Support vector machines). Consider pre-conditioned SGD (S7) for support vector
machines (S5). Assume that the step-size ⌘ <

m
�+kRk2/(4⇢) where R := maxi kaik is finite. Then, we

have the following upper bound for the Hausdorff dimension:

dimHµW |Sn

log (n/b)

log(1/(1 � ⌘M�1�))
. (S16)

One hidden-layered neural network. Consider the one-hidden-layer neural network setting as in
Proposition 5, where the objective is to minimize the regularized squared loss with the loss function:

`(w, zi) := kyi � ŷik
2 +

�

2
kwk

2
, ŷi :=

mX

r=1

br�
�
w

T
r ai

�
, (S17)

where the non-linearity � : R ! R is smooth and � > 0 is the regularization parameter.
Proposition S12 (One hidden-layer network). Consider the one-hidden-layer network (S17). Assume
that ⌘ <

m
C+� and � >

M
m C, where C is defined in Corollary 5. Then, we have the following upper

bound for the Hausdorff dimension:

dimHµW |Sn

log (n/b)

log(1/(1 � ⌘(M�1� � m�1C)))
. (S18)

S4 Analytical Estimates for Stochastic Newton

We consider the stochastic Newton method

wk = wk�1 � ⌘

h
H̃k(wk�1)

i�1

rR̃k(wk�1), where H̃k(w) := (1/b)
X

i2⌦k

r
2
`(w, zi),

see e.g. [RKM16], where ⌦k = Si with probability pi with i = 1, 2, . . . , mb, where mb = n/b.

For simplicity, we focus on the least square problem, with the data points zi = (ai, yi) and the loss:

`(w, zi) :=
1

2

�
a
T
i w � yi

�2
+

�

2
kwk

2
, (S19)

where � > 0 is a regularization parameter. If we apply stochastic Newton this results in the recursion
(6) with

hi(w) = Miw + qi with Mi := (1 � ⌘)I, (S20)

H̃i :=
1

b

X
j2Si

aja
T
j + �I, qi :=

⌘

b
H̃

�1

i

X
j2Si

ajyj ,

where aj 2 Rd are the input vector, and yj are the output variable, and {Si}
mb
i=1

is a partition of
{1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb with mb = n/b. Therefore, Jhi(w) = (1 � ⌘)I .
By following the similar argument as in the proof of Proposition S8, we conclude that for any
⌘ 2 (0, 1),

dimHµW |Sn

log (n/b)

log(1/(1 � ⌘))
, (S21)

where the upper bound is decreasing in step-size ⌘ and batch-size b.

4

S5 Illustration of the Conditions (7) and (8)

In this section, we will demonstrate how to validate the conditions (7) and (8) on the least squares
problem:

R̂(w) := R̂(w,Sn) =
1

n

nX

i=1

�
yi � x

T
i w
�2

,

where xi 2 Rd’s are isotropic sub-Gaussian random vectors.

Consider a uniform subset S ⇢ {1, ..., n} of size b. By the properties of sub-Gaussian random

vectors (e.g. see [Ver18, Theorem 4.7.1]), we have E[kI �
1

b

P
i2S xix

T
i k] CK

2

q
d
b where C is

a positive constant, K is the sub-Gaussian norm of xi, which is true for a sufficiently large batch size.

Now, consider the SGD update with mini-batch size b:

wk+1 = wk �
⌘

b

X

i2S

xi(x
T
i w � yi) =: hS(wk, S).

We look at the Lipschitz constant of this function system: For any S,

khS(w, S) � hS(w0
, S)k =

�����w � w
0
�

⌘

b

X

i2S

xix
T
i (w � w

0)

�����

�����I �
⌘

b

X

i2S

xix
T
i

����� kw � w
0
k .

Notice that the quantity kI �
⌘
b

P
i2S xix

T
i k is an upper bound on the Lipschitz constant LS of hS .

Investigating the condition (8), we have E[log(LS)] log

✓
⌘CK

2

q
d
b + (1 � ⌘)

◆
, where the first

step follows from Jensen’s inequality and the second follows from sub-Gaussian property. The right
hand size of the above bound can be made smaller than 0 for a sufficiently small step size choice ⌘.

S6 Estimating the Complexity R for SGD

Estimating R, as detailed in Equation (21), requires drawing NW samples from the invariant measure
and NU batches of from the training data.

As mentioned in the main text, to approximate the summation over NW samples from the invariant
measure, assuming (8) is ergodic [DF99], we treat the iterates wk as i.i.d. samples from µW |S for
large k, hence, the norm of the Jacobian log(kJhIj

(Wi)k) can be efficiently computed on these
iterates. Thus, we first we train a neural-network to convergence, whereby convergence is defined as
the model reaching some accuracy level (if the dataset is a classification task) and achieving a loss
below some threshold on training data. We assume that after convergence the SGD iterates will be
drawn from the invariant measure. As such we run the training algorithm for another 200 iterates,
saving a snapshot of the model parameters at each step, such that NW = 200 in Equation (21). For
each of these snapshots we estimate the spectral norm kJhI (W)k using a simple modification of the
power iteration algorithm of [YGKM20], detailed in Section S6.1 below. This modified algorithm is
scalable to neural networks with millions of parameters and we apply it to 50 of the batches used
during training, such that NU = 50 in (21).

S6.1 Power Iteration Algorithm for kJhi(w)k

We re-purpose the power iteration algorithm of [YGKM20] adding a small modification that allows
for the estimation of the spectral norm kJhi(w)k. We first note that

Jhi(w) = I � ⌘r
2
R̃i(w) (S22)

where r
2
R̃i(w) is the Hessian for the i

th batch. As such our power iteration algorithm needs to
estimate the operator norm of the matrix I � ⌘r

2
R̃i(w) and not just that of the Hessian of the

network. To do this we just need to change the ‘vector-product’ step of the power-iteration algorithm
of [YGKM20]. Our modified method has the same convergence guarantees, namely that the method

5

will converge to the ‘true’ top eigenvalue if this eigenvalue is ‘dominant’, in that it dominates all
other eigenvalues in absolute value, i.e if �1 is the top eigenvalue then we must have that:

|�1| > |�2| � . . . |�n|

to guarantee convergence.

Algorithm 1: Power Iteration for Top Eigenvalue Computation of Jhi(w)

Input: Network Parameters: w, Loss function: f , Learning rate: ⌘

1 Compute the gradient of f by backpropagation, i.e., compute gw = df
dw .

2 Draw a random vector v from N(0, 1) (same dimension as w).
3 Normalize v, v = v

kvk2

4 for i = 1, 2, . . . do // Power Iteration

5 Compute gv = g
T
wv // Inner product

6 Compute Hv by backpropagation, Hv = d(gv)
dw // Get Hessian vector product

7 Compute Jhiv, Jhiv = (I � ⌘H)v = v � ⌘Hv // Get Jhi vector product

8 Normalize and reset v, v =
Jhi

v
kJhi

vk2

9 end

S7 Experiment Hyperparameters

Training Parameters: All models in Figures 3 and 4 were trained using SGD with batch sizes of
50 or 100 and were considered to have converged for CIFAR10 and SVHN if they reached 100%
accuracy and less than 0.0005 loss on the training set. For BHP convergence was considered to have
been achieved after 100000 training steps. For all models except VGG16 in Figures 3 and 4 we use
learning rates in

�
0.0075, 0.02, 0.025, 0.03, 0.04, 0.06, 0.07, 0.075, 0.08, 0.09, 0.1, 0.11, 0.12,

0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.194, 0.2, 0.22, 0.24, 0.25, 0.26

.

VGG16 models were trained with learning rates in {0.0075, 0.02, 0.03, 0.06, 0.07, 0.08}.

Network Architectures: BHP FCN had 2 hidden layers and were 10 neurons wide. Similarly
CIFAR10 FCN were 5 and 7 layers deep with 2048 neurons per layer. 9-layer CONV networks were
VGG11 networks with the final 2 layers removed. 16-layer CONV networks were simply the standard
implementation of VGG16 networks.

Run-time: The full battery of fully connected models split over two GeForce GTX 1080 GPUs took
two days to train to convergence and the subsequent power iterations took less than a day. Similarly
the full gamut of VGG11 models took a day to train to convergence over four GeForce GTX 1080
GPUs and the subsequent power iterations took less than a day to converge. The VGG16 models
took a day to train over four GeForce GTX 1080 GPUs but the power iterations for each model took
roughly 24 hours on a single GeForce GTX 1080 GPU.

S8 Postponed Proofs

S8.1 Proof of Proposition 1

Proof. Denote ↵ := dimHµW |Sn
. By Assumption H1, we have

dim
loc

µW |Sn
(w) = dimlocµW |Sn

(w),

for µW |Sn
-a.e. w, and by Proposition S6 we have

dimlocµW |Sn
(w) ↵ + ✏, (S23)

6

for all ✏ > 0 and for µW |Sn
-a.e. w. By invoking Theorem S3, we obtain

dimMµW |Sn
 ↵ + ✏. (S24)

Since this holds for any ✏, dimMµW |Sn
 ↵. By definition, we have for almost all Sn:

dimMµW |Sn
= lim

�!0

inf
�
dimMA : µW |Sn

(A) � 1 � �

. (S25)

Hence, given a sequence (�k)k�1 such that �k # 0, and Sn, and any ✏ > 0, there is a k0 = k0(✏) such
that k � k0 implies

inf
�
dimMA : µW |Sn

(A) � 1 � �k

dimMµW |Sn

+ ✏ (S26)
↵ + ✏. (S27)

Hence, for any ✏1 > 0 and k � k0, we can find a bounded Borel set ASn,k, such that µW |Sn
(ASn,k) �

1 � �k, and

dimMASn,k ↵ + ✏ + ✏1. (S28)

Note that the boundedness of ASn,k follows from the fact that its upper-Minkowski dimension is
finite. By choosing ✏ = ✏1 = "

2
, it yields the desired result. This completes the proof.

S8.2 Proof of Theorem 1

Proof. We begin similarly to the proof of Proposition 1. Denote

↵(S, n) := dimHµW |Sn
.

By Assumption H1, we have dim
loc

µW |Sn
(w) = dimlocµW |Sn

(w) for µW |Sn
-almost every w, and

by Proposition S6 we have

dimlocµW |Sn
(w) ↵(S, n) + ✏, (S29)

for all ✏ > 0 and for µW |Sn
-a.e. w. By invoking Theorem S3, we obtain

dimMµW |Sn
 ↵(S, n) + ✏. (S30)

Since this holds for any ✏ > 0, dimMµW |Sn
 ↵(S, n). By definition, we have for all S and n:

dimMµW |Sn
= lim

�!0

inf
�
dimMA : µW |Sn

(A) � 1 � �

. (S31)

Hence, for a countable sequence of � # 0 and each n, there exists a set ⌦n of full measure such that

f
n
� (S) := inf

�
dimMA : µW |Sn

(A) � 1 � �

! dimMµW |Sn

, (S32)

for all S 2 ⌦n. Let ⌦⇤ := \n⌦n. Then for S 2 ⌦⇤ we have that for all n

f
n
� (S) ! dimMµW |Sn

, (S33)

and therefore, on this set we also have

sup
n

1

⇠n
min

�
1,
��fn

� (S) � dimMµW |Sn

�� ! 0,

where ⇠n is a monotone increasing sequence such that ⇠n � 1 and ⇠n ! 1.

By applying Theorem S4 to the collection of random variables:

F�(S) := sup
n

1

⇠n
min

�
1,
��fn

� (S) � dimMµW |Sn

�� , (S34)

for any ⇣ > 0, we can find a subset Z ⇢ Z
1, with probability at least 1 � ⇣ under ⇡

1, such that on
Z the convergence is uniform, that is

sup
S2Z

sup
n

1

⇠n
min

�
1,
��fn

� (S) � dimMµW |Sn

�� c(�), (S35)

7

where for any ⇣, c(�) := c(�; ⇣) ! 0 as � ! 0. Hence, for any �, S 2 Z, and n, we have

f
n
� (S) dimMµW |Sn

+ ⇠nc(�) (S36)
↵(S, n) + ⇠nc(�). (S37)

Consider a sequence (�k)k�1 such that �k # 0 and �k 2 Q>0. Then, for any S 2 Z and ✏ > 0, we
can find a bounded Borel set ASn,k, such that µW |Sn

(ASn,k) � 1 � �k, and

dimMASn,k ↵(S, n) + ⇠nc(�k) + ✏. (S38)

Define the set

Wn,�k :=
[

S2Z1

ASn,k. (S39)

By using G(w) := |R(w) � R̂(w,Sn)|, under the joint distribution of (W,Sn), such that S ⇠ ⇡
1

and W ⇠ µW |Sn
, we have:

P (G(W) > ") ⇣ + P ({G(W) > "} \ {S 2 Z}) (S40)
⇣ + �k + P ({G(W) > "} \ {W 2 ASn,k} \ {S 2 Z}) (S41)

⇣ + �k + P
 (

sup
w2ASn,k

G(w) > "

)
\ {S 2 Z}

!
. (S42)

Now, let us focus on the last term of the above equation. First we observe that as ` is L-Lipschitz, so
are R and R̂. Hence, by considering the particular forms of the �-covers in H2, for any w

0
2 Rd we

have:

G(w) G(w0) + 2L kw � w
0
k , (S43)

which implies

sup
w2ASn,k

G(w) max
w2N�n (ASn,k)

G(w) + 2L�n. (S44)

Now, notice that the �-covers of H2 still yield the same Minkowski dimension in (5) [ŞSDE20]. Then
by definition, we have for all S and n:

lim sup
�!0

log |N�(ASn,k)|

log(1/�)
= lim

�!0

sup
r<�

log |Nr(ASn,k)|

log(1/r)
= dimMASn,k := dM(S, n, k). (S45)

Hence for each n

g
n,k
� (S) := sup

Q3r<�

log |Nr(ASn,k)|

log(1/r)
! dM(S, n, k), (S46)

almost surely. By using the same reasoning in (S32), we have, for each n, there exists a set ⌦0
n of full

measure such that

g
n,k
� (S) = sup

Q3r<�

log |Nr(ASn,k)|

log(1/r)
! dM(S, n, k), (S47)

for all S 2 ⌦0
n. Define ⌦⇤⇤ := (\n⌦0

n) \ ⌦⇤. Hence, on ⌦⇤⇤ we have:

G
k
�(S) := sup

n

1

⇠n
min

n
1,

���gn,k� (S) � dM(S, n, k)
���
o
! 0, (S48)

By applying Theorem S4 to the collection {G
k
�(S)}� , for any ⇣1 > 0 we can find a subset Z1 ⇢ Z

1,
with probability at least 1 � ⇣1 under ⇡

1, such that on Z1 the convergence is uniform, that is

sup
S2Z1

sup
n

1

⇠n
min{1, |g

n,k
� (S) � dM(S, n, k)|} c

0(�), (S49)

where for any ⇣1, c
0(�) := c

0(�; ⇣1, �k) ! 0 as � ! 0. Hence, denoting Z⇤ := Z \ Z1 by using
(S38) we have:

{S 2 Z⇤
} ✓

\

n

(
|N� (ASn,k)|

✓
1

�

◆↵(S,n)+⇠nc(�k)+⇠nc
0
(�)+✏

)
.

8

Let (�n)n�0 be a decreasing sequence such that �n 2 Q for all n and �n ! 0. We then have

P

{S 2 Z}\

⇢
max

w2N�n (ASn,k)

Gn(w) � "

�!

 P

{S 2 Z⇤

} \

n
max

w2N�n (ASn,k)

Gn(w) � "

o!
+ ⇣2.

For ⇢ > 0 and m 2 N+ let us define the interval Jm(⇢) := (m⇢, (m + 1)⇢]. Furthermore, for any
t > 0 define

"(t) :=

r
2⌫2

n

h
log(1/�n) (t + ⇠nc(�k) + ⇠nc0(�n) + ✏) + log(M/⇣2)

i
. (S50)

For notational simplicity, denote N�n,k := N�n(Wn,�k), where Wn,�k is defined in (S39) and

↵̃(S, n, k, ✏) := ↵(S, n) + ⇠nc(�k) + ⇠nc
0(�n) + ✏. (S51)

Let d
⇤ be the smallest real number such that ↵(S, n) d

⇤ almost surely4, we therefore have:

P

{S 2 Z} \

⇢
max

w2N�n (ASn,k)

Gn(w) � "(↵(S, n))

�!

 ⇣2 + P
 (

|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

\

n
max

w2N�n (ASn ,k)
|R̂n(w) �R(w)| � "(↵(S, n))

o!

= ⇣2 +

d d⇤
⇢ eX

m=0

P
 (

|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

\

n
max

w2N�n (ASn,k)

Gn(w) � "(↵(S, n))
o
\ {↵(S, n) 2 Jm(⇢)}

!

= ⇣2 +

d d⇤
⇢ eX

m=0

P
 (

|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

\ {↵(S, n) 2 Jm(⇢)}

\

[

w2N(�n)

✓
{w 2 N�n(ASn,k)} \ {Gn(w) � "(↵(S, n))}

◆!

 ⇣2 +

d d⇤
⇢ eX

m=0

X

w2N�n,k

P
 n

Gn(w) � "(m⇢)
o

\

n
w 2 N�n(ASn,k)

o
\

(
|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

\ {↵(S, n) 2 Jm(⇢)}

!
,

where we used the fact that on the event ↵(S, n) 2 Jm(⇢), "(↵(S, n)) � "(m⇢).

Notice that the events
n

w 2 N�n(ASn,k)
o

,

n
|N�n(ASn,k)| (1/�n)↵̃(S,n,k,✏)

o
, {↵(S, n) 2 Jm(⇢)}

are in G. On the other hand, the event {Gn(w) � "(m⇢)} is clearly in F (see H2 for definitions).

4Notice that we trivially have d⇤ d; yet, d⇤ can be much smaller than d.

9

Therefore, we have

P

{S 2 Z} \

⇢
max

w2N�n (ASn,k)

Gn(w) � "(↵(S, n))

�!

 ⇣2 + M

d d⇤
⇢ eX

m=0

X

w2N�n,k

P
⇣n

Gn(w) � "(m⇢)
o⌘

⇥ P
 n

w 2 N�n(ASn,k)
o
\

(
|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

\ {↵(S, n) 2 Jm(⇢)}

!
,

Recall that Gn(w) = 1

n

Pn
i=1

[`(w, zi) � Ez⇠⇡`(w, z)]. Since the (zi)i are i.i.d. by Assumption 3 it
follows that Gn(w) is (⌫/

p
n, /n)-sub-exponential and from [Wai19, Proposition 2.9] we have that

P
⇣n

Gn(w) � "(m⇢)
o⌘

 2 exp

✓
�

n"(m⇢)2

2⌫2

◆
,

as long as "(m⇢) ⌫
2
/. For n large enough we may assume that "(d⇤) ⌫

2
/, and thus

P

{S 2 Z} \

⇢
max

w2N�n (ASn,k)

Gn(w) � "(↵(S, n))

�!

 2M

d d
⇢ eX

m=0

e�
2n"2(m⇢)

B2

X

w2N�n,k

P
 n

w 2 N�n(ASn,k)
o
\

(
|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

\ {↵(S, n) 2 Jm(⇢)}

!
+ ⇣2

 2M

d d
⇢ eX

m=0

e�
n"2(m⇢)

2⌫2

X

w2N�n,k

E
"
1
n

w 2 N�n(ASn,k)
o

⇥ 1

(
|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

⇥ 1 {↵(S, n) 2 Jm(⇢)}

#
+ ⇣2

 2M

d d
⇢ eX

m=0

e�
n"2(m⇢)

2⌫2 E
"
X

w2N�n,k

1
n

w 2 N�n(ASn,k)
o

⇥ 1

(
|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

⇥ 1 {↵(S, n) 2 Jm(⇢)}

#
+ ⇣2 (S52)

 2M

d d
⇢ eX

m=0

e�
n"2(m⇢)

2⌫2 E
"
|N�n(ASn,k)|⇥ 1

(
|N�n(ASn,k)|

✓
1

�n

◆↵̃(S,n,k,✏)
)

⇥ 1 {↵(S, n) 2 Jm(⇢)}

#
+ ⇣2

= ⇣2 + 2M

d d
⇢ eX

m=0

e�
n"2(m⇢)

2⌫2 E
"

1

�n

�↵̃(S,n,k,✏)
⇥ 1 {↵(S, n) 2 Jm(⇢)}

#
,

where (S52) follows from Fubini’s theorem.

Now, notice that the mapping t 7! "
2(t) is linear with derivative bounded by

2⌫
2

n
log(1/�n).

10

Therefore, on the event {↵(S, n) 2 Jm(⇢)} we have

"
2(↵(S, n)) � "

2(m⇢) (↵(S, n) � m⇢)
2⌫

2

n
log(1/�n) (S53)

⇢
2⌫

2

n
log(1/�n). (S54)

By choosing ⇢ = ⇢n = 1/ log(1/�n), we have

"
2(m⇢n) � "

2 (↵(S, n)) �
2⌫

2

n
.

Therefore, we have

P

{S 2 Z} \

n
max

w2N�n (ASn,k)

Gn(w) � "(↵(S, n))
o!

 ⇣2 + 2ME

2

4
d d
⇢n

eX

m=0

e�
n"2(m⇢n)

2⌫2

1

�n

�↵̃(S,n,k,✏)
⇥ 1 {↵(S, n) 2 Jm(⇢n)}

3

5

 ⇣2 + 2ME

2

4
d d
⇢n

eX

m=0

e�
n"2(↵(S,n))

2⌫2 +1

1

�n

�↵̃(S,n,k,✏)
⇥ 1 {↵(S, n) 2 Jm(⇢n)}

3

5

= ⇣2 + 2ME
"
e�

n"2(↵(S,n))

2⌫2 +1

1

�n

�↵̃(S,n,k,✏)#
.

By the definition of "(t), for any S and n we have that:

2Me�
n"2(↵(S,n))

2⌫2 +1

1

�n

�↵̃(S,n,k,✏)
= 2e⇣2.

Therefore,

P

{S 2 Z} \

n
max

w2N�n (ASn,k)

Gn(w) � "(↵(S, n))
o!

 (1 + 2e)⇣2.

Therefore, by using the definition of "(t), (S42), and (S44), with probability at least 1 � ⇣ � �k �

(1 + 2e)⇣2, we have

|R̂(W,Sn) �R(W)| 2

s
2⌫2

n

log

✓
1

�n

◆⇣
↵(S, n) + ⇠nc(�k) + ⇠nc0(�n) + ✏

⌘
+ log

✓
M

⇣2

◆�

+2L�n.

Choose k such that �k ⇣/2, ⇣2 = ⇣/(2+4e), ⇠n = log log(n), ✏ = ↵(S, n), and �n =
p

2⌫2/L2n.
Then, with probability at least 1 � 2⇣, we have

|R̂(W,Sn) �R(W)| (S55)

 4

s
4⌫2

n

1

2
log (nL2)

⇣
2↵(S, n) + c(�k) log log(n) + o(log log(n))

⌘
+ log

✓
13M

⇣

◆�
.

(S56)

Finally, as we have ↵(S, n) log(n) = !(log log(n)), for n large enough, we obtain

|R̂(W,Sn) �R(W)| 8⌫

s
↵(S, n) log2 (nL2)

n
+

log (13M/⇣)

n
. (S57)

This completes the proof.

11

S8.3 Proof of Proposition 2

Proof. If we apply SGD this results in the recursion (6) with

hi(w) = Miw + qi with Mi := (1 � ⌘�)I � ⌘Hi, (S58)

Hi :=
1

b

X
j2Si

aja
T
j , qi := (⌘/b)

X
j2Si

ajyj ,

where aj 2 Rd are the input vector, and yj are the output variable, and {Si}
mb
i=1

is a partition
of {1, 2, . . . , n} with |Si| = b with i = 1, 2, . . . , mb and mb = n/b. Let Li be the Lipschitz
constant of r`(w, zi). It can be seen that r`(w, zi) is Lipschitz with constant Li = R

2

i + �, where
Ri = maxj2Si kajk. We assume ⌘ < 2/L = 2/(R2 + �), where R = maxi Ri, otherwise the
expectation of the iterates can diverge from some initializations and for some choices of the batch-size.
We have

hi(u) � hi(v) = Mi(u � v),

where
0 �

�
1 � ⌘� � ⌘R

2

i

�
I � Mi � (1 � ⌘�)I.

Hence, hi is bi-Lipschitz in the sense of [Anc16] where

�iku � vk khi(u) � hi(v)k �iku � vk,

with

�i = min
���1 � ⌘� � ⌘R

2

i

�� , |1 � ⌘�|
�
, (S59)

�i = max
���1 � ⌘� � ⌘R

2

i

�� , |1 � ⌘�|
�

< 1, (S60)

as long as �i > 0. For simplicity of the presentation, we assume ⌘ <
1

R2+� in which case the
expressions for �i and �i simplify to:

�i = 1 � ⌘� � ⌘R
2

i , �i = 1 � ⌘�.

In this case, it is easy to see that

0 < �i kJhi(w)k �i < 1,

and it follows from Theorem S2 that

dimHµW |Sn

EPmb

i=1
pi log(�i)

=
�EPmb

i=1
pi log(1/�i)

. (S61)

By Jensen’s inequality, we have

�E =
mbX

i=1

pi log

✓
1

pi

◆
 log

mbX

i=1

pi ·
1

pi

!
= log(mb), (S62)

where mb = n/b. When ⌘ <
1

R2+� , we recall that �i = 1� ⌘�� ⌘R
2

i and �i = 1� ⌘�. Therefore,

dimHµW |Sn

�EPmb

i=1
pi log(1/�i)

log (mb)

log(1/(1 � ⌘�))
=

log (n/b)

log(1/(1 � ⌘�))
. (S63)

The proof is complete.

S8.4 Proof of Proposition 3

Proof. When the batch-size is equal to b, we can compute that the Jacobian is given by

Jhi(w) =
1

b

X

j2Si

1 � ⌘� + ⌘y

2

j

"
e
�yja

T
j w

(1 + e
�yjaT

j w)2

#
aja

T
j

!
, (S64)

where {Si}
mb
i=1

is a partition of {1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb and mb = n/b.
Note that the input data is bounded, i.e. Ri := maxj2Si kajk < 1, and R := maxi Ri < 2

p
�.

12

Recall that the step-size is sufficiently small, i.e. ⌘ < 1/�. One can provide the upper bound on
Jhi(w):

kJhi(w)k �i := 1 � ⌘� +
1

4
⌘R

2

i 1 � ⌘� +
1

4
⌘R

2
, (S65)

so that

dimHµW |Sn

EPmb

i=1
pi log(�i)

=
�EPmb

i=1
pi log(1/(1 � ⌘� + 1

4
⌘R

2

i))

log mb

log(1/(1 � ⌘� + 1

4
⌘R2))

(S66)

=
log (n/b)

log(1/(1 � ⌘� + 1

4
⌘R2))

, (S67)

where we used (S65) and (S62) in (S66). The proof is complete.

S8.5 Proof of Proposition 4

Proof. We can compute that

r`(w, zi) = �ai⇢
0 (yi � hw, aii) + �w, (S68)

hi(w) =
1

b

X

j2Si

(1 � ⌘�)w + ⌘aj⇢
0 (yj � hw, aji) , (S69)

Jhi(w) =
1

b

X

j2Si

(1 � ⌘�)I � ⌘aja
T
j ⇢

00 (yj � hw, aji) , (S70)

where {Si}
mb
i=1

is a partition of {1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb with mb = n/b.
Furthermore, k⇢00

exp
k1 = ⇢

00
exp

(0) = 2

t0
. Therefore, for ⌘ 2 (0,

1

�+R2(2/t0)
),

0 < (1 � ⌘�) � ⌘R
2

2

t0
 kJhi(w)k (1 � ⌘�) + ⌘R

2
2

t0
, (S71)

where R = maxi kaik <

p
�t0/2. We have

dimHµW |Sn

log mb

log(1/(1 � ⌘� + ⌘R2 2

t0
))

=
log (n/b)

log(1/(1 � ⌘� + ⌘R2 2

t0
))

, (S72)

where we used (S71) and (S62). The proof is complete.

S8.6 Proof of Proposition S7

Proof. We can compute that

r`(w, zi) = yi`
0
�

�
yia

T
i w
�
ai + �w,

r
2
`(w, zi) = y

2

i `
00
�

�
yia

T
i w
�
aia

T
i + �,

hi(w) = w �
⌘

b

X

j2Si

r`(w, zj),

where {Si}
mb
i=1

is a partition of {1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb with mb = n/b,
so that

Jhi(w) = I �
⌘

b

X

j2Si

r
2
`(w, zj) = (1 � ⌘�)I �

⌘

b

X

j2Si

y
2

j `
00
�

�
yja

T
j w
�
aja

T
j ,

with

`
00
�(z) =

1

�

e
�(1�z)/�

(1 + e�(1�z)/�)2
� 0, k`

00
�k1 = `

00
�(1) =

1

4⇢
.

13

Therefore, if ⌘ 2 (0,
1

�+kRk2/(4⇢)) and R := maxi kaik, then

1 � ⌘� � ⌘
1

4⇢
R

2
 kJhi(w)k 1 � ⌘�.

This implies that

dimHµW |Sn

log mb

log(1/(1 � ⌘�))
=

log (n/b)

log(1/(1 � ⌘�))
, (S73)

where we used (S62). The proof is complete.

S8.7 Proof of Proposition 5

Proof. We recall that the loss is given by:

`(w, zi) := kyi � ŷik
2 + �kwk

2
/2, ŷi :=

Xm

r=1

br�
�
w

T
r ai

�
, (S74)

where the non-linearity � : R ! R is smooth and � > 0 is a regularization parameter. Note that we
can re-write (S74) as `(w, zi) =

��yi � b
T
�
�
w

T
r ai

���2 + �kwk
2
/2. We can compute that

@`(w, zi)

@wr
= �(yi � ŷi)

@ŷi

@wr
+ �wr = �(yi � ŷi)br�

0(wT
r ai)ai + �wr. (S75)

Therefore,

r`(w, zi) = �(yi � ŷi)vi + �w, where vi :=

2

64

b1�
0(wT

1
ai)ai

b2�
0(wT

2
ai)ai

· · ·

bm�
0(wT

mai)ai

3

75 ,

with
hi(w) = w �

⌘

b

X

j2Si

r`(w, zi),

and

Jhi(w) = (1 � ⌘�)I �
⌘

b

X

j2Si

vj ⌦ v
T
j

+
⌘

b

X

j2Si

(yj � ŷj)

2

6664

b1�
00(wT

1
aj)aja

T
j 0d . . . 0d

0d b2�
00(wT

2
aj)aja

T
j . . . 0d

...
...

. . .
...

0d 0d . . . bm�
00(wT

maj)aja
T
j

3

7775

= (1 � ⌘�)I �
⌘

b

X

j2Si

diag({B(j)
r }

m
r=1

), (S76)

where {Si}
mb
i=1

is a partition of {1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb with mb = n/b,
and

B
(i)
r := br

⇥
�(yi � ŷi)�

00(wT
r ai) + (�0(wT

r ai))
2
⇤
aia

T
i , (S77)

and 0d is a d⇥ d zero matrix and diag({B(i)
r }

m
r=1

) denotes a block diagonal matrix with the matrices
B

(i)
r on the diagonal. We assume the output yi and the activation function � and its second derivative

�
00 is bounded.5 This would for instance clearly hold for classification problems where yi can take

integer values on a compact set with a sigmoid or hyperbolic tangent activation function. Then,
under this assumption, there exists a constant My > 0 such that maxi kyi � ŷik My. Then for
⌘ 2 (0,

1

2�) and � > C where C := Mykbk1k�
00
k1R

2 + (maxj kvjk1)2, we get
1 � ⌘(C + �) kJhi(w)k 1 � ⌘(� � C).

This implies that

dimHµW |Sn

log mb

log(1/(1 � ⌘(� � C)))
=

log (n/b)

log(1/(1 � ⌘(� � C)))
, (S78)

where we used (S62). The proof is complete.
5Since the final layer is fixed at initialization, the output is bounded.

14

S8.8 Proof of Proposition S8

Proof. Recall that H is positive-definite and there exist some m, M > 0:

0 � mI � H � MI. (S79)

We have
hi(u) � hi(v) = Mi(u � v),

where
0 �

�
1 � ⌘�m

�1
� ⌘m

�1
R

2

i

�
I � Mi �

�
1 � ⌘�M

�1
�
I, (S80)

where Ri := maxj2Si kajk, and we recall the assumption that ⌘ <
m

R2+� , with R := maxi Ri.
Hence, hi is bi-Lipschitz in the sense of [Anc16] where

�i(u � v) khi(u) � hi(v)k �i(u � v),

with

�i = min
���1 � ⌘�m

�1
� ⌘m

�1
R

2

i

�� ,
��1 � ⌘M

�1
�
��� , (S81)

�i = max
���1 � ⌘�m

�1
� ⌘m

�1
R

2

i

�� ,
��1 � ⌘M

�1
�
��� < 1, (S82)

as long as �i > 0. We recall the assumption ⌘ <
m

R2+� , where R := maxi Ri, in which case the
expressions for �i and �i simplify to:

�i = 1 � ⌘m
�1

� � ⌘m
�1

R
2

i , �i = 1 � ⌘M
�1

�.

In this case, it is easy to see that

0 < �i kJhi(w)k �i < 1,

and it follows from Theorem S2 that

dimHµW |Sn

EPmb

i=1
pi log(�i)

log mb

log(1/(1 � ⌘M�1�))
=

log (n/b)

log(1/(1 � ⌘M�1�))
, (S83)

where we used (S62). The proof is complete.

S8.9 Proof of Proposition S9

Proof. Similar as in the proof of Proposition 3, we can compute that the Jacobian is given by

Jhi(w) =
1

b

X

j2Si

1 � ⌘H

�1
� + ⌘H

�1
y
2

j

"
e
�yja

T
j w

(1 + e
�yjaT

j w)2

#
aja

T
j

!
, (S84)

where {Si}
mb
i=1

is a partition of {1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb with mb = n/b,
and H is a positive-definite matrix with 0 � mI � H � MI . recall that the input data is bounded,
i.e. maxj2Si kajk Ri for some Ri, and R := maxi Ri satisfying R < 2

p
m�/M . Also recall

the step-size is sufficiently small, i.e. ⌘ < m/�. One can provide upper bounds and lower bounds on
Jhi(w):

kJhi(w)k �i := 1 � ⌘M
�1

� +
1

4
⌘m

�1
R

2

i , (S85)

kJhi(w)k � �i := 1 � ⌘m
�1

�, (S86)

so that

dimHµW |Sn

�EPmb

i=1
pi log(1/(1 � ⌘M�1� + 1

4
⌘m�1R

2

i))

log mb

log(1/(1 � ⌘M�1� + 1

4
⌘m�1R2))

(S87)

=
b log (n/b)

log(1/(1 � ⌘M�1� + 1

4
⌘m�1R2))

, (S88)

where we used (S62) in (S87). The proof is complete.

15

S8.10 Proof of Proposition S10

Proof. Similar as in the proof of Proposition 4, we can compute that

Jhi(w) =
1

b

X

j2Si

�
I � ⌘H

�1
�
�
� ⌘H

�1
aja

T
j ⇢

00 (yj � hw, aji) , (S89)

where {Si}
mb
i=1

is a partition of {1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb with mb = n/b,
and H is a positive-definite matrix with 0 � mI � H � MI . For the function ⇢, a standard choice
is exponential squared loss: ⇢exp(t) = 1 � e

�|t|2/t0 , where t0 > 0 is a tuning parameter. We can
compute that k⇢00

exp
k1 = ⇢

00
exp

(0) = 2

t0
. Therefore, for ⌘ 2 (0,

m
�+R2(2/t0)

),

0 < 1 � ⌘m
�1

� � ⌘m
�1

R
2

2

t0
 kJhi(w)k 1 � ⌘M

�1
� + ⌘m

�1
R

2
2

t0
, (S90)

where R = maxi kaik and we recall that R <

p
�t0m/(2M). We have

dimHµW |Sn

log mb

log(1/(1 � ⌘M�1� + ⌘m�1R2 2

t0
))

=
log (n/b)

log(1/(1 � ⌘M�1� + ⌘m�1R2 2

t0
))

,

(S91)
where we used (S62). The proof is complete.

S8.11 Proof of Proposition S11

Proof. Similar as in the proof of Proposition S7, we can compute that

Jhi(w) = I �
⌘

b
H

�1
X

j2Si

r
2
`(w, zj) = (1 � ⌘�H

�1)I �
⌘

b
H

�1
X

j2Si

y
2

j `
00
�

�
yja

T
j w
�
aja

T
j ,

where {Si}
mb
i=1

is a partition of {1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb with mb = n/b,
and H is a positive-definite matrix with 0 � mI � H � MI , and

`
00
�(z) =

1

�

e
�(1�z)/�

(1 + e�(1�z)/�)2
� 0, k`

00
�k1 = `

00
�(1) =

1

4⇢
.

Therefore, if ⌘ 2 (0,
m

�+kRk2/(4⇢)) where R := maxi kaik, then

1 � ⌘m
�1

� � ⌘m
�1

1

4⇢
R

2
 kJhi(w)k 1 � ⌘M

�1
�.

This implies that

dimHµW |Sn

log mb

log(1/(1 � ⌘M�1�))
=

log (n/b)

log(1/(1 � ⌘M�1�))
, (S92)

where we use (S62). The proof is complete.

S8.12 Proof of Proposition S12

Proof. By following the similar derivations as in Proposition 5, we obtain

Jhi(w) =
�
1 � ⌘�H

�1
�
I �

⌘

b
H

�1
X

j2Si

diag
⇣n

B
(j)
r

om

r=1

⌘
, (S93)

where {Si}
mb
i=1

is a partition of {1, 2, . . . , n} with |Si| = b, where i = 1, 2, . . . , mb, with mb =
n/b, and H is a positive-definite matrix and 0 � mI � H � MI for some m, M > 0, and
diag({B(i)

r }
m
r=1

) denotes a block diagonal matrix with the matrices B
(i)
r on the diagonal defined in

Proposition 5. As in Proposition 5, there exists a constant My > 0 such that maxi kyi � ŷik My .
Then for ⌘ 2 (0,

m
C+�) and � >

M
m C where C := Mykbk1k�

00
kR

2 + (maxj kvjk1)2, we get

1 � ⌘m
�1(C + �) kJhi(w)k 1 � ⌘

�
M

�1
� � m

�1
C
�
.

This implies that

dimHµW |Sn

log mb

log(1/(1 � ⌘(M�1� � m�1C)))
=

log (n/b)

log(1/(1 � ⌘(M�1� � m�1C)))
, (S94)

where we used (S62). The proof is complete.

16

	Introduction
	Technical Background on Fractal Geometry
	Generalization Bounds for Stochastic Optimization Algorithms as IFSs
	Analytical Estimates for the Hausdorff Dimension
	Experiments
	Conclusion
	Further Background on Dimension Theory
	Minkowski dimension of a measure
	Local dimensions of a measure
	Existing Results

	Additional Analytical Estimates for SGD
	Analytical Estimates for Preconditioned SGD
	Analytical Estimates for Stochastic Newton
	Illustration of the Conditions (7) and (8)
	Estimating the Complexity R for SGD
	Power Iteration Algorithm for Jhi(w)

	Experiment Hyperparameters
	Postponed Proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition S7
	Proof of Proposition 5
	Proof of Proposition S8
	Proof of Proposition S9
	Proof of Proposition S10
	Proof of Proposition S11
	Proof of Proposition S12

