
Appendix

Table of Contents
A Methodological Details 15

A.1 Objective for Recursive Fitting . 15
A.2 Algorithm . 15
A.3 Link with Reinforcement Learning . 16

B Experiment Details 18
B.1 Linear Gaussian Experiment . 18
B.2 Chaotic Recurrent Neural Network . 18
B.3 Sequential Variational Auto-Encoder Experiment 19

C Proofs 22
C.1 Proof of Proposition 1 . 22
C.2 Proof of Proposition 2 . 22
C.3 Proof of Proposition 3 . 23

D Amortization 24
D.1 Architecture . 24
D.2 Amortized Joint ELBO Maximization Approach 24
D.3 Semi-Amortized Approach . 26
D.4 Gradient Computations . 26

E Broader Impact 27

The appendix is organized as follows. In Section A we cover in more detail some subtleties of
our proposed methodology. In A.1, we motivate our choice of objectives for fitting our recursive
gradient estimators, A.2 gives a full description of our algorithm and A.3 details the link between
the recursions used in RL and those presented here. Section B gives experimental details as well as
some further results for our Linear Gaussian (B.1), Chaotic Recurrent Neural Network (B.2) and
Sequential VAE (B.3) experiments. The proofs for all our propositions are given in Section C. In
Section D, we discuss methods for amortizing the cost of learning φt over time. We present possible
architecture choices in D.1, alternative objectives in D.2, D.3, and notes on gradient computations in
D.4. Finally, we discuss the broader impact of our research in Section E.

14

A Methodological Details

A.1 Objective for Recursive Fitting

Before specializing to our application, we first state a standard regression result. The following
regression problem

min
h

Eρ(x,y)
[
‖h(x)− k(y, x)‖22

]
(16)

has solution h(x) = Eρ(y|x) [k(y, x)]. Therefore, we can estimate Eρ(y|x) [k(y, x)] by minimizing
the following empirical version of the L2 loss (16) (or a regularized version of it)

min
h∈F

1

N

N∑
i=1

‖h(xi)− k(yi, xi)‖22, where xi, yi i.i.d.∼ ρ(x, y)

over a flexible function class F .

We note that if we make the following substitutions, then this solution exactly corresponds to the
form of recursion (9) with our approximation Ŝt+1 substituted for Sθ,φ1:t+1

t+1 :

x = xt+1, ρ(x) = q
φt+1

t+1 (xt+1), y = xt, ρ(y|x) = q
φt+1

t+1 (xt|xt+1),

h(x) = Ŝt+1(xt+1), k(y, x) = Ŝt(xt) + sθt+1(xt, xt+1).

Similarly for fitting T̂t+1 we can make the following substitutions such that the regression solution
corresponds to (10).

x = xt+1, ρ(x) = q
φt+1

t+1 (xt+1), y = εt, ρ(y|x) = λ(εt), h(x) = T̂t+1(xt+1),

k(y, x) = T̂t(xt(φt+1; εt, xt+1))
∂xt(φt+1; εt, xt+1)

∂xt+1
+∇xt+1

r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1), xt+1).

We note that the choice of distribution ρ(x) is technically arbitrary, however, in practice, it will decide
the region of space that our function approximation is most accurate. Therefore, we would like it to
be close to the ‘test time’ distribution - the distribution of points that the approximators are evaluated
at during the next time step. For T̂t+1, the test time distribution depends on φt+2 which changes
during optimization. This gives a series of test time distributions given by∫

q
φt+2

t+2 (xt+2)q
φt+2

t+2 (xt+1|xt+2)dxt+2. (17)

Assuming an accurate variational approximation, this will approach the following one-step smoothing
distribution: pθ(xt+1|yt+2). Our best approximation to this available at time t + 1 is qφt+1

t+1 (xt+1)

which approximates pθ(xt+1|yt+1). Ŝt+1 is evaluated at the end of φt+2 optimization so it has only
two test time distributions, (17) with the final value of φt+2 and qφt+1

t+1 (xt+1). Therefore, for both
T̂t+1 and Ŝt+1, we set ρ(x) = q

φt+1

t+1 (xt+1). We found this to perform well in our experiments and so
strategies to mitigate the distribution shift between training and test time were not needed. However,
if necessary, we could artificially inflate the entropy of the training distribution to cover a wider
region of the input space.

A.2 Algorithm

The full detailed description of Algorithm 1 is shown in Algorithm 2.

Here, we have assumed the variational family is Gaussian and so we detail the reparameterization
trick. We parameterize the standard deviation through log σt to ensure σt > 0.

We present both options for regression, neural networks and KRR. The exposition for KRR is as
in [26]. When we use neural networks, we use $t to represent the parameters of the T̂t network
and ψt to represent the parameters of the Ŝt network. We describe L2 regression for the neural
networks in Algorithm 2 although other losses are possible. KRR is based on a regularized L2 loss
with regularization parameter λ > 0. It requires a kernel k(xit, x

j
t) that takes two input vectors and

outputs a scalar similarity between them. In our experiments we use the Matérn kernel.

15

Algorithm 2: Online Variational Filtering and Parameter Learning - Full Algorithm Description
1 for t = 1, . . . , T do
2 Initialize φt e.g. φt ← φt−1

/* Update φt using M stochastic gradient steps */
3 for m = 1, . . . ,M do

/* Split out variational parameters */
4 [µt, log σt, φ̃t]← φt

/* Sample xt−1 and xt using the reparameterization trick */
5 Sample εit ∼ N (0, Idx) for i = 1, . . . , N

6 xit = µt + exp(log σt)ε
i
t for i = 1, . . . , N /* Element wise */

7 [µ̃it, log σ̃
i
t] = Qφ̃t(xit) for i = 1, . . . , N

/* Qφ̃t is a function giving qφtt (xt−1|xt) statistics e.g. MLP */
8 Sample ε̃it ∼ N (0, Idx) for i = 1, . . . , N

9 xit−1 = µ̃t + exp(log σ̃t)ε̃
i
t for i = 1, . . . , N /* Element wise */

10 φt ← φt + γm
1
N

∑N
i=1{T̂t−1(x

i
t−1)

dxit−1

dφt
+∇φtrt(xit−1, x

i
t)}

11 end
12

/* Update T̂t(xt) and Ŝt(xt) as in Section 3.5 */
/* Generate training datasets */

13 Sample xit−1, x
i
t ∼ qφtt (xt−1, xt) as lines [4] to [9] for i = 1, . . . , P

14 DT =
{
xit,T-targeti

}P
i=1

with T-targeti = T̂t−1(x
i
t−1)

∂xit−1

∂xit
+∇xtrt(xit−1, x

i
t)

15 DS =
{
xit, S-targeti

}P
i=1

with S-targeti = Ŝt−1(x
i
t−1) + s

θt−1
t (xit−1, x

i
t)

/* Update function approximators */
16 if Regression using Neural Nets then
17 for j = 1, . . . , J do
18 I ← minibatch sample from {1, . . . , P}
19 $t ← $t + γj∇$t 1

|I|
∑
i∈I ‖T̂

$t
t (xit)− T-targeti‖22

20 ψt ← ψt + γj∇ψt 1
|I|
∑
i∈I ‖Ŝ

ψt
t (xit)− S-targeti‖22

21 end
22 else if Regression using KRR then
23 Let T̂t(x∗t) = RDT (KDT + PλIP)−1k∗DT
24 Let Ŝt(x∗t) = RDS (KDS + PλIP)−1k∗DS
25 with
26 RD = [target1, . . . , targetP] ∈ Rdx×P

27 KD ∈ RP×P , (KD)ij = k(xit, x
j
t)

28 k∗D ∈ RP , (k∗D)i = k(xit, x
∗
t)

29 end
30

/* Update θ using a stochastic gradient step */
31 Sample xit−1, x

i
t ∼ qφtt (xt−1, xt), x̃it−1 ∼ q

φt−1
t−1 (xt−1) for i = 1, ..., N

32 θt ← θt−1 + ηt
1
N

∑N
i=1{Ŝt−1(x

i
t−1) + s

θt−1
t (xit−1, x

i
t)− Ŝt−1(x̃

i
t−1)}

33 end

A.3 Link with Reinforcement Learning

The forward recursions in our method bear some similarity to the Bellman recursion present in RL.
This is due to both relying on dynamic programming. We make explicit the relationship between our
gradient recursions and the Bellman recursion in this section.

We first detail the standard RL framework and its Bellman recursion. The total expected reward we
would like to optimize is

J(φ) = Eτ∼pφ

[
T∑
t=1

r(st, at)

]
,

16

where st is the state at time t, at is the action taken at time t and r(st, at) is the reward for being
in state st and taking action at. This expectation is taken with respect to the trajectory distribution
which is dependent on the policy πφ

pφ(τ) = P (s1)πφ(a1|s1)

T∏
t=2

P (st|st−1, at−1)πφ(at|st).

The value function is then defined as the expected sum of future rewards when starting in state st
under policy πφ

V RL
t (st) := E

[
T∑
k=t

r(sk, ak)

]
.

This value function satisfies the following Bellman recursion

V RL
t (st) = Est+1,at∼P (st+1|st,at)πφ(at|st)

[
r(st, at) + V RL

t+1(st+1)
]
.

The total expected reward J(φ) is then just the expected value of V RL
1 taken with respect to the first

state distribution
J(φ) = Es1∼P (s1)

[
V RL
1 (s1)

]
.

For our application, we would like to instead have a forward recursion. A natural forward recursion
appears when we consider an anti-causal graphical model for RL, where st depends on st+1 and
at+1; i.e. we consider the following reverse-time decomposition of the trajectory distribution

pφ(τ) = P (sT)πφ(aT |sT)

1∏
t=T−1

P (st|st+1, at+1)πφ(at|st).

We define a new value function which is the sum of previous rewards

Vt(st) := E

[
t∑

k=1

r(sk, ak)

]
.

It follows a corresponding forward Bellman-type recursion

Vt+1(st+1) = Eπφ(at+1|st+1)P (st|st+1,at+1) [r(st+1, at+1) + Vt(st)] .

J(φ) is then now the expected value of VT taken with respect to the final state distribution

J(φ) = EsT∼P (sT) [VT (sT)] .

This forward Bellman recursion is non-standard in the literature but is useful when we adapt it for our
application. We define st = xt, at = xt−1 ∼ qφt (xt−1|xt) and P (st|st+1, at+1) = δ(st = at+1).
The ‘reward’ is defined as

r(st, at) = r(xt, xt−1) = log
f(xt|xt−1)g(yt|xt)qφt−1

t−1 (xt−1)

qφtt (xt)q
φt
t (xt−1|xt)

,

r(s1, a1) = r(x1, x0) = log
µ(x1)g(y1|x1)

qφ1

1 (x1)
,

where we have suppressed θ from the notation for conciseness. Note a1 = x0 has no meaning here.
The ‘policy’ is defined as the backward kernel

πφ(at|st) = qφtt (xt−1|xt).

With these definitions, the trajectory distribution is

pφ(τ) = qφTT (xT)

1∏
t=T

qφtt (xt−1|xt).

17

(Since x0 has no meaning in our application, the final qφ1

1 (x0|x1) distribution that appears has no
significance.) With this formulation, the sum of rewards now corresponds to the ELBO which we
would like to maximize with respect to φ

LT = Epφ(τ)

[
T∑
t=1

r(st, at)

]
.

Just as in our anti-causal RL example, this can be broken down into a value function that summarizes
previous rewards

Vt+1(xt+1) = E

[
t+1∑
k=1

r(sk, ak)

]
= E

q
φ1:t+1
t+1 (x1:t|xt+1)

[
log

pθ(x1:t+1, y
t+1)

q
φ1:t+1

t+1 (x1:t+1)

]
,

LT = E
q
φT
T (xT)

[VT (xT)] .

This follows a forward Bellman recursion (equation (7) in the main text).

Vt+1(xt+1) = E
q
φt+1
t+1 (xt|xt+1)

[
log

f(xt+1|xt)g(yt+1|xt+1)qφtt (xt)

q
φt+1

t+1 (xt+1)q
φt+1

t+1 (xt|xt+1)
+ Vt(xt)

]
.

Since we would like to optimize the ELBO rather than just evaluate it, we do not make use of
Vt(xt) directly. We instead differentiate this forward in time Bellman recursion to obtain our
gradient recursions. To obtain equation (9) in the paper we differentiate with respect to θ. To obtain
equation (10) we differentiate with respect to xt, we then use ∂

∂xt
Vt(xt) to get an equation for

∇φt+1
Vt+1(xt+1).

Our approach here is complementary to that of [14, 25] but differs in the fact we focus on
forward in time recursions allowing an online optimization of the ELBO. [25] and subsequent
work focus on fitting RL into a probabilistic context whereas we take ideas from RL (recursive
function estimation) to enable online inference. We note that [43] also define suitable rewards to
fit probabilistic inference into an RL framework but again only focus on backward Bellman recursions.

B Experiment Details

B.1 Linear Gaussian Experiment

For both experiments, we randomly initialize F and G to have eigenvalues between 0.5 and 1.0.
When learning φ we set the diagonals of U and V to be 0.12. We use a learning rate of 0.01 over
5000 iterations for each time step. We decay the learning rate by 0.999 at every inner training step.
For the initial time point we use a learning rate of 0.1 with the same number of iterations and decay
because the φ parameters start far away from the optimum but for the proceeding time points we
initialize at the previous solution hence they are already close to the local optimum. We represent T̂t
using KRR, and use 500 data points to perform the fitting at each time step. We set the regularization
parameter to 0.1. We use an RBF kernel with a bandwidth learned by minimizing mean squared error
on an additional validation dataset.

For learning φ and θ jointly, we set the diagonals of V to be 0.252. We compare different training
methods against the RMLE baseline under the same settings. To learn φ, we use a learning rate of
0.01 over 500 iterations for each time step with a learning rate decay of 0.991. We represent T̂t using
KRR, and use 512 data points to perform the fitting at each time step. We set the regularization
parameter to 0.01. To learn θ, we use a learning rate of 1e-2 and a Robbins-Monro type learning rate
decay. We represent Ŝt using KRR with 1000 data points and regularization parameter 1e-4. The
experiments were run on an internal CPU cluster with Intel Xeon E5-2690 v4 CPU.

B.2 Chaotic Recurrent Neural Network

We follow closely [44] using the same parameter settings for data generation. We use 1 million
particles for EnKF and BPF for dimension dx = 5 and 20, and 250000 particles for dimension

18

Table 2: Root Mean Squared Error between the ‘ground truth’ posterior mean and variational mean
estimates for the filtering distribution p(xt|yt) and one-step smoothing distribution p(xt−1|yt) over
10 runs.

dx AELBO-1 AELBO-2 Ours

5 Filter mean RMSE 0.0644±0.0037 0.0155±0.0006 0.0128±0.0007
1-step mean RMSE - 0.0241±0.0008 0.0202±0.0009

dx = 100 in order to match the computation cost. For variational methods, we train for 500 iterations
at each timestep with minibatch size 10 and learning rate 1e-2, and we use a single-layer MLP with
100 neurons to parameterize each qφtt (xt−1|xt) for AELBO-2 and our method. The function T̂t is
represented using KRR with 100 samples for dx = 5 and 250 samples for dx = 20 and 100. The
regularization strength is fixed to be 0.1 while the kernel bandwidth is learned at each timestep on a
validation dataset for 25 iterations with minibatch size 10 and learning rate 1e-2. The extra time for
optimizing the kernel parameter is included in the presented runtime results. The experiments were
run on an internal CPU cluster with Intel Xeon E5-2690 v4 CPU.

For dx = 5, we further confirm the gain in ELBO by comparing the variational means of qφtt (xt) and
qφtt (xt−1) =

∫
qφtt (xt)q

φt
t (xt−1|xt)dxt against the ‘ground truth’ posterior means of p(xt|yt) and

p(xt−1|yt) computed using PF with 10 million particles. As shown in Table 2, our method attains a
significantly lower error in terms of both metrics.

For our comparison with the offline ELBO, we verify our conclusion holds by considering a range
of seeds and examining all dimensions of the variational joint. We plot the two joint variational
distributions alongside the true hidden state in Figure 4 for 3 seeds and 5 dimensions. We see that in
all cases the joint variational distributions trained with our online ELBO and the offline ELBO match
very closely.

We also note that for longer time intervals, using the offline ELBO objective results in training
instabilities due to the necessity of rolling out the entire backward joint variational distribution. To
train for 100 time steps, a ‘warm start’ was needed whereby we first train for a small number of
training iterations on each of a series of intermediary objectives. If the total number of time steps is t,
then there are t intermediary objectives each being an offline ELBO with τ terms for τ = 1, 2, . . . , t.
After the warm start, many gradient updates are taken using the offline ELBO corresponding to the
full t steps.

B.3 Sequential Variational Auto-Encoder Experiment

A video demonstration of the sequential VAE model is available at https://github.com/andrew-
cr/online_var_fil.

B.3.1 Experimental Details

We parameterize NNfθ as a residual MLP which consists of 4 stacked layers of the form f(x) =
x+ sMLP(x) where MLP(x) is an MLP with a single hidden layer of hidden dimension 32 and s
is a learned scaling parameter. We parameterize NNg as a convolutional neural network, using the
architecture suggested by 5 and implemented in PyTorch in 6. Specifically, the architecture consists
of the following layers:

• Convolutional layer, 128 outputs channels, kernel size of 3 and padding of 1
• ReLU activation
• Two residual blocks consisting of

5https://github.com/deepmind/sonnet/blob/v2/examples/vqvae_example.ipynb
6https://github.com/karpathy/deep-vector-quantization MIT License

19

https://github.com/andrew-cr/online_var_fil
https://github.com/andrew-cr/online_var_fil
https://github.com/deepmind/sonnet/blob/v2/examples/vqvae_example.ipynb
https://github.com/karpathy/deep-vector-quantization

0 100
0.0

0.5

1.0

0 100

−2

0

0 100
0

2

0 100
−4

−2

0

0 100

−4

−2

0

0 100

0

1

0 100
−0.5

0.0

0.5

0 100
0.0

0.5

1.0

0 100
−2

−1

0

0 100

−1

0

0 100

0

1

0 100
0

1

0 100
−0.5

0.0

0 100

−1

0

0 100
−0.5

0.0

0.5

Se
ed

1

2

3

Dimension
1 2 3 4 5

Figure 4: Comparison between joint variational distributions trained offline (red dashed) versus online
(blue full). The data is generated as in the Chaotic Recurrent Neural Network example, for 10 time
steps and is shown in black. Colored lines show variational means through time whilst the shaded
regions represent ±1 std. The row of a plot corresponds to the seed used to generate the data whilst
the column corresponds to the dimension in this 5 dimensional tracking example.

– Convolutional layer, 32 outputs channels, kernel size of 3, padding of 1
– ReLU activation
– Convolutional layer, 128 output channels, kernel size of 1, padding of 0
– Residual connection

• Transposed convolution, 64 output channels, kernel size of 4, stride of 2 and padding of 1
• ReLU activation
• Transposed convolution, 3 output channels, kernel size of 4, stride of 2 and padding of 1

To pre-train the decoder we use the encoder architecture from the same sources and train using the
standard minibatch ELBO objective to convergence.

We use KRR to represent T̂t. We use a KRR regularization parameter of 0.1 and use an RBF kernel
with learned bandwidth on a validation dataset. We update T̂t using a dataset of size 512. For Ŝt we
use a two hidden layer MLP with ReLU activations with hidden layer dimensions, 256 and 1024.
The θ dimension is 8452. The MLP has an output dimension of 8453, the first 8452 outputs give the
gradient direction and the last gives the log magnitude of the gradient. The MLP is trained on the
regression dataset using a combination of a direction and magnitude loss. The direction loss is the
negative cosine similarity whilst the magnitude loss is an MSE loss in log magnitude space. The two
losses are then combined with equal weighting. This separation of the gradient into a magnitude
and direction is similar to the gradient pre-processing described in [1]. The dataset size used for
regression is 1024. We take minibatches of size 32 randomly sampled from this dataset and take 128
gradient steps on the Ŝt weights for each time step with a learning rate of 0.001.

We use mean field qφtt (xt) and qφtt (xt−1|xt). The mean vector for qφtt (xt−1|xt) is given by an MLP
with input xt, and two hidden layers of dimension 64. The log standard deviation for qφtt (xt−1|xt) is
learned directly and does not depend on xt.

We set U = V = 0.1I. We use a learning rate for θ updates of 0.001. We run 200 iterations of inner
φt optimization at each time step, with a learning rate of 0.03 for qφtt (xt) statistics and 0.003 for
qφtt (xt−1|xt) weights. These experiments were run on a single RTX 3090 GPU.

20

0 1k 2k 3k 4k
Time step

−22000

−21000

−20000

−19000

Av
g

lo
g

lik
el

ih
oo

d

Figure 5: ˆ̀q
t (θk)/t for k = [1, . . . , t]. Solid line is mean over three different seeds using the same

dataset, transparent area is ± one standard deviation.

B.3.2 Average log likelihood

To quantify the quality of the learned transition function NNfθ we can compute the approximate
average log likelihood `t(θ)/t using values of θ from different stages of training. The environment is
highly non-stationary on the timescale considered because the dataset consists of video frames from
an agent exploring a maze giving transitions that are diverse and not repeated. We therefore do not
expect `t(θ)/t to converge to a constant but its general trajectory is useful to quantify the agreement
between the model and the observations. `t(θ)/t is defined as

`t(θ)

t
=

1

t

t∑
k=1

log pθ(yk|yk−1) =
1

t

t∑
k=1

log

∫
pθ(xk−1|yk−1)fθ(xk|xk−1)g(yk|xk)dxkdxk−1.

We approximate this quantity using the learned filtering distributions

`qt (θ)

t
=

1

t

t∑
k=1

log

∫
q
φk−1

k−1 (xk−1)fθ(xk|xk−1)g(yk|xk)dxkdxk−1

which we can estimate through Monte Carlo

ˆ̀q
t (θ)

t
=

1

t

t∑
k=1

log

{
N∑
i=1

g(yk|xnk)

}
xnk−1, x

n
k ∼ q

φk−1

k−1 (xk−1)fθ(xk|xk−1).

We note that ˆ̀q
t/t depends on φ1:t so can only be computed at the end of the run. To monitor progress

of θ, we compute ˆ̀q
t (θk)/t for k = [1, . . . , t] where θk is the value of the model parameters during

training at time step k. We plot the results in Figure 5. We find that indeed ˆ̀q
t (θk)/t generally

increases through training showing that our method can learn high dimensional model parameters.
We conjecture that the few decreases in ˆ̀q

t (θk)/t are due to online nature of the algorithm, if the
current temporally local state of the system involves transitions that are not represented throughout the
training sequence then updates in this region of time will cause an overall decrease in log likelihood
when aggregated over the entire sequence. However, in the limit as t → ∞ a recursive maximum
likelihood approach, upon which our method is based, is expected to reach a local maximum of
`t(θ)/t under regularity conditions because local transients are averaged out in the long term.

21

C Proofs

C.1 Proof of Proposition 1

Recall from (6) that we have

qφt+1(x1:t+1) = qφt (x1:t)m
φ
t+1(xt+1|xt),

so

log
pθ(x1:t+1, y

t+1)

qφt+1(x1:t+1)
= log

pθ(x1:t, y
t)

qφt (x1:t)
+ log

fθ(xt+1|xt)gθ(yt+1|xt+1)

mφ
t+1(xt+1|xt)

= log
pθ(x1:t, y

t)

qφt (x1:t)
+ rθ,φt+1(xt, xt+1).

From the definition

V θ,φt+1(xt+1) = Eqφt+1(x1:t|xt+1)

[
log

pθ(x1:t+1, y
t+1)

qφt+1(x1:t+1)

]
,

we have directly

Lt+1(θ, φ) = Eqφt+1(xt+1)

[
V θ,φt+1(xt+1)

]
and, crucially,

V θ,φt+1(xt+1) := Eqφt+1(x1:t|xt+1)

[
log

pθ(x1:t, y
t)

qφt (x1:t)
+ rθ,φt+1(xt, xt+1)

]

= Eqφt+1(xt|xt+1)

[
Eqφt (x1:t−1|xt)

[
log

pθ(x1:t, y
t)

qφt (x1:t)

]
+ rθ,φt+1(xt, xt+1)

]
= Eqφt+1(xt|xt+1)

[
V θ,φt (xt) + rθ,φt+1(xt, xt+1)

]
.

C.2 Proof of Proposition 2

We have by direct differentiation that

∇θLt(θ, φ) = Eqφt (xt)[∇θV
θ,φ
t (xt)]

= Eqφt (x1:t)

[
∇θ log pθ(x1:t, y

t)
]

= Eqφt (xt)
[
Sθ,φt (xt)

]
where

Sθ,φt (xt) := Eqφt (x1:t−1|xt)
[
∇θ log pθ(x1:t, y

t)
]
.

This quantity satisfies the recursion

Sθ,φt+1(xt+1) = Eqφt+1(x1:t|xt+1)

[
∇θ log pθ(x1:t+1, y

t+1)
]

= Eqφt+1(x1:t|xt+1)

[
∇θ log pθ(x1:t, y

t) + sθt+1(xt, xt+1)
]

= Eqφt+1(xt|xt+1)

[
Eqφt (x1:t−1|xt)

[
∇θ log pθ(x1:t, y

t)
]

+ sθt+1(xt, xt+1)
]

= Eqφt+1(xt|xt+1)

[
Sθ,φt (xt) + sθt+1(xt, xt+1)

]
for

sθt+1(xt, xt+1) := ∇θ log fθ(xt+1|xt)gθ(yt+1|xt+1).

22

C.3 Proof of Proposition 3

We have by a direct application of the reparameterization trick that

∇φtLt(θ, φ1:t) = Eλ(εt)[∇φtV
θ,φ1:t

t (xt(φt; εt))],

where V θ,φ1:t

t (xt) := E
q
φ1:t
t (x1:t−1|xt)

[
log pθ(x1:t,y

t)

q
φ1:t
t (x1:t)

]
. We have

V
θ,φ1:t+1

t+1 (xt+1) = E
q
φt+1
t+1 (xt|xt+1)

[
V θ,φ1:t

t (xt) + r
θ,φt:t+1

t+1 (xt, xt+1)
]

= Eλ(εt)
[
V θ,φ1:t

t (xt(φt+1; εt, xt+1)) + r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1), xt+1)
]

Hence,

∇φt+1
V
θ,φ1:t+1

t+1 (xt+1(φt+1; εt+1))

= Eλ(εt)
[
∂

∂xt
V θ,φ1:t

t (xt)
∣∣∣
xt=xt(φt+1;εt,xt+1(φt+1;εt+1))

dxt(φt+1; εt, xt+1(φt+1; εt+1))

dφt+1

+ ∇φt+1r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1(φt+1; εt+1)), xt+1(φt+1; εt+1))
]
,

where
∂

∂xt
V θ,φ1:t

t (xt)
∣∣∣
xt=xt(φt+1;εt,xt+1(φt+1;εt+1))

= T θ,φ1:t

t (xt(φt+1; εt, xt+1(φt+1; εt+1))).

For the forward recursion,

T
θ,φ1:t+1

t+1 (xt+1) =
∂

∂xt+1
V
θ,φ1:t+1

t+1 (xt+1)

= Eλ(εt)
[

∂

∂xt+1
V θ,φ1:t

t (xt(φt+1; εt, xt+1)) +∇xt+1
r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1), xt+1)

]
= Eλ(εt)

[
∂

∂xt
V θ,φ1:t

t (xt)
∣∣∣
xt=xt(φt+1;εt,xt+1)

∂xt(φt+1; εt, xt+1)

∂xt+1

+ ∇xt+1r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1), xt+1)
]
,

where again

∂

∂xt
V θ,φ1:t

t (xt)
∣∣∣
xt=xt(φt+1;εt,xt+1)

= T θ,φ1:t

t (xt(φt+1; εt, xt+1)).

Here, dxt(φt+1;εt,xt+1(φt+1;εt+1))
dφt+1

,∇φt+1r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1(φt+1; εt+1)), xt+1(φt+1; εt+1)),

∇xt+1r
θ,φt:t+1

t+1 (xt(φt+1; εt, xt+1), xt+1) denote total derivatives w.r.t. φt+1 and xt+1, which can all
be computed using the reparameterization trick.

23

D Amortization

In the main paper, we have focused on the case where we use a new set of variational parameters
φt at each time step. This is conceptually simple and easy to use; however, it requires a new
inner optimization run for each time step. In this section, we describe methods to amortize the φ
optimization over time. This entails learning an amortization network which takes in y-observations
and gives variational distribution statistics. With this network in hand, information from previous
time steps regarding the relation between the y-observations and the variational statistics can be
re-used. This results in computational savings over a method which treats each time step in isolation.

D.1 Architecture

The variational distributions of interest qφt (xt|yt) and qφt (xt−1|yt−1, xt) approximate pθ(xt|yt) and
pθ(xt−1|yt−1, xt) respectively. Therefore, to produce the qφt statistics, we use a Recurrent Neural
Network (RNN) to first encode the sequence of observations, yt, creating a representation ht. Then
a network takes ht to give qφt (xt|yt) statistics and a separate network takes ht−1 and xt to give
qφt (xt−1|yt−1, xt) statistics.

In the simplest version of this architecture, we can directly take ht to be the statistics of the filtering
distribution qφt (xt|yt). In this case, two amortization networks are learned: one forward filtering
network learns to output the filtering statistics ht given ht−1 and yt; another backward smoothing
network learns to approximate the backward kernel pθ(xt−1|yt−1, xt) given ht−1 and xt. Note that
when we fix and detach ht−1 at each time t, in a way this works like supervised learning, i.e. to learn
to produce the same filtering and smoothing parameters as the non-amortized case, so the objective
of the non-amortized case can be directly translated here to learn amortized networks.

D.2 Amortized Joint ELBO Maximization Approach

One issue with using the non-amortized objective directly is that the amortized backward smoothing
kernels qφt (xt−1|yt−1, xt) are not learned to jointly maximize the joint ELBO LT (θ, φ) over time.
Here, we give an alternative, more rigorous treatment of the amortization objective. We assume in
this section that we take ht as the filtering statistics and detach ht at each time step.

For the amortized forward filtering network, we would like to maximize the objective
−
∑T
t=1 KL

(
qφt (xt|yt) ‖ pθ(xt|yt)

)
. Since the KL is intractable, we learn qφt (xt|yt) by maxi-

mizing Lt(θ, φ) at each time step t. This is the same as the non-amortized case, which only utilizes
the functional approximator T θ,φt (xt).

For the amortized backward smoothing network, we would like to maximize LT (θ, φ) jointly over
time. To do this, we can similarly optimize Lt(θ, φ)−Lt−1(θ, φ) at each time t similar to learning θ.
For the gradients∇φLt(θ, φ), we have the following result:
Proposition 4. The ELBO gradient∇φLt(θ, φ) satisfies for t ≥ 1

∇φLt(θ, φ) = ∇φEqφt (xt|yt)[V
θ,φ
t (xt)] = Eλ(εt)[∇φV

θ,φ
t (xt(φ; εt))].

Additionally, one has

∇φV θ,φt+1(xt+1(φ; εt+1)) = Eλ(εt)
[
T θ,φt (xt(φ; εt, xt+1(φ; εt+1)))

dxt(φ; εt, xt+1(φ; εt+1))

dφ

+ Uθ,φt (xt(φ; εt, xt+1(φ; εt+1))) +∇φrθ,φt+1(xt(φ; εt, xt+1(φ; εt+1)), xt+1(φ; εt+1))
]
,

where T θ,φt (xt) := ∂
∂xt

V θ,φt (xt), Uθ,φt (xt) := ∇φV θ,φt (xt) satisfy the forward recursions

T θ,φt+1(xt+1) = Eλ(εt)
[
T θ,φt (xt(φ; εt, xt+1))

∂xt(φ; εt, xt+1)

∂xt+1

+ ∇xt+1r
θ,φ
t+1(xt(φ; εt, xt+1), xt+1)

]
,

24

Uθ,φt+1(xt+1) = Eλ(εt)
[
T θ,φt (xt(φ; εt, xt+1))

∂xt(φ; εt, xt+1)

∂φ

+ Uθ,φt (xt(φ; εt, xt+1)) +∇φrθ,φt+1(xt(φ; εt, xt+1), xt+1)
]
.

Proof. By a direct application of the reparameterization trick,

∇φLt(θ, φ) = Eλ(εt)[∇φV
θ,φ
t (xt(φ; εt))].

By Proposition 1,

V θ,φt+1(xt+1) = Eqφt+1(xt|yt,xt+1)
[V θ,φt (xt) + rθ,φt+1(xt, xt+1)].

Hence, using the chain rule,

∇φV θ,φt+1(xt+1(φ; εt+1)) = Eλ(εt)
[
∂

∂xt
V θ,φt (xt)

∣∣∣
xt=xt(φ;εt,xt+1(φ;εt+1))

dxt(φ; εt, xt+1(φ; εt+1))

dφ

+
∂

∂φ
V θ,φt (xt)

∣∣∣
xt=xt(φ;εt,xt+1(φ;εt+1))

+∇φrθ,φt+1(xt(φ; εt, xt+1(φ; εt+1)), xt+1(φ; εt+1))

]
.

The functions ∂
∂xt

V θ,φt (xt),
∂
∂φV

θ,φ
t (xt) are defined as T θ,φt (xt), U

θ,φ
t (xt) respectively.

T θ,φt (xt) follows the same forward recursion as in Proposition 3. For Uθ,φt (xt), we have

Uθ,φt+1(xt+1) =
∂

∂φ
V θ,φt+1(xt+1)

=
∂

∂φ
Eqφt+1(xt|yt,xt+1)

[V θ,φt (xt) + rθ,φt+1(xt, xt+1)]

= Eλ(εt)
[
∇φ
(
V θ,φt (xt(φ; εt, xt+1)) + rθ,φt+1(xt(φ; εt, xt+1), xt+1)

)]
= Eλ(εt)

[
∂

∂xt
V θ,φt (xt)

∣∣∣
xt=xt(φ;εt,xt+1)

∂xt(φ; εt, xt+1)

∂φ

+
∂

∂φ
V θ,φt (xt)

∣∣∣
xt=xt(φ;εt,xt+1)

+∇φrθ,φt+1(xt(φ; εt, xt+1), xt+1)

]
= Eλ(εt)

[
T θ,φt (xt(φ; εt, xt+1))

∂xt(φ; εt, xt+1)

∂φ

+ Uθ,φt (xt(φ; εt, xt+1)) +∇φrθ,φt+1(xt(φ; εt, xt+1), xt+1)
]
.

Note that in the simplest case where we take ht as the filtering statistics and detach ht at each time
step, these are reflected in the corresponding gradient computations and function updates. In this
case, ∇φLt(θ, φ)−∇φLt−1(θ, φ) reduces to

∇φEqφt (xt|yt)qφt (xt−1|yt−1,xt)

[
rθ,φt (xt−1, xt)

]
+ Eλ(εt−1)λ(εt)

[
T θ,φt−1 (xt−1(φ; εt−1, xt(φ; εt)))

dxt−1(φ; εt−1, xt(φ; εt))

dφ

]
+ Eqφt (xt|yt)qφt (xt−1|yt−1,xt)

[
Uθ,φt−1 (xt−1)

]
− Eqφt−1(xt−1|yt−1)

[
Uθ,φt−1 (xt−1)

]
since qφt−1(xt−1|yt−1) has been detached. Note that the terms on the last line represent the difference
between two expectations of the Uθ,φt−1(xt−1) function. We refer to this approach as “Ours (TU)”.
Without the final line, the objective reduces to the same objective as the non-amortized case, and
we refer to this approach as “Ours (T)”. We demonstrate the applicability of these methods on the
Chaotic RNN task. For both the forward filtering and backward smoothing networks, we use a MLP
with 2 hidden layers and 100 neurons in each layer. As shown in Table 3, the amortized networks are
able to achieve similar filtering accuracy as the non-amortized case. Both of the proposed methods
achieve lower errors during training time and test time.

25

Table 3: Root Mean Squared Error between filtering mean and true state on the CRNN task using
amortized models. For test time errors, we rerun the trained models from the start of data without
further optimization. The resulting errors are comparable to those of the non-amortized models.

dx AELBO-1 AELBO-2 Ours (T) Ours (TU)

5 Filter RMSE (train time) 0.1158±0.0011 0.1039±0.0006 0.1032±0.0004 0.1031±0.0002
Filter RMSE (test time) 0.1170±0.0022 0.1064±0.0012 0.1048±0.0005 0.1056±0.0013

D.3 Semi-Amortized Approach

An alternative approach to amortization is to return to the exact same gradient computations as in the
main paper. However, instead of φt corresponding directly to the statistics of qφtt , it corresponds to
the parameters of the RNN and MLPs which produce qφtt statistics from the observations yt. For each
time step, we run the inner optimization and ‘overfit’ the RNN/MLPs to the current set of observations.
Overfitting in this context means that the networks are optimized to produce as accurate as possible
qφtt statistics for this time step (just as in the main paper), but since only the current time step is
considered in the optimization, they are not forced to generalize to other time steps and y-observations.

This may seem contradictory with the aims of amortization, namely using computational work
spent during previous time steps to reduce the inference load at the current time step. However,
if the RNN/MLPs are initialized at their optimized values from the previous time step, the
previous optimization cycles can be thought of as a type of pre-training. This makes the inner opti-
mization problem progressively easier in terms of computation required for a certain level of accuracy.

We demonstrate this idea using the linear Gaussian application where the distance to the true filtering
distributions can be calculated analytically. We use an RNN and MLPs to generate qφtt statistics as
described above and optimize each φt for 100 steps at each time step. Figure 6 plots the absolute
error in the mean of qφtt (xt) (averaged over dimension) versus time step for 5 different points within
each inner optimization routine. Looking at the zero shot performance (at the start of each time step,
before any optimization) we see that over time, the amortization networks are able to produce more
and more accurate statistics without any updates using the current observations. This shows that this
naive approach to amortization can indeed provide useful cost savings in the long-run.

Using this approach, we were able to reproduce the model learning results shown in Figure 1b but
with fewer iterations per time step. This was also achieved for the Sequential VAE example using a
convolutional RNN to encode video frames and MLPs to generate variational statistics. A visually
plausible transition function could be successfully learned in this semi-amortized fashion.

D.4 Gradient Computations

All approaches to amortization require computing gradients of the form dxt
dφ with xt being sampled

using the reparameterization trick with statistics from qφt (xt). When we use an RNN to calculate
these statistics, calculating this derivative requires backpropagating through all previous observations
yt. This results in a linearly increasing computational cost in time. To avoid this, we detach the RNN
state ht−H from the computational graph at some fixed window into the past, H . When we roll out
the RNN to calculate statistics from time t, we simply initialize at ht−H and treat it as a constant.
When the algorithm proceeds to the next time step, ht+1−H is then kept constant at its most recent
value during the previous time step. More sophisticated methods for online training of RNNs are also
possible, we refer to [31] for a survey.

26

0 5000 10000 15000 20000 25000
T

0.000

0.002

0.004

0.006

0.008

0.010

Ab
so

lu
te

 e
rro

r

Zero shot
25
50
75
100

Figure 6: Absolute error of the mean of qφtt (xt) averaged over dimension versus time step. 5 different
points in each inner optimization process are plotted, zero shot is before any optimization steps, 25 is
after 25 optimization steps, and so on. Different seeds are shown as translucent with the mean over
seed shown in full color. The plateau in absolute error is due to the inherent limitations of stochastic
gradient descent with a fixed learning rate. To contextualize the absolute error value, states and state
transitions are on the order of ∼ 0.1. The lines are smoothed using a uniform kernel of width 1000.

E Broader Impact

We propose a generic methodology for performing online variational inference and parameter
estimation. Historically, filtering has been used in a huge variety of applications, some with large
societal impacts. The same filtering algorithms can both help predict future weather patterns but
could also be used in weapons guidance systems. Our current methodology remains in the research
stage but as further developments are made that make it more practically applicable, it is important to
fully consider these possible societal effects.

27

