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This supplementary material contains all the proofs omitted from the main body. Each section
provides the proofs of claims, theorems, or propositions of a section of the main body; more precisely,
Appendix A provides proofs for Section 3, Appendix B does so for Section 4, Appendix C, for
Section 5, and finally, Appendix D deals with Section 6.
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A Proofs for Section 3

We start by proving a claim stated right after Assumption 1: that
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which converges to 0, as it is the sum of C/
√
T with a quantity smaller than the remainder of a

convergent series.

We recall that for all Borel-measurable functions f : X × S → Rd with sup
(x,s)∈X×S

‖f(x, s)‖ 6M ,∥∥∥∥∫
X×S

f(x, s) dQ1(x, s)−
∫
X×S

f(x, s) dQ2(x, s)

∥∥∥∥
6
∫
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‖f(x, s)‖
∣∣g1(x, s)− g2(x, s)

∣∣dµ(x, s) 6 2M · TV(Q1,Q2) , (8)

where g1 and g2 denote densities of the distributions Q1 and Q2 with respect to a common dominating
measure µ.

We now move to the proof of Theorem 1, which we restate below. It relies on two lemmas stated
below in Section A.1. Unless stated otherwise (namely, for matters related to the estimation of Q),
all material is standard and was introduced by Blackwell [3] (see also the more modern expositions
by Perchet [25] or Mertens et al. [22]).
Theorem 1. Assume that C is a closed convex set and that Assumptions 1 (fast enough sequential
estimation of Q) and 2 (bounded reward function) are satisfied, then C is approachable if and only if

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.
∫
X×S

m
(
px, qG(x,s), x, s

)
dQ(x, s) ∈ C . (2)

In this case, the strategy of Eq. (1) achieves the following rates for L2 and almost-sure convergences:
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where K < +∞ denotes the maximal distance to C of an element of the compact set m(A,B,X ,S).

Proof of Theorem 1. Part I: Necessity. Assume that the condition in Eq. (2) is not satisfied, then

∃(qG(x,s)
0 )(x,s)∈X×S ∀(px)x∈X s.t.

∫
X×S

m(px, q
G(x,s)
0 , x, s) dQ(x, s) /∈ C .

Since C is closed and by continuity of the norm, there exists α > 0 such that

∀(px)x∈X min
v∈C

∥∥∥∥v − ∫
X×S

m(px, q
G(x,s)
0 , x, s) dQ(x, s)

∥∥∥∥ > α . (9)
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Let Nature play using this distribution (q
G(x,s)
0 )(x,s) at each stage t > 1 to draw bt. Given that the

sensitive attributes and contexts (xt, st) are drawn i.i.d., the conditional expectation of the reward of
the player at round t > 1 based on the history Ht−1 = (at′ , bt′ , xt′ , st′)t′6t−1 equals

E
[
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∣∣Ht−1

]
=
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m
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0 , x, s

)
dQ(x, s) .

Then, for any strategy of the player, it holds by martingale convergence (e.g., by the Hoeffding-Azuma
inequality and the Borel–Cantelli lemma, used for each component of m) that∥∥∥∥∥ 1
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By the triangle inequality for the Euclidean norm, Eqs. (9) and (10) entail that
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That is, Nature prevents the player from approaching C (and even: Nature approaches the complement
of the α-neighborhood of C).

Note that in this part we did not use that the target set C was convex, only that it was a closed set.

Part II: Sufficiency. Recall that we denoted by dt := ‖mt − ct‖2 the Euclidean distance of mt

to C. Observe that by definition of the projections ct+1 and ct and by expanding the square norm,
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Moreover, we have, by definition of (pxt+1)x∈X in Eq. (1) as the argmin of a maximum,
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Furthermore, the Cauchy-Schwarz inequality, followed by an application of the bound of Eq. (8),
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Hence, using twice this bound in Eq. (12) and introducing
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We recall that the Euclidean projection c of a vector n onto a closed convex set C ⊂ Rd satisfies:

∀c′ ∈ C, 〈n− c, c′ − c〉 6 0 .

Thus, thanks to von Neumann’s minmax theorem (for the equality) and the Blackwell’s condition in
Eq. (2) together with the above-recalled property of the projection,
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Hence, combining Eqs. (14) and (15) with Eq. (11), and bounding ‖mt+1−ct‖2 by K (by definition
of K), we have obtained so far

d2
t+1 6

(
t

t+ 1

)2
d2
t +

K

(t+ 1)2
+

2t

(t+ 1)2

(
Zt+1 + 4dt · TV(Q̂t,Q) · ‖m‖∞,2

)
. (16)

The 4dt · TV(Q̂t,Q) · ‖m‖∞,2 is the sole difference to the standard proof of approachability. We
deal with it by adapting the conclusions of the original proof.

Before we do so, we note that the Zt+1 introduced in Eq. (13) form a martingale difference sequence
with respect to the history Ht: indeed, mt and ct are Ht–measurable and so are the (pxt+1)x and the
(q
G(x,s)
t+1 )x,s; since in addition (xt+1, st+1) is drawn independently from everything according to Q

and at+1 and bt+1 are drawn independently at random according to pxtt+1 and qG(xt,st), we have
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so that E[Zt+1 |Ht] = 0.

Part II: Sufficiency—convergence in L2. In particular, taking expectations in Eq. (16) and applying
the tower rule (for the first inequality) and applying the Cauchy-Schwarz inequality (for the second
inequality), we have
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By (a consequence of) Assumption 1, the second term in the right-hand side converges to zero, and
we obtain convergence in L2.
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Part II: Sufficiency—almost-sure convergence. We define
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 ,
and note that (ST )T>1 is a non-negative super-martingale with respect to the filtration induced
by (HT )T>1; indeed, the recursion of Eq. (16) entails, together with

(
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We may thus use d2
T 6 ST and apply Doob’s maximal inequality for non-negative super-martingales

(Lemma 2):
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The proof is concluded by upper bounding E[ST ]. The tower rule, the Cauchy-Schwarz inequality,
and the bound t/(t+ 1)2 6 1/(t+ 1) 6 1/t yield
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We substitute the bound from Eq. (18), keeping in mind that the total variation distance is always
smaller than 1:
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Eq. (18) also implies, together with (a+ b)2 6 2a2 + 2b2, that E
[
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]
6 2K/T + 32‖m‖2∞,2(∆T )2.

All in all, we get the final bound
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A.1 Two lemmas used in the proof of Theorem 1

The following lemma is an ad-hoc and new, but elementary, tool to deal with the additional term
appearing in Eq. (17) compared to the original proof of approachability.
Lemma 1. Let t∗ > 0, and consider two non-negative sequences (dt)t>t∗ and (δt)t>t∗ fulfilling, for
t > t∗, the recursive inequality
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dt 6

√
K(t− t∗)

t
+

1

t

t−1∑
t′=t∗

δt′ +
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In particular, if (dt)t>1 and (δt)t>1 are two non-negative sequences fulfilling the recursive inequality
(19) for t > 1, and if d1 6

√
K, then, for all t > 1,

dt 6
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Proof. Second part of the lemma. Let us first check that the second part of the lemma follows from
the first part. Setting d0 = δ0 = 0, the sequences (dt)t>0 and (δt)t>0 fulfill Eq. (19) for t > t∗ = 0,
hence

dt 6

√
K

t
+

1

t

t−1∑
t′=0

δt′ =

√
K

t
+

1

t

t−1∑
t′=1

δt′ ,

where the equality in the right-hand side comes from δ0 = 0.

First part of the lemma. Set Ut = t dt and ∆∗t = δt∗ + . . .+ δt with the convention that ∆∗t = 0 for
all t < t∗. It is equivalent to prove that for all t > t∗ + 1, we have

Ut 6
√
K(t− t∗) + ∆∗t−1 + Ut∗ . (20)

We observe that Eq. (20) trivially holds for t = t∗. Assume that Eq. (20) holds for t > t∗. By
assumption, we have U2

t+1 6 U2
t + K + 2δtUt 6 (Ut + δt)

2 + K. Substituting Eq. (20) together
with the fact that Ut > 0 and δt > 0, we get

U2
t+1 6 (Ut + δt)

2 +K 6
(√

K(t− t∗) + ∆∗t + Ut∗
)2

+K

= K(t+ 1− t∗) + (∆∗t + Ut∗)
2 + 2

√
K(t− t∗) (∆t + Ut∗)

6
(√

K(t+ 1− t∗) + ∆∗t + Ut∗
)2
.

We have proved that Ut+1 6
√
K(t+ 1− t∗) + ∆∗t + Ut∗ , and we conclude by induction.

Two maximal inequalities for martingales are called Doob’s inequality. We use the less famous one,
for non-negative super-martingales.
Lemma 2 (One of Doob’s maximal inequalities). Let (Sn)n>1 be a non-negative super-martingale,
then

P
(

sup
m>n

Sm > η

)
6

E[Sn]

η
.
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B Proofs for Section 4

We first detail the two counter-examples alluded at in the proof of Proposition 1, relative to Example 2
on group-wise no-regret. We then discuss Example 3 on vanilla no-regret under the equalized average
payoffs constraint.

B.1 Counter-examples for group-wise no-regret

First counter-example. We take S = A = B = {0, 1} and let X be an arbitrary finite set. The
monitoring is assumed to be G(x, s) = x. Finally, we consider the specific payoff function

∀(a, b, x) ∈ A× B × X , r(a, b, x, 0) = a2 and r(a, b, x, 1) = (a− 1)2 .

The integral conditions in Eq. (4) read: for all a′ ∈ {0, 1},∫
X

∑
a∈{0,1}

px(a) a2 dQ0(x) > (a′)2 and
∫
X

∑
a∈{0,1}

px(a) (a− 1)2 dQ1(x) > (a′ − 1)2 ,

or equivalently, simply∫
supp(Q0)

px(1) dQ0(x) > 1 and
∫
supp(Q1)

px(0) dQ1(x) > 1 .

As px(1) ∈ [0, 1], the fact that the first integral above is larger than 1 entails that px(1) = 1 on
supp(Q0). Similarly, px(0) = 1 on supp(Q1). As we also have px(0) + px(1) = 1 for all x ∈ X ,
we see that the condition in Eq. (4) cannot hold as soon as supp(Q0) ∩ supp(Q1) 6= ∅.
Second counter-example. Again, we take S = A = B = {0, 1} and let X be an arbitrary finite
set but assume this time that Nature’s monitoring is G(x, s) = (x, s). Another difference is that we
consider a payoff function not depending on s:

∀(a, b, x, s) ∈ A× B × X × S, r(a, b, x, s) = I{a = b} = 1− (a− b)2 .

Nature picks the following difficult family of distributions: q(x,0) = (1, 0)> and q(x,1) = (0, 1)>

for all x ∈ X , so that q(x,s)(b) = 1 if and only if b = s. The integral conditions in Eq. (4) therefore
read: for all s ∈ {0, 1},

min
a′∈{0,1}

∫
X

∑
a∈{0,1}

px(a)
(
r(a, s, x, s)− r(a′, s, x, s)

)
dQs(x) =

∫
X

px(s) dQs(x)− 1 > 0 .

From here we conclude similarly to the previous counter-example.

B.2 Vanilla no-regret under the equalized average payoffs constraint

Blum et al. [4, Section 4] study online regret minimization under a constraint of equal average payoffs,
that is, they discuss the (mreg,meq-pay)–approachability of Creg×Ceq-pay, with the notation of Section 2.

Their setting is different from the setting considered in this article, as the latter relies on the no-regret
based on a fixed base payoff function r, while the former considers prediction with expert advice,
that may be assimilated to an adversarially chosen sequence (rt) of payoff functions.

Yet, we mimic the spirit of their results, which is two-fold.

First, we show an impossibility result for the simultaneous satisfaction of the vanilla no-regret
objective and the constraint of equal average payoffs, i.e., for the (mreg,meq-pay)–approachability of
Creg × Ceq-pay. We do so for an example of binary online classification. This corresponds to Theorem 4
of Blum et al. [4, Section 4].

Second, we provide a positive result for the mentioned approachability problem, in the case of a
Player aware of the sensitive contexts, i.e., following Remark 1, when the Player accesses the contexts
x′t = (xt, st). This corresponds to Theorem 3 of Blum et al. [4, Section 4].
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Before we do so, we first instantiate the approachability condition of Eq. (2) with the vector payoff
function m = (mreg,meq-pay) and the target set C = Creg × Ceq-pay; it reads: ∀(qG(x,s))(x,s) ∃(px)x
such that∫

X×{0,1}
r
(
px, qG(x,s), x, s

)
dQ(x, s) > max

a′∈A

∫
X×{0,1}

r
(
a′, qG(x,s), x, s

)
dQ(x, s) (21)

and
∣∣∣∣∫
X
r
(
px, qG(x,0), x, 0

)
dQ0(x)−

∫
X
r
(
(px, qG(x,1), x, 1

)
dQ1(x)

∣∣∣∣ 6 ε . (22)

Second, we also introduce some additional notation.

Additional notation and reminder on total variation distance. Recall that we denoted by Q0

and Q1 the two marginals of Q on X . We fix some measure µ which dominates both Q0 and Q1,
e.g., µ = Q0 + Q1, and denote by g0 and g1 densities of Q0 and Q1 with respect to µ. We introduce
the following three sets (defined up to µ–neglectable events):

X0 =
{
x ∈ X : g0(x) > g1(x)

}
,

X1 =
{
x ∈ X : g1(x) > g0(x)

}
,

X= =
{
x ∈ X : g1(x) = g0(x)

}
.

Using the above defined sets and densities, we remind that the total variation distance between Q0

and Q1 can be expressed in the following equivalent ways (see, e.g., Devroye [8] or Tsybakov [28,
Lemma 2.1]):

TV(Q0,Q1) =
1

2

∫
X

∣∣g0(x)− g1(x)
∣∣dµ(x)

=

∫
X1

(
g1(x)− g0(x)

)
dµ(x) =

∫
X0

(
g0(x)− g1(x)

)
dµ(x)

= 1−
∫
X

min
{
g0(x), g1(x)

}
dµ(x) .

We may now describe the impossibility example.

Impossibility example for online classification. Binary classification corresponds to the sets of
actions A = B = {0, 1} and to the payoff function r(a, b, x, s) = I{a = b}. In particular, for all
distributions q and q, for all contexts (x, s),

r(p, q, x, s) = p(0) q(0) + p(1) q(1) := 〈p, q〉 .
We focus our attention on the monitoring G(x, s) = x, which gives less freedom to Nature. Our
impossibility result holds in particular in the case of the more complete monitoring G(x, s) = (x, s).

We will have Nature pick distributions (qx)x∈X such that qx(0) > 1/2 for all x ∈ X ; the maximum
in the right-hand side of Eq. (21) is then achieved for a′ = 0. Because of this and with the notion
introduced, the regret criterion of Eq. (21) may be rewritten as∫

X×{0,1}

(〈
px, qx

〉
− qx(0)︸ ︷︷ ︸

60

)
dQ(x, s) > 0 .

The inequality
〈
px, qx

〉
− qx(0) 6 0 holds because qx(0) > qx(1) by the constraint qx(0) > 1/2;

this inequality is strict unless px(1) = 0. Therefore, the regret constraint imposes
〈
px, qx

〉
= qx(0)

and px(1) = 0 on the support of Q (which is the union of the supports of Q0 and Q1).

The constraint of equal average payoffs relies on the following difference, which we rewrite based on
the equality just proved:∫

X

〈
px, qx

〉
dQ0(x)−

∫
X

〈
px, qx

〉
dQ1(x) =

∫
X
qx(0) dQ0(x)−

∫
X
qx(0) dQ1(x) .

We let Nature pick the distributions (qx) defined by

qx(0) =

{
1 for x ∈ supp(Q0),

1/2 + ε for x ∈ supp(Q1).
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We also replace dQ0 and dQ1 by g0 dµ and g1 dµ, respectively. The difference in average payoffs
thus rewrites, given the various expressions of the total variation distance recalled above:∫

X
qx(0) dQ0(x)−

∫
X
qx(0) dQ1(x) =

∫
X
qx(0)

(
g0(x)− g1(x)

)
dµ(x)

=

∫
X0

(
g0(x)− g1(x)

)
dµ(x)︸ ︷︷ ︸

=TV(Q0,Q1)

+

(
1

2
+ ε

)∫
X1∪X=

(
g0(x)− g1(x)

)
dµ(x)︸ ︷︷ ︸

=−TV(Q0,Q1)

=

(
1

2
− ε
)

TV(Q0,Q1) .

All in all, the equal average payoffs constraint of Eq. (22), and thus, the approachability condition of
Eq. (2), hold if and only if

TV(Q0,Q1) 6
ε

1/2− ε
,

i.e., if the distributions Q0 and Q1 are close enough.

This is typically not the case, and having such a small distance between Q0 and Q1 should be
considered a degenerate case. The limit case TV(Q0,Q1) = 0 indeed corresponds to the case when
the sensitive attributes st are independent of the non-sensitive contexts xt.

Positive result for a Player aware of the st and a fair-in-isolation payoff function r. The posi-
tive result will be exhibited in the same spirit as the one of Theorem 3 of Blum et al. [4, Section 4].
This spirit is interesting but somewhat limited, as it relies on a (heavy) fair-in-isolation assumption.
The latter indeed indicates that for all sequences of contexts and observations, the average loss
achieved by a given expert is the same among sensitive groups. This “for all sequences” requirement
is particularly demanding. (A question not answered in Blum et al. [4] is the existence of experts
that are fair in isolation, for general reward functions rt or general loss functions `t, and metricsM,
using their notation.) See comments after Eq. (23) below for the adaptation of this assumption in our
context.

A second ingredient for the positive result is that the Player accesses the sensitive contexts st.
Following Remark 1, this translates into our setting by considering that the Player accesses the
contexts x′t = (xt, st); hence, the distributions picked by the Player will be indexed by (x, s) in this
example. Nature’s monitoring is G(x, s) = (x, s) as well.

Given (q(x,s)), to fulfill the no-regret condition∫
X×{0,1}

r
(
p(x,s), q(x,s), x, s

)
dQ(x, s) > max

a′∈A

∫
X×{0,1}

r
(
a′, q(x,s), x, s

)
dQ(x, s) ,

the Player may pick p(x,s) based only on s:

p(x,s) = dirac(as) , where as ∈ arg max
a∈A

∫
X
r
(
a, q(x,s), x, s

)
dQs(x) .

This corresponds to using separate no-regret algorithms in the construction of Theorem 3 of Blum
et al. [4], one algorithm per sensitive context. The no-regret algorithms based on approachability
used here actually have a regret converging to zero in the limit (they do not just approach the set of
non-negative numbers) and thus share the same “not worse but not better” property with respect to
the best action a as the one used in Theorem 3 of Blum et al. [4].

The constraint of equal average payoffs requires that the following difference is smaller than ε in
absolute values:∫

X
r
(
p(x,0), q(x,0), x, 0

)
dQ0(x)−

∫
X
r
(
p(x,1), q(x,1), x, 1

)
dQ1(x)

= max
a∈A

∫
X
r
(
a, q(x,0), x, 0

)
dQ0(x)−max

a∈A

∫
X
r
(
a, q(x,1), x, 1

)
dQ1(x) . (23)
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This constraint is automatically taken care of by the fair-in-isolation assumption: its analogue in our
context (keeping in mind that the actions a ∈ A play here the role of the experts in Blum et al. [4]) is
to require that for all distributions (q(x,s)) picked by the opponent,

∀a ∈ A,
∣∣∣∣∫
X
r
(
a, q(x,0), x, 0

)
dQ0(x)−

∫
X
r
(
a, q(x,1), x, 1

)
dQ1(x)

∣∣∣∣ 6 ε .

This basically corresponds to an assumption on the effective range of the payoff function r and is
therefore a heavy assumption, of limited interest.
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C Proofs for Section 5

We recalled various expressions of the total variation distance in Section B.2. We keep the notation
defined therein. The following inequality will be used repeatedly in our proofs.
Lemma 3. For all Borel-measurable functions f : X → [0, 1],∣∣∣∣∫

X
f dQ0 −

∫
X
f dQ1

∣∣∣∣ =

∣∣∣∣∫
X
f (g0 − g1) dµ

∣∣∣∣ 6 TV(Q0,Q1) .

Proof. The proof heavily relies on the fact that f takes values in [0, 1]. Since, by definitions of X0,
X1, and X=, ∫

X
f (g0 − g1) dµ =

∫
X0

f (g0 − g1︸ ︷︷ ︸
>0

) dµ+

∫
X1

f (g0 − g1︸ ︷︷ ︸
<0

) dµ ,

we have

−TV(Q0,Q1) = −
∫
X1

(g1 − g0) dµ 6
∫
X
f (g0 − g1) dµ 6

∫
X0

(g0 − g1) dµ = TV(Q0,Q1) ,

which concludes the proof.

An application of Lemma 3 is the bound TV(Q0,Q1) on the ψ( . . . ) quantity of Eq. (5). Indeed,

DP := ψ

(∫
X×{0,1}

mDP(p
x, s) dQ(x, s)

)

=

∣∣∣∣∣
∫
X

N∑
k=1

px(k) a(k) dQ0(x)−

∫
X

N∑
k=1

px(k) a(k) dQ1(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
X
A(px) dQ0(x)−

∫
X
A(px) dQ1(x)

∣∣∣∣∣ 6 TV(Q0,Q1) ,

where we introduced

A(px) :=

N∑
k=1

px(k) a(k) ∈ [0, 1] .

Before providing the proofs of Propositions 2 and 3 we introduce some additional short-hand notation.
We set

t∗ := TV(Q0,Q1) .

The objective function of the maxmin problem in (6), relative to group-wise calibration, is denoted
by and equals

GC :=

∥∥∥∥∫
X×S

mgr-cal

(
px, qG(x,s)

)
dQ(x, s)

∥∥∥∥
1

=

N∑
k=1

∣∣∣∣∫
X
px(k)

(
a(k) − qG(x,0)(1)

)
g0(x) dµ(x)

∣∣∣∣
+

N∑
k=1

∣∣∣∣∫
X
px(k)

(
a(k) − qG(x,1)(1)

)
g1(x) dµ(x)

∣∣∣∣ .
The problem of Eq. (6) can now be written as

ε?(δτ ) = max
(qG(x,s))

min
(px)

{GC : DP 6 τt∗} . (24)

The proof technique for each of Propositions 2 and 3 consists of two steps. First, by setting some
convenient family (qG(x,s))(x,s), we obtain a lower bound on ε?(δτ ). Second, by exhibiting some
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convenient family (px)x, possibly based on the knowledge of (qG(x,s))(x,s), an upper bound on
ε?(δτ ) is derived.

The definitions of these families will be based on a rounding operator p ∈ [0, 1] 7→ ΠA ∈ A, that
maps a number p ∈ [0, 1] to the closest element in the grid A. Note that by definition of A and
ΠA, it holds that |p−ΠA(p)| 6 1/(2N) for all p ∈ [0, 1]. We are finally in the position of proving
Propositions 2 and 3, and start with the former.

Proof of Proposition 2. Fix some τ ∈ [0, 1]. Recall that G(x, s) = (x, s), so that families of
distributions picked by Nature are “truly” indexed by (x, s).

For the lower bound on ε?(δτ ), we consider, for all x ∈ X ,

q(x,0) = dirac(1) and q(x,0) = dirac(0) .

Then, for all choices (px)x, using that
N∑
k=1

px(k) = 1 for each x ∈ X :

GC =

N∑
k=1

∣∣∣∣∫
X
px(k)

(
a(k) − 1

)
g0(x) dµ(x)

∣∣∣∣+

N∑
k=1

∣∣∣∣∫
X
px(k) a(k) g1(x) dµ(x)

∣∣∣∣
=

N∑
k=1

∫
X
px(k)

(
1− a(k)

)
g0(x) dµ(x) +

N∑
k=1

∫
X
px(k) a(k) g1(x) dµ(x)

=

∫
X
g0(x) dµ(x)︸ ︷︷ ︸

=1

+

∫
X
A(px)

(
g1(x)− g0(x)

)
dµ(x)︸ ︷︷ ︸

absolute value equals DP

> 1− DP ,

so that the rewriting of Eq. (24) entails ε?(δτ ) > 1− τt∗, as claimed.

To derive an upper bound on ε?(δτ ), we consider, for each (q(x,s))(x,s)∈X×S and each x ∈ X ,

pτ,x = (1− τ) · dirac
(
ΠA(1/2)

)
+ τ · dirac

(
f(x)

)
,

where f(x) =

{
ΠA
(
q(x,1))(1)

)
if x ∈ X1 ∪ X= ;

ΠA
(
q(x,0))(1)

)
if x ∈ X0 .

(25)

Note that for this strategy of the Player, DP 6 τt∗; indeed, A(pτ,x) = (1− τ) ·ΠA(1/2) + τ · f(x),
so that

DP =

∣∣∣∣∣
∫
X
A(pτ,x) dQ0(x)−

∫
X
A(pτ,x) dQ1(x)

∣∣∣∣∣ = τ ·

∣∣∣∣∣
∫
X
f(x) dQ0(x)−

∫
X
f(x) dQ1(x)

∣∣∣∣∣
6 τ · TV(Q0,Q1) ,

where we applied Lemma 3 for the final inequality. Moreover, the choice of Eq. (25) ensures that
GC 6 1− τt∗ + 1/N , as we will prove below. This will lead to ε?(δτ ) 6 1− τt∗ + 1/N and will
conclude the proof. Indeed,

GC =

N∑
k=1

∣∣∣∣∫
X
pτ,x(k)

(
a(k) − q(x,0)(1)

)
g0(x) dµ(x)

∣∣∣∣
+

N∑
k=1

∣∣∣∣∫
X
pτ,x(k)

(
a(k) − q(x,1)(1)

)
g1(x) dµ(x)

∣∣∣∣
= (1− τ)

∣∣∣∣∫
X

(
ΠA(1/2)− q(x,0)(1)

)
g0(x) dµ(x)

∣∣∣∣
+ (1− τ)

∣∣∣∣∫
X

(
ΠA(1/2)− q(x,1)(1)

)
g1(x) dµ(x)

∣∣∣∣
+ τ

∣∣∣∣∫
X

(
f(x)− q(x,0)(1)

)
g0(x) dµ(x)

∣∣∣∣+ τ

∣∣∣∣∫
X

(
f(x)− q(x,1)(1)

)
g1(x) dµ(x)

∣∣∣∣ .
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We replace f(x) by its specific values and take care of all rounding operators ΠA by adding a
2× 1/(2N) = 1/N term after application of triangle inequalities:

GC 6
1

N
+ (1− τ)

∣∣∣∣∫
X

( ∈[−1/2, 1/2]︷ ︸︸ ︷
1/2− q(x,0)(1)

)
g0(x) dµ(x)

∣∣∣∣+ (1− τ)

∣∣∣∣∫
X

( ∈[−1/2, 1/2]︷ ︸︸ ︷
1/2− q(x,1)(1)

)
g1(x) dµ(x)

∣∣∣∣
+ τ

∣∣∣∣∫
X1∪X=

( ∈[−1,1]︷ ︸︸ ︷
q(x,1)(1)− q(x,0)(1)

)
g0(x) dµ(x)

∣∣∣∣+ τ

∣∣∣∣∫
X0

( ∈[−1,1]︷ ︸︸ ︷
q(x,0)(1)− q(x,1)(1)

)
g1(x) dµ(x)

∣∣∣∣
6

1

N
+

1− τ
2

+
1− τ

2
+ τ

∫
X1∪X=

g0(x) dµ(x) + τ

∫
X0

g1(x) dµ(x)

= 1− τ + τ

∫
X

min
{
g0(x), g1(x)

}
dµ(x)︸ ︷︷ ︸

=1−t∗

+
1

N
= 1− τt∗ +

1

N
,

where we used one of the expressions of t∗ = TV(Q0,Q1) in the last equality.

Proof of Proposition 3. Fix some τ ∈ [0, 1]. Recall thatG(x, s) = x, so that families of distributions
picked by Nature are only indexed by x and may not depend on s.

For the lower bound on ε?(δτ ), we consider (qx)x∈X defined as

qx =

{
dirac(1) if x ∈ X1 ∪ X= ;

dirac(0) if x ∈ X0 .

Then, for all choices (px)x, using the notationA(px) and the fact that
N∑
k=1

px(k) = 1 for each x ∈ X :

GC =

N∑
k=1

∣∣∣∣∫
X
px(k)

(
a(k) − qx(1)

)
g0(x) dµ(x)

∣∣∣∣+

N∑
k=1

∣∣∣∣∫
X
px(k)

(
a(k) − qx(1)

)
g1(x) dµ(x)

∣∣∣∣
=

N∑
k=1

∣∣∣∣∫
X1∪X=

px(k)
(
a(k) − 1

)
g0(x) dµ(x) +

∫
X0

px(k) a(k) g0(x) dµ(x)

∣∣∣∣
+

N∑
k=1

∣∣∣∣∫
X1∪X=

px(k)
(
a(k) − 1

)
g1(x) dµ(x) +

∫
X0

px(k) a(k) g1(x) dµ(x)

∣∣∣∣
>

∣∣∣∣∫
X1∪X=

(
A(px)− 1

)
g0(x) dµ(x) +

∫
X0

A(px) g0(x) dµ(x)

∣∣∣∣
+

∣∣∣∣∫
X1∪X=

(
A(px)− 1

)
g1(x) dµ(x) +

∫
X0

A(px) g1(x) dµ(x)

∣∣∣∣
=

∣∣∣∣∫
X
A(px) g0(x) dµ(x)−

∫
X1∪X=

g0(x) dµ(x)

∣∣∣∣
+

∣∣∣∣∫
X
A(px) g1(x) dµ(x)−

∫
X1∪X=

g1(x) dµ(x)

∣∣∣∣ ,
>

∣∣∣∣∣
∫
X1∪X=

(
g1(x)− g0(x)

)
dµ(x)︸ ︷︷ ︸

=t∗

−
∫
X1∪X=

A(px)
(
g1(x)− g0(x)

)
dµ(x)︸ ︷︷ ︸

absolute value equals DP

∣∣∣∣∣ > t∗ − DP .

where all the inequalities follows from the triangle inequality. Eq. (24) entails ε?(δτ ) > (1− τ)t∗,
as claimed.
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To derive an upper bound on ε?(δτ ), we consider, for each (qx)x∈X and each x ∈ X ,

pτ,x = (1− τ) · dirac
(
ΠA(Q)

)
+ τ · dirac

(
ΠA
(
qx(1)

))
where Q =

∫
X
qu(1) g0(u) dµ(u) . (26)

Note that for this strategy of the Player, DP 6 τt∗; indeed,A(pτ,x) = (1−τ)·ΠA(Q)+τ ·ΠA
(
qx(1)

)
,

so that

DP =

∣∣∣∣∣
∫
X
A(pτ,x) dQ0(x)−

∫
X
A(pτ,x) dQ1(x)

∣∣∣∣∣
= τ ·

∣∣∣∣∣
∫
X

ΠA
(
qx(1)

)
dQ0(x)−

∫
X

ΠA
(
qx(1)

)
dQ1(x)

∣∣∣∣∣ 6 τ · TV(Q0,Q1) ,

where we applied Lemma 3 for the final inequality. Moreover, the choice of Eq. (26) ensures that
GC 6 (1 − τ)t∗ + 1/N , as we will prove below. This will lead to ε?(δτ ) 6 (1 − τ)t∗ + 1/N and
will conclude the proof. Indeed,

GC =

N∑
k=1

∣∣∣∣∫
X
pτ,x(k)

(
a(k) − qx(1)

)
g0(x) dµ(x)

∣∣∣∣+

N∑
k=1

∣∣∣∣∫
X
pτ,x(k)

(
a(k) − qx(1)

)
g1(x) dµ(x)

∣∣∣∣
= (1− τ)

∣∣∣∣∫
X

(
ΠA(Q)− qx(1)

)
g0(x) dµ(x)

∣∣∣∣+ (1− τ)

∣∣∣∣∫
X

(
ΠA(Q)− qx(1)

)
g1(x) dµ(x)

∣∣∣∣
+ τ

∣∣∣∣∫
X

(
ΠA
(
qx(1)

)
− qx(1)︸ ︷︷ ︸

61/(2N)

)
g0(x) dµ(x)

∣∣∣∣+ τ

∣∣∣∣∫
X

(
ΠA
(
qx(1)

)
− qx(1)︸ ︷︷ ︸

61/(2N)

)
g1(x) dµ(x)

∣∣∣∣ .
Taking into account the rounding errors, i.e., replacing the two occurrences of ΠA(Q) byQ by adding
twice a (1− τ)/(2N) term, we get

GC 6 (1− τ)

∣∣∣∣∫
X

(
Q− qx(1)

)
g0(x) dµ(x)

∣∣∣∣+ (1− τ)

∣∣∣∣∫
X

(
Q− qx(1)

)
g1(x) dµ(x)

∣∣∣∣+
1

N

= (1− τ)

∣∣∣∣Q− ∫
X
qx(1) g0(x) dµ(x)︸ ︷︷ ︸

=0

∣∣∣∣+ (1− τ)

∣∣∣∣Q− ∫
X
qx(1) g1(x) dµ(x)

∣∣∣∣+
1

N

= (1− τ)

∣∣∣∣∫
X
qx(1) g0(x) dµ(x)−

∫
X
qx(1) g1(x) dµ(x)

∣∣∣∣+
1

N
6 (1− τ)t∗ + 1/N ,

where the last equality holds by definition of Q as an integral and we applied Lemma 3 for the final
inequality.
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D Proofs for Section 6

In this section, we go over the results alluded at in Section 6. We first illustrate that Assumption 3
(which indicates that the target set C should be estimated in some way) is realistic. We do so in
Section D.1 by dealing with the most involved situation discussed in this article, namely, the example
discussed at the beginning of Section 6. We then provide in Section D.2 a more complete statement
of Theorem 2, with convergence rates, and prove it.

D.1 Assumption 3 is realistic

The beginning of Section 6 explained why and how performing an optimal trade-off between
accuracy in group-calibration and unfairness in terms of demographic parity amounts to studying
the (m̃gr-cal, m̃DP)–approachability of C = C̃εgr-cal× C̃δDP, where (m̃gr-cal, m̃DP) is a known vector payoff
function and where C := C̃εgr-cal × C̃δDP is unknown:

C̃εgr-cal =
{

(v0,v1) ∈ R2N : ‖v0‖1
γ0

+‖v1‖1
γ1

6 ε
}
, C̃δDP =

{
(u, v) ∈ R2 :

∣∣ u
γ0
− v

γ1

∣∣ 6 δ
}
,

with ε = (1− τ) ·TV(Q0,Q1) and δ = τ ·TV(Q0,Q1) for some known τ ∈ [0, 1] but an unknown
TV(Q0,Q1), and with unknown probabilities γ0, γ1. The parameter τ controls the desired trade-off
between the calibration error and the discrepancy in demographic parity and thus is left as a parameter
of user’s choice.

We recall that the strategy of the Player proceeds in phases: at each time Tr := 2r for r > 1, the
Player updates the estimate Ĉr of C. The focus of this section is to provide a sequence of estimates Ĉr
of C fulfilling Assumption 3. The latter is a key requirement for the existence of an approachability
strategy stated in Theorem 2. We must therefore prove that it is a realistic assumption.

The four requirements of Assumption 3. For the convenience of the reader, we restate the various
requirements of Assumption 3, giving them nicknames, to be able to refer to them easily in the sequel:
for all r > 0, the sets Ĉr

(CC) are convex closed;
(Proj-dist) satisfy ‖v − ProjĈr (v)‖ 6 B, for all v ∈m(A,B,X , {0, 1});
(Super-set) satisfy P

(
C ⊂ Ĉr

)
> 1− 1/(2Tr);

(L2-Hausdorff) satisfy max
{
E
[
d(Ĉr, C)2

]
, E
[
d(C, Ĉr)2

]}
6 β2

r .

The constantB < +∞ is independent of r and the sequence (βr)r>0 is summable and non-increasing.
The vector payoff function m above refers to (m̃gr-cal, m̃DP).

(Proj-dist) requires that the distance of a possible vector payoff to sets Ĉr are uniformly controlled.
(Super-set) requires that the Ĉr are, with high probability, super-sets of C. Finally, (L2-Hausdorff)
requires that some L2 criterion of Hausdorff distance between sets is controlled. We will go over
each of these requirements but first deepen our reduction scheme.

In the sequel, and as in the main body of the paper, we focus on the case where γ0 > 0 and γ1 > 0,
i.e., there are two effective values for the sensitive contexts.

But first, a further reduction. Recall that the average vector payoff, described in Section 6, is
equal to

1

T

T∑
t=1

(
m̃gr-cal(at, bt, xt, st), m̃DP(at, bt, xt, st)

)
,

where the first 2N components always lie in the interval [−1, 1], while the last two ones lie in the
interval [0, 1]. Therefore, in the definition of C̃δDP, we may restrict our attention to (u, v) ∈ [0, 1]2 and
use rather the alternative definition

C̃δDP :=
{

(u, v) ∈ [0, 1]2 :
∣∣ u
γ0
− v

γ1

∣∣ 6 δ
}

=
{

(u, v) ∈ [0, 1]2 : |γ1u− γ0v| 6 γ0γ1δ
}
.
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As for C̃εgr-cal, given we are studying a calibration problem, we note that the ε of interest lie in [0, 1]

(with 0 included). Vectors (v0,v1) of C̃εgr-cal satisfy in particular that ‖v0‖1 +‖v1‖1 6 ε, which shows
that C̃εgr-cal ⊆ B

`1
R2N , where B`1R2N =

{
v ∈ R2N : ‖v‖1 6 1

}
is the unit `1 ball in R2N . Therefore,

C̃εgr-cal =
{

(v0,v1) ∈ B`1R2N : ‖v0‖1
γ0

+‖v1‖1
γ1

6 ε
}

=
{

(v0,v1) ∈ B`1R2N : γ1‖v0‖1 + γ0‖v1‖1 6 γ0γ1ε
}
.

Plug-in estimation of C. We consider estimators γ̂0,t, γ̂1,t ∈ [0, 1] of γ0, γ1 and an estimator
M̂t ∈ [0, 1] of TV(Q0,Q1), based on the first t i.i.d. samples from Q, see the end of the section for
examples. We substitute them in the definitions of the target sets. We actually perform a careful such
substitution by considering possibly data-dependent parameters α1(t) ∈ (0, 1] and α2(t) ∈ (0, 1], to
be specified by the analysis, that will provide the needed upper confidence bounds (i.e., super-set
condition). More precisely, we define estimators of C̃εgr-cal and C̃δDP by

Ĉεgr-cal(t) =
{

(v0,v1) ∈ B`1R2N : γ̂1,t‖v0‖1+γ̂0,t‖v1‖1 6 γ̂0,tγ̂1,tε̂t + α1(t) + 4α2(t)
}
,

ĈδDP(t) =
{

(u, v) ∈ [0, 1] :
∣∣γ̂1,tu− γ̂0,tv

∣∣ 6 γ̂0,tγ̂1,tδ̂t + α1(t) + 4α2(t)
}
,

where ε̂t = (1− τ)M̂t and δ̂t = τM̂t. We then set Ĉr := Ĉεgr-cal(Tr)× ĈδDP(Tr).

Requirements (CC) and (Proj-dist) hold. We observe that both Ĉεgr-cal(t) and ĈδDP(t) are convex,
closed, and bounded. The boundedness of these sets and the fact that m = (m̃gr-cal, m̃DP) is bounded
as well ensure the (Proj-dist) property.

Choice of α1(Tr) and α2(Tr), part 1. We introduce the following sets, indicating that some
confidence bounds around the introduced estimators hold, of widths smaller than the introduced
parameters α1(Tr) and α2(Tr). These sets need only to be considered at times Tr, where r > 1:

Ωα1,α2

Tr
:=
{∣∣∣M̂Tr − TV(Q0,Q1)

∣∣∣ 6 α1(Tr) and ∀s ∈ {0, 1}, |γ̂s,Tr − γs| 6 α2(Tr)
}
.

We assume in the sequel that we could pick all α1(Tr) and α2(Tr) such that for all r > 1,

P
(
Ωα1,α2

Tr

)
> 1− 1

2Tr
, (27)

and explain, in the final part of this section, how this can be ensured.

Requirement (Super-set) holds. It follows from the assumption above on the probability of Ωα1,α2

Tr
and from the following lemma.

Lemma 4. On the event Ωα1,α2

Tr
defined above, it holds that C̃εgr-cal ⊆ Ĉεgr-cal(Tr) and C̃δDP ⊆ ĈδDP(Tr),

thus

C =
(
C̃εgr-cal × C̃δDP

)
⊆ Ĉr =

(
Ĉεgr-cal(Tr)× ĈδDP(Tr)

)
.

Proof. For brevity, we drop the dependencies in Tr in the notation.

Part I: C̃εgr-cal ⊂ Ĉεgr-cal. We fix some (v0,v1) ∈ C̃εgr-cal. By assumption,

γ1‖v0‖1 + γ0‖v1‖1 6 (1− τ) γ0γ1 · TV(Q0,Q1) . (28)

Furthermore, since ‖v0‖1 + ‖v1‖1 6 1, it holds on Ωα1,α2 that

γ1‖v0‖1 + γ0‖v1‖1 > γ̂1‖v0‖1 + γ̂0‖v1‖1 − 2α2 ,

γ0γ1 · TV(Q0,Q1) 6 γ̂0γ1 · TV(Q0,Q1) + α2 6 . . . 6 γ̂0γ̂1 · M̂ + α1 + 2α2 .
(29)

Thus, in view of Eq. (28) and the definition of Ĉεgr-cal, it holds that (v0,v1) ∈ Ĉεgr-cal.
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Part II: C̃δDP ⊂ ĈδDP. We fix some (u, v) ∈ C̃δDP. By assumption, u, v ∈ [0, 1] and

|γ1u− γ0v| 6 τ γ0γ1 · TV(Q0,Q1) . (30)

Furthermore, on Ωα1,α2 ,

|γ1u− γ0v| = |γ̂1u− γ̂0v + (γ1 − γ̂1)u− (γ0 − γ̂0)v| > |γ̂1u− γ̂0v| − 2α2 .

In view of Eq. (30) and the second bound of Eq. (29), we conclude that (u, v) ∈ ĈδDP on Ωα1,α2 .

Requirement (L2-Hausdorff) holds. We bound separately the two expectations appearing in
(L2-Hausdorff). As in the proof above, we omit the dependencies in Tr in the notation.

Part I: bound on E
[
d(C, Ĉr)2

]
. By definition of d, given that we are dealing with Euclidean projec-

tions onto a product set and are bounding square Euclidean distances, we have the decomposition:

E
[
d(C, Ĉr)2

]
= E

[
sup
x∈C

d(x, Ĉr)2

]
= E

[
sup

x∈C̃εgr-cal×C̃
δ
DP

d(x, Ĉεgr-cal × ĈδDP)
2

]

= E

[
sup

v∈C̃εgr-cal

d(v, Ĉεgr-cal)
2

]
+ E

[
sup

(u,v)∈C̃δDP

d
(
(u, v), ĈδDP

)2]
.

(31)

We start with the first term in the right-hand side of (31). As Ĉεgr-cal always contains the null vector and
C̃εgr-cal ⊆ B

`1
R2N ,

sup
v∈C̃εgr-cal

d(v, Ĉεgr-cal)
2 6 sup

v∈C̃εgr-cal

‖v‖2 6 sup
v∈C̃εgr-cal

‖v‖1 6 1 . (32)

In addition, Lemma 4 ensures that on Ωα1,α2 we have C̃εgr-cal ⊂ Ĉεgr-cal, and hence d(C̃εgr-cal, Ĉεgr-cal) = 0,
on Ωα1,α2 . Thus, we can write

E

 sup
v∈C̃εgr-cal

d(v, Ĉεgr-cal)
2

 = E

(I{Ωα1,α2}+ (1− I{Ωα1,α2})
)

sup
v∈C̃εgr-cal

d(v, Ĉεgr-cal)
2


6 0 + 1− P(Ωα1,α2) 6

1

2Tr
,

where the inequality comes from the assumption made in Eq. (27) combined with Eq. (32).

A bound 1/Tr on the second term of Eq. (31) follows similarly, using that

sup
(u,v)∈C̃δDP

d
(
(u, v), ĈδDP

)2
6 sup

(u,v)∈C̃δDP

u2 + v2 6 2 .

Hence, E
[
d(C, Ĉr)2

]
6 3/(2Tr).

Part II: bound on E
[
d(Ĉr, C)2

]
. We start in a similar manner:

E
[
d(Ĉr, C)2

]
= E

[
sup
x∈Ĉr

d(x, C)2

]
= E

[
sup

x∈Ĉεgr-cal×Ĉ
δ
DP

d(x, C̃εgr-cal × C̃δDP)
2

]

= E

[
sup

v∈Ĉεgr-cal

d(v, C̃εgr-cal)
2

︸ ︷︷ ︸
61 a.s.

]
+ E

[
sup

(u,v)∈ĈδDP

d
(
(u, v), C̃δDP

)2
︸ ︷︷ ︸

62 a.s.

]
.

(33)
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As in Part I, we start with the first term in the right-side of (33) and we split the expectation into two
parts

E

[
sup

v∈Ĉεgr-cal

d(v, C̃εgr-cal)
2

]
6 E

[
I{Ωα1,α2} sup

v∈Ĉεgr-cal

d(v, C̃εgr-cal)
2

]
+

1

2Tr
. (34)

Let us upper-bound the right-hand side expectation. We introduce some local short-hand notation.
Given two real numbers a, b, we denote by a ∨ b and a ∧ b the maximum and minimum between a
and b, respectively. We set α := α1 ∨ α2 and now show that

on Ωα1,α2 , sup
v∈Ĉεgr-cal

d(v, C̃εgr-cal)
2 6 α2/3

(
81

(γ0γ1)2
∨ 10

γ0 ∧ γ1

)
. (35)

We fix some v = (v0,v1) ∈ Ĉεgr-cal and set v′ = (v′0,v
′
1) := λv with

λ := 1 ∧

((
γ0γ1ε

γ0γ1ε+ 8α

)(
γ̂1

γ1
∧ γ̂0

γ0

))
.

The fact that v ∈ Ĉεgr-cal entails that on Ωα1,α2 ,

γ̂1‖v0‖1+γ̂0‖v1‖1 6 γ̂0γ̂1ε̂+5α 6
(
(γ0 +α)∧1

)(
(γ1 +α)∧1)

(
(ε+α)∧1

)
+5α 6 γ0γ1ε+8α .

(36)
Here, and in what follows, we repeatedly use that γ0, γ1, ε and their estimates all lie in [0, 1].
Furthermore, for the above-defined v′, we can write on Ωα1,α2 , by definition of λ,

γ1‖v′0‖1 + γ0‖v′1‖1 6 λ

(
γ1

γ̂1
∨ γ0

γ̂0

)
(γ̂1‖v0‖1 + γ̂0‖v1‖1)︸ ︷︷ ︸

6γ0γ1ε+8α

6 γ0γ1ε ,

implying that v′ ∈ C̃εgr-cal. Thus, d(v, C̃εgr-cal) 6 ‖v − v′‖ = (1− λ)‖v‖ on Ωα1,α2 . Since ‖v‖1 6 1,
we have ‖v‖ 6

√
‖v‖1 6 1. All in all, we obtained the following upper bound on Ωα1,α2 :

d(v, C̃εgr-cal)
2 6 ‖v − v′‖2 6 (1− λ)2 ∧ ‖v‖1 .

We now bound separately each term to obtain the bound (35). First, on Ωα1,α2 , we have

1 > λ >

(
γ0γ1ε

γ0γ1ε+ 8α

)(
γ1 − α
γ1

∧ γ0 − α
γ0

)
>
γ0γ1ε− αε(γ0 ∨ γ1)

γ0γ1ε+ 8α
> 1− 9α

γ0γ1ε+ 8α
> 1− 9α

γ0γ1ε
,

and thus,

(1− λ)2 6
81α2

(γ0γ1ε)2
.

Second, for ‖v‖1, we start from (36) and write(
γ1 ∧ γ0 − α

)
‖v‖1 6

(
γ̂1 ∧ γ̂0

)
‖v‖1 6 γ̂1‖v0‖1+γ̂0‖v1‖1 6 γ0γ1ε+ 8α ,

from which we get (γ1 ∧ γ0)‖v‖1 6 γ0γ1ε+ 9α, which in turn yields

‖v‖1 6 ε+
9α

γ0 ∧ γ1
.

The bound (1 − λ)2 is convenient to use when ε > α2/3, while the bound on ‖v‖1 will be used
when ε 6 α2/3. When combining them by distinguishing these two cases, the ∧ symbol needs to be
replaced by a ∨ symbol, so, on Ωα1,α2

d(v, C̃εgr-cal)
2 6 (1− λ)2 ∧ ‖v‖1 6

81α2

(γ0γ1ε)2
∧
(
ε+

9α

γ0 ∧ γ1

)
6

81α2/3

(γ0γ1)2
∨
(
α2/3 +

9α

γ0 ∧ γ1

)
,
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which entails the claimed bound (35), via α 6 α2/3 6 1. From (34) and (35), we get

E

[
sup

v∈Ĉεgr-cal

d(v, C̃εgr-cal)
2

]
6

1

2Tr
+ Cgr-cal

γ0,γ1E[α2/3] ,

for some constant Cgr-cal
γ0,γ1 only depending on γ0 and γ1.

The second term of the decomposition (33) of E
[
d(Ĉr, C)2

]
can be handled similarly, leading to the

existence of a constant Cγ0,γ1 , only depending on γ0 and γ1, such that

E
[
d(Ĉr, C)2

]
6

3

2Tr
+ Cγ0,γ1E[α2/3] ,

where the expectation in the right-hand side is due to the fact that α1, α2 might be data-dependent.

Combining Part I and Part II. The bound of Part II contains an additional term compared to the one
of Part I. We have thus have proved so far (writing again the dependencies on Tr):

max
{
E
[
d(Ĉr, C)2

]
, E
[
d(C, Ĉr)2

]}
6

3

2Tr
+ Cγ0,γ1E[α(Tr)

2/3] . (37)

To get the desired property (L2-Hausdorff), we only need to make sure that the right hand side of (37)
can be upper bounded by β2

r where (βr) is non-increasing and summable. Recall that our proof also
relied on the assumption (27). We now illustrate that indeed, α1(Tr) 6 1 and α2(Tr) 6 1 may be set
in a way such that all these facts hold. For the sake of simplicity, we provide the illustration for the
case of finite set X .

Choice of α1(Tr) and α2(Tr), part 2: illustration for finite sets X . Based on the T–sample
(xt, st)16t6T with distribution Q, we denote by

Ns,T =

T∑
t=1

I{st = s}

the number of occurrences of the value s ∈ {0, 1} of the sensitive context, and consider the empirical
frequencies γ̂0,T = N0,T /T and γ̂1,T = N1,T /T to estimate the frequencies γ0 and γ1 of the
sensitive contexts.

The choice of M̂T , and hence, the one of α1(T ), depend heavily on the possibly additional assump-
tions on the marginal distributions Q0 and Q1. We illustrate such a choice for the case where X is a
finite set. In that case, we may consider the empirical distributions Q̂0

T and Q̂1
T for these marginals:

for each s ∈ {0, 1}, Q̂s
T is some arbitrary distribution over X (say, the uniform distribution) when

Ns,T = 0, and otherwise, for each x ∈ X ,

Q̂s
T (x) =

1

Ns,T

T∑
t=1

I{xt = x, st = s} .

Then, we consider the plug-in estimate M̂T := TV(Q̂0
T , Q̂

1
T ) of TV(Q0,Q1).

Proof of (27), part I. We set

α2(T ) = 1 ∧
√

log(8T )

2T
and note that by Hoeffding’s inequality (and the fact that we only have two classes and that probabili-
ties sum up to 1), for those T for which α2(T ) < 1,

P
(
∀s ∈ {0, 1}, |γ̂s,T − γs| > α2(T )

)
= P

(
|γ̂0,T − γ0| > α2(T )

)
6 2 exp

(
−2T α2(T )2

)
=

1

4T
. (38)

For T such that α2(T ) = 1, the probability above is null, as |γ̂s,T − γs| 6 1 a.s., and therefore, the
final 1/(4T ) bound holds in particular.
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Proof of (27), part II. We set θ(0) = 1 and θ(n) :=

√
|X |+ log(8T )

2n
for n > 1, and define

α1(T ) := 1 ∧
(
θ(N0,T ) + θ(N1,T )

)
.

We now prove that

P
(∣∣M̂T − TV(Q0,Q1)

∣∣ > α1(T )
)
6

1

4T
. (39)

The property (27) then follows from the bounds (38) and (39) at T = Tr.

Using that |M̂T − TV(Q0,Q1)| 6 1 a.s. (for the first inequality in the display below) and the
triangle inequality ∣∣M̂T − TV(Q0,Q1)

∣∣ 6 TV(Q0, Q̂0
T ) + TV(Q1, Q̂1

T )

(for the second inequality in the display below), we have

P
(∣∣M̂T − TV(Q0,Q1)

∣∣ > α1(T )
)

= P
(∣∣M̂T − TV(Q0,Q1)

∣∣ > θ(N0,T ) + θ(N1,T )
)

6 P
(

TV(Q0, Q̂0
T ) + TV(Q1, Q̂1

T ) > θ(N0,T ) + θ(N1,T )
)

6
∑

s∈{0,1}

P
(

TV(Qs, Q̂s
T ) > θ(Ns,T )

)
.

(40)
The conclusion (39) follows from showing that for each s ∈ {0, 1},

P
(

TV(Qs, Q̂s
T ) > θ(Ns,T )

)
6

1

8T
.

A useful auxiliary result to that end is the following. Denote by P̂n the empirical frequencies of
some probability distribution P on X based on a sample of deterministic size n > 1. Hoeffding’s
inequality and a union bound over the 6 2|X | subsets of X ensure that for all θ > 0,

P
(
TV(P, P̂n) > θ

)
= P

(
max
A⊂X

(
P(A)− P̂n(A)

)
> θ
)
6 2|X | exp(−2nθ2) . (41)

In our case, note however that the estimators Q̂s
T at time T are built on a random number Ns,T of

samples. We therefore decompose the probability of interest according to the values of Ns,T : for
each s ∈ {0, 1},

P
(

TV(Qs, Q̂s
T ) > θ(Ns,T )

)
=

T∑
n=0

P
(
Ns,T = n and TV(Qs, Q̂s

T ) > θ(n)
)

=

T∑
n=1

P
(
Ns,T = n and TV(Qs, Q̂s

T ) > θ(n)
)

=

T∑
n=1

P(Ns,T = n) P
(

TV(Qs, Q̂s,n) > θ(n)
)
,

where the second equality follows from the choice θ(0) = 1 and the fact that a total variation is
always smaller than 1, and where the third equality follows by conditional independence with Q̂s,n

denoting the empirical distribution based on a Qs–sample of size n. Substituting the bound (41) and
the definition of the θ(n), we get

P
(

TV(Qs, Q̂s
T ) > θ(Ns,T )

)
6 2|X |

T∑
n=1

P(Ns,T = n) exp
(
−2nθ(n)2

)
= 2|X |

T∑
n=1

P(Ns,T = n) exp
(
−|X | − log(8T )

)
6 (2/e)|X |︸ ︷︷ ︸

61

1

8T

T∑
n=1

P(Ns,T = n)︸ ︷︷ ︸
61

6
1

8T
,
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which is exactly what remained to be proven.

Control of the right-hand side of (37). It involves E
[
α(Tr)

2/3
]
, where

α(Tr) = α1(Tr) ∨ α2(Tr) = α1(Tr) = 1 ∧

(√
|X |+ log(8T )

2N0,T
+

√
|X |+ log(8T )

2N1,T

)

6
∑

s∈{0,1}

1 ∧

√
|X |+ log(8T )

2Ns,T
.

Now, note that Ns,T follows the binomial distribution with parameters γs and T . Thus, for each
s ∈ {0, 1},

E

[(
|X |+ log(8T )

2Ns,T

)1/3

∧ 1

]
6 P(Ns,T 6 Tγs/2) +

(
|X |+ log(8T )

γsT

)1/3

6 exp
(
−γ2

sT/2
)

+

(
|X |+ log(8T )

γsT

)1/3

,

where we applied Hoeffding’s inequality to get the last bound. Therefore, recalling that Tr = 2r, the
bound of Eq. (37) may be further bounded as: for all r > 2,

3

2Tr
+ Cγ0,γ1E

[
α(Tr)

2/3
]
6 C ′γ0,γ1

( r
2r

)1/3
=: β2

r ,

for some constant C ′γ0,γ1 depending only on γ0 and γ1. We observe that βr =
√
C ′γ0,γ1 (r 2−r)1/6 is

non-increasing for r > 2 and summable, as required.

We emphasize that, while exact values of α1(Tr) and α2(Tr) are needed for the construction of the
set-estimate Ĉr, the knowledge of βr is not required by the algorithm (its choice is required for the
sake of the theoretical analysis only).

D.2 Proof of Theorem 2

We actually prove a more complete and more precise version of Theorem 2.
Theorem 3 (contains Theorem 2). Under Assumption 3 and the assumptions of Theorem 1, a convex
closed set C, unknown to the Player, is m–approachable if and only if Blackwell’s condition in
Eq. (2) is satisfied. In this case, the strategy of Eq. (7) is an approachability strategy. It achieves the
following rates for L2 convergence: for all r > 1 and all t ∈ [Tr, Tr+1 − 1],√

E[d2
t ] 6

√
6B2 + 8B‖m‖∞,2

(
√

2− 1)
√
t

+
4‖m‖∞,2

t

t−1∑
t′=1

√
E[TV2(Q, Q̂t′)] +

4

t

r∑
r′=0

Tr′βr′ .

It also achieves the following rates for almost-sure convergence: for all r > 1,

P
(

sup
t>Tr

dt > 2ε

)
6

Ξr
ε2

+
1

ε2

∑
r′>r

β2
r′ ,

where Ξr is defined in Eq. (60), page 39, and converges to 0.

Comments after Assumption 1 explain why the middle term in the L2 bound vanishes. Assumption 3
indicates that the series (βr)r>1 is summable, hence the following sequence of Cesaro averages built
on it also vanishes:

βr :=
1

Tr+1

r∑
r′=0

Tr′βr′ → 0 . (42)

Finally, the series (β2
r )r>1 is also summable, hence its associated sequence of remainder sums also

vanishes: ∑
r′>r

β2
r′ → 0 .

We now move to the proof. We simply note at this stage that the condition ‖v −ProjĈr (v)‖ 6 B for
all v ∈m(A,B,X , {0, 1}) of Assumption 3 also holds, by convexity, for all v in the convex hull of
m(A,B,X , {0, 1}).
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Proof. The proof is required only for the sufficiency, since the necessity was proven in Theorem 1.

Recall that, from the perspective of the Player, the game proceeds in phases lasting from Tr := 2r to
Tr+1 − 1 := 2r+1 − 1. For each time t ∈ [Tr, Tr+1 − 1], the Player uses Ĉr as an estimate of the
true target set C, and updates to Ĉr+1 only at t = Tr+1. The initial stage of the proof is split into two
parts: first, we closely follow the proof of Theorem 1 and analyze the game for t ∈ [Tr, Tr+1 − 1];
then, we handle the case of transition from Ĉr to Ĉr+1.

We introduce the following short-hand notation:

d̂t := ‖mt − ĉt‖ and Ωr =
{
C ⊂ Ĉr

}
.

Note that unlike the quantity of interest dt = ‖mt − ct‖, which is equal to the distance from the
average payoff mt along the trajectory to the true target set ct, the distance d̂t is with respect to the
currently used estimate Ĉr. The key insight of the proof is hidden in the fact that, if Ωr occurs, then
the approachability condition, which is met by C, is also met by the super-set estimate Ĉr.

Convergence in L2. Let us start with the following observation, which relates dt to d̂t, based on
Assumption 3. We have for t ∈ [Tr, Tr+1 − 1],

dt = ‖mt − ProjCmt‖ 6 ‖mt − ProjC ProjĈr mt‖
6 ‖mt − ProjĈr mt‖+ ‖ProjĈr mt − ProjC ProjĈr mt‖

6 d̂t + d(Ĉr, C). (43)

Hence, according to the fourth item of Assumption 3 and the L2-triangular inequality, we have√
E[d2

t ] 6
√

E[d̂2
t ] + βr . (44)

Since βr → 0 according to Assumption 3, the latter implies that, if E[d̂2
t ]→ 0, then E[d2

t ]→ 0.

As already mentioned, to prove the L2-convergence, we consider two cases. In the first case, we
study the evolution of the game withing one phase, that is for t ∈ [Tt, Tr+1 − 2] – the case where we
project onto Ĉr. The second case is when t = Tr+1 − 1, that is, when in the next round we are going
to update the estimate Ĉr.

Case Tr 6 t 6 Tr+1 − 2: Defining

Zt+1 :=

〈
mt − ĉt,mt+1 −

∫
X×S

m
(
pxt+1, q

G(x,s)
t+1 , x, s

)
dQ(x, s)

〉
, (45)

and Bt :=

〈
mt − ĉt,

∫
X×S

m
(
pxt+1, q

G(x,s)
t+1 , x, s

)
dQ(x, s)− ĉt

〉
, (46)

we can write

d̂2
t+1 6 ‖mt+1 − ĉt‖

6
t2

(t+ 1)2
d̂2
t +

1

(t+ 1)2
‖mt+1 − ĉt‖2 +

2t

(t+ 1)2
(Zt+1 +Bt) . (47)

As in the proof of Theorem 1, the main non-standard analysis is connected with the treatment of Bt.
Observe that thanks to Assumption 3, we always have |Bt| 6 B(B + 2‖m‖∞,2), hence

Bt 6 BtI{Ωr}+B(B + 2‖m‖∞,2)I{Ωcr} . (48)

Furthermore, similarly as for Eq. (14), we have on Ωr

Bt 6 4‖m‖∞,2 d̂t · TV(Q, Q̂t)

+ min
(px)x∈X

max
(qG(x,s))(x,s)∈X×S

〈
mt − ĉt,

∫
X×S

m
(
px, qG(x,s), x, s

)
dQ(x, s)− ĉt

〉
. (49)
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Since, by definition of Ωr, we have the inclusion C ⊂ Ĉr on Ωr, Blackwell’s condition (2) implies
that, on Ωr,

∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X s.t.
∫
X×S

m
(
px, qG(x,s), x, s

)
dQ(x, s) ∈ C ⊂ Ĉr .

The first item of Assumption 3 requires Ĉr to be closed convex almost surely. Hence, using the
property of Euclidean projection onto a convex closed set, in conjunction with von Neumann’s
minmax theorem, we conclude that, on Ωr, it holds that

min
(px)x∈X

max
(qG(x,s))(x,s)∈X×S

〈
mt − ĉt,

∫
X×S

m
(
px, qG(x,s), x, s

)
dQ(x, s)− ĉt

〉
6 0 .

The above inequality, combined with Eqs. (47)–(49), yields

d̂2
t+1 6

t2

(t+ 1)2
d̂2
t +

1

(t+ 1)2
‖mt+1 − ĉt‖2

+
2t

(t+ 1)2

(
Zt+1 + 4‖m‖∞,2 d̂t · TV(Q, Q̂t)I{Ωr}+B(B + 2‖m‖∞,2)I{Ωcr}

)
.

(50)
Since (Zt)t>1 is martingale difference (by the same arguments as for the proof of Theorem 1), taking
expectations from both sides of the above inequality, in conjunction with the condition on P(Ωr) of
Assumption 3 and the Cauchy-Schwartz inequality, yields

E[d̂2
t+1] 6

t2

(t+ 1)2
E[d̂2

t ] +
B2

(t+ 1)2

+
2t

(t+ 1)2

(
4‖m‖∞,2

√
E[d̂2

t ] ·
√

E[TV2(Q, Q̂t)] +
B(B + 2‖m‖∞,2)

2Tr

)
.

We deduce from the above that, for all t ∈ [Tr, Tr+1 − 2], since t/(2Tr) 6 1,

E[d̂2
t+1] 6

t2

(t+ 1)2
E[d̂2

t ] +
3B2 + 4B‖m‖∞,2

(t+ 1)2

+
2t

(t+ 1)2

(
4‖m‖∞,2

√
E[d̂2

t ] ·
√
E[TV2(Q, Q̂t)]

)
. (51)

Applying Lemma 1 with t∗ = Tr, K = 3B2 +4B‖m‖∞,2, and δt = 4‖m‖∞,2 ·
√

E[TV2(Q, Q̂t)],
we obtain that, for all t ∈ [Tr, Tr+1 − 1],√

E[d̂2
t ] 6

√
(3B2 + 4B‖m‖∞,2)(t− Tr)

t
+

4

t

t−1∑
t′=Tr

‖m‖∞,2 ·
√

E[TV2(Q, Q̂t′)]

+
Tr
t

√
E[d̂2

Tr
] .

(52)

Case t = Tr+1 − 1: In this case, when passing from t to t+ 1, the Player updates the estimate of the
target set C, which incurs additional price. In particular, the established recursion in Eq (52) does
not hold, since by definition d̂Tr+1 = ‖mTr+1 − ĉTr+1‖, where ĉTr+1 is the projection onto Ĉr+1.
However, note that the argument of the first case still holds if we fix the set onto which we project.
More formally, the inequality (51) still holds at t = Tr+1 − 1, if we replace d̂Tr+1

in the left-hand
side by

d̃Tr+1
:= ‖mTr+1

− ProjĈr (mTr+1
)‖ .

Hence
√
E[d̃2

Tr+1
] is smaller than the right-hand side of Eq. (52) with t = Tr+1. Applying the same

argument as in (43), and applying Minkowski’s inequality, we get√
E[d̂2

Tr+1
] =

√
E
[
‖mTr+1

− ProjĈr+1
(mTr+1

)‖2
]

6
√
E
[
‖mTr+1

− ProjĈr (mTr+1
)‖2
]

+

√
E
[
d(Ĉr, Ĉr+1)2

]
=
√
E[d̃2

Tr+1
] +

√
E
[
d(Ĉr, Ĉr+1)2

]
.
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Recalling that the bound in Eq. (52) holds for
√
E[d̃2

Tr+1
], and using the above derived relation, we

get for all r > 0√
E[d̂2

Tr+1
] 6

√
(3B2 + 4B‖m‖∞,2)(Tr+1 − Tr)

Tr+1
+

4

Tr+1

Tr+1−1∑
t′=Tr

‖m‖∞,2 ·
√

E[TV2(Q, Q̂t′)]

+
Tr
Tr+1

√
E[d̂2

Tr
] +

√
E
[
d(Ĉr, Ĉr+1)2

]
.

(53)
Multiplying Eq. (53) by Tr+1 on both sides and rearranging, we deduce that for all r > 0(

Tr+1

√
E[d̂2

Tr+1
]− Tr

√
E[d̂2

Tr
]

)
6
√

(3B2 + 4B‖m‖∞,2)(Tr+1 − Tr)

+ 4

Tr+1−1∑
t′=Tr

‖m‖∞,2 ·
√
E[TV2(Q, Q̂t′)]

+ Tr+1

√
E
[
d(Ĉr, Ĉr+1)2

]
.

Summing up the above inequalities over r > 0, and using the fact that, by Assumption 3, d̂1 6 B,
we obtain, with the convention T−1 = 0,√

E[d̂2
Tr

] 6
√

3B2 + 4B‖m‖∞,2
1

Tr

r∑
r′=0

√
Tr′ − Tr′−1

+ 4‖m‖∞,2
1

Tr

Tr−1∑
t′=1

√
E[TV2(Q, Q̂t′)] +

1

Tr

r∑
r′=1

Tr′
√

E
[
d(Ĉr′−1, Ĉr′)2

]
.

(54)

To conclude the convergence in L2, we observe that d(Ĉr′−1, Ĉr′) 6 d(Ĉr′−1, C) + d(C, Ĉr′) and
hence, the triangle inequality for L2-norms and Assumption 3 yield√

E
[
d(Ĉr′−1, Ĉr′)2

]
6
√

E
[
d(Ĉr′−1, C)2

]
+

√
E
[
d(C, Ĉr′)2

]
6 βr′−1 + βr′ 6 2βr′−1. (55)

Substituting the above bound in Eq. (54) (and reindexing, using that Tr′ = 2Tr′−1), we get for all
r > 1√

E[d̂2
Tr

] 6

√
3B2 + 4B‖m‖∞,2

Tr

r∑
r′=0

√
Tr′ − Tr′−1 + 4‖m‖∞,2

1

Tr

Tr−1∑
t′=1

√
E[TV2(Q, Q̂t′)]

+
4

Tr

r−1∑
r′=0

Tr′βr′

6

√
3B2 + 4B‖m‖∞,2
(
√

2− 1)
√
Tr

+ 4‖m‖∞,2
1

Tr

Tr−1∑
t′=1

√
E[TV2(Q, Q̂t′)] +

4

Tr

r−1∑
r′=0

Tr′βr′ .

(56)
The (

√
2 − 1)

√
Tr factor in the denominator of the first term of the final bound was obtained as

follows:
r∑

r′=0

√
Tr′ − Tr′−1 = 1 +

r∑
r′=1

√
2r′−1 = 1 +

√
2r − 1√
2− 1

6

√
2r√

2− 1
=

√
Tr√

2− 1
.

Combining the first inequality of the two inequalities of Eqs. (56) with Eq. (52), we get for all r > 1
and t ∈ [Tr, Tr+1 − 1],√

E[d̂2
t ] 6

√
3B2 + 4B‖m‖∞,2

t

(√
t− Tr +

r∑
r′=0

√
Tr′ − Tr′−1

)

+
4‖m‖∞,2

t

t−1∑
t′=1

√
E[TV2(Q, Q̂t′)] +

4

t

r−1∑
r′=0

Tr′βr′

6

√
6B2 + 8B‖m‖∞,2

(
√

2− 1)
√
t

+
4‖m‖∞,2

t

t−1∑
t′=1

√
E[TV2(Q, Q̂t′)] +

4

t

r−1∑
r′=0

Tr′βr′ ,

(57)
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where the last inequality follows from√
t− Tr +

r∑
r′=0

√
Tr′ − Tr′−1 6

r+1∑
r′=0

√
Tr′ − Tr′−1 6

√
Tr+1√
2− 1

=

√
2Tr√

2− 1
.

Combining inequality (57) with (44), i.e., adding βr to the bound above, and using Tr/t 6 1, we
conclude the stated bound for the L2 convergence.

Almost-sure convergence. We observe that, according to (43), by union bounds, Markov’s inequal-
ity, and the third item of Assumption 3, we have

P
[

sup
t>Tr

dt > 2ε

]
6 P

[
sup
t>Tr

d̂t > ε

]
+ P

[
sup
r′>r

d(Ĉr′ , C) > ε

]
6 P

[
sup
t>Tr

d̂t > ε

]
+

1

ε2

∑
r′>r

β2
r′ .

In what follows, we bound P
[
supt>Tr d̂t > ε

]
by Ξr/ε

2, where Ξr is defined in Eq. (60).

As in Theorem 1, we introduce a super-martingale St bounding d̂2
t and whose expectation vanishes;

however, the analysis is more involved here due to additional difficulties connected to handling the
switches between regimes. More precisely, let us define, for t ∈ [Tr, Tr − 1],

Vt =
B2

(t+ 1)2
+

2t

(t+ 1)2

(
4‖m‖∞,2 d̂t · TV(Q, Q̂t) +B(B + 2‖m‖∞,2) I{Ωcr}

)
+ 2B d(Ĉr, Ĉr+1) I{t = Tr+1 − 1} .

Using the above defined Vt, we additionally introduce the process

ST = d̂2
T +

∑
t>T

E[Vt|HT ] . (58)

We observe that, by Assumption 3 and the triangle inequality,

d̂2
Tr+1

− d̃2
Tr+1

=
(
d̂Tr+1

− d̃Tr+1

)( 62B︷ ︸︸ ︷
d̂Tr+1 + d̃Tr+1

)
6 2B

(∥∥mTr+1
− ProjĈr+1

(mTr+1
)‖ − ‖mTr+1

− ProjĈr (mTr+1
)
∥∥)

6 2B
(∥∥mTr+1

− ProjĈr+1
(ProjĈr (mTr+1

))‖ − ‖mTr+1
− ProjĈr (mTr+1

)
∥∥)

6 2B
∥∥ProjĈr (mTr+1

)− ProjĈr+1
(ProjĈr (mTr+1

))
∥∥

6 2B · d(Ĉr, Ĉr+1) .

Thus, in view of Eq. (50), and recalling that the right-hand side of Eq. (50) bounds rather d̃Tr+1 at
t = Tr+1 − 1, the following recursive relation holds for any t ∈ [Tr, Tr+1 − 1]:

d̂2
t+1 6 d̂2

t + Vt +
2t

(t+ 1)2
Zt+1.

Recalling that E[Zt+1|Ht] = 0, we deduce

E[ST+1|HT ] = E[d̂2
T+1|HT ] +

∑
t>T+1

E[Vt|HT ] 6 d̂2
T +

∑
t>T

E[Vt|HT ] = ST ,

which means that (ST )T>1 is a super-martingale.

Since, by definition of ST , it holds that d̂2
T 6 ST , Doob’s maximal inequality for non-negative

super-martingales (Lemma 2) gives

P
(

sup
t>Tr

d̂t > ε

)
6 P

(
sup
t>Tr

St > ε2

)
6

E[STr ]

ε2
.
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It only remains to bound E[STr ] by Ξr.

Note that by the Cauchy-Schwarz inequality and the bound of Eq. (55),

E
[
d(Ĉr′ , Ĉr′+1)

]
6
√
E
[
d(Ĉr′ , Ĉr′+1)2

]
6 2βr′ .

Thanks to this inequality, to tP(Ωcr) 6 t/(2Tr) 6 1 for t ∈ [Tr, Tr+1 − 1], and other manipulations
that are standard by now, the expectation of the sum appearing in the definition (58) of the super-
martingale ST can be bounded as∑
t>Tr

E [Vt] 6
∑
t>Tr

3B2 + 4B‖m‖∞,2
(t+ 1)2

+
∑
t>Tr

8t‖m‖∞,2
(t+ 1)2

√
E[d̂2

t ]

√
E[TV2(Q, Q̂t)]

+ 2B
∑
r′>r

E
[
d(Ĉr′ , Ĉr′+1)

]
6

3B2 + 4B‖m‖∞,2
Tr

+ 4B
∑
r′>r

βr′ +
∑
t>Tr

8‖m‖∞,2
t

√
E[d̂2

t ]

√
E[TV2(Q, Q̂t)].

(59)
To bound the right hand side of the above inequality, we observe that for t > Tr, by Eq. (57), we have

√
E[d̂2

t ] 6

√
6B2 + 8B‖m‖∞,2

(
√

2− 1)
√
t

+ 4‖m‖∞,2

=:∆
∗
Tr︷ ︸︸ ︷

max
t>Tr

1

t

t−1∑
t′=1

√
E[TV2(Q, Q̂t′)]

+ 4 max
r′′>r

1

Tr′′

r′′−1∑
r′=0

Tr′βr′︸ ︷︷ ︸
=:β∗r

.

Substituting the above bound into Eq. (59), using
∑
t>Tr

t−3/2 6 2/
√
Tr − 1 and TV(Q, Q̂t′) 6 1,

we obtain∑
t>Tr

E [Vt] 6
3B2 + 4B‖m‖∞,2

Tr
+ 16‖m‖∞,2

√
6B2 + 8B‖m‖∞,2

(
√

2− 1)
√
Tr − 1

+ 4B
∑
r′>r

βr′

+ 32‖m‖∞,2
(
‖m‖∞,2∆

∗
Tr + β∗r

) ∑
t>Tr

1

t

√
E[TV2(Q, Q̂t′)] .

Finally, we take into account the definition of the super martingale ST in Eq. (58) and the upper
bound of Eq. (56), which we square, using that (x + y + z)2 6 2x2 + 2(y + z)2. Doing so, and
performing some crude boundings for the sake of readability, we get the final bound E[STr ] 6 Ξr,
where

Ξr := (1 + 2(
√

2− 1)−2)
3B2 + 4B‖m‖∞,2

Tr
+ 16‖m‖∞,2

√
6B2 + 8B‖m‖∞,2

(
√

2− 1)
√
Tr − 1

+ 4B
∑
r′>r

βr′

+ 32
(
‖m‖∞,2∆

∗
Tr + β∗r

)‖m‖∞,2∆
∗
Tr + β∗r + ‖m‖∞,2

∑
t>Tr

1

t

√
E[TV2(Q, Q̂t′)]

 .

(60)
As indicated in Eq. (42), the Cesaro averages βr, which are positive, tend to 0; therefore, we also
have β∗r → 0. For similar reasons, and as already noted for Theorem 1, the term ∆

∗
Tr also vanishes

under Assumption 1. The latter also implies that the final term in Eq. (60) vanishes. Other terms
clearly vanish or were already discussed for the L2-convergence. All in all, Ξr → 0, as claimed.
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