
A Appendix

A.1 Construction of the Contextualized KG

In Sec. 2, we defined the full KG as G̃ = (Ṽ, R̃, Ẽ), where Ṽ , R̃, and Ẽ are all of the KG’s nodes
(concepts), relations, and edges (facts), respectively. For each instance, we assume access to G̃ but
do not use the entire KG in practice. Given a question q and an answer choice ai for some instance,
we construct the contextualized KG, G̃i = (Vi,Ri, Ei) by heuristically extracting edges from G̃,
following the approach taken by most prior KG-augmented model works [13, 56, 31].

G̃i = (Vi,Ri, Ei) is built differently for node-based models and path-based models, and we describe
both types of contextualized KG construction procedures below. Note that these procedures are not
designed by us, but simply follow what was proposed and shown to work well in the KG-augmented
models’ original papers [13, 56]. Thus, we do not experiment with different contextualized KG
construction procedures, since it is out of the scope of our work.

Let us define the KG nodes mentioned in q and ai as QA nodes. For example, for the question What
would you put in a teakettle? and answer choice water, the QA nodes would be put, teakettle,
and water. We ground raw mentions of QA nodes to the KG via spaCy-based lemmatization and
stop-word filtering [18].

For node-based models (MHGRN [13]), we select Vi ⊆ Ṽ as the QA nodes and all nodes in the QA
nodes’ 1-hop KG neighborhood. Next, we chooseRi ⊆ R̃ as all of the relations between concepts in
Vi. Finally, we take Ei ⊆ Ẽ as all of the edges involving Vi andRi.

For path-based models (PathGen [56], RN [13, 4]), we select G̃i as all 2-hop paths between all
question-answer node pairs. Thus, Vi ⊆ Ṽ consists of the QA nodes as well as all intermediate nodes
in the 2-hop paths. Meanwhile, Ri ⊆ R̃ and Ei ⊆ Ẽ consist of all relations and edges within the
2-hop paths. When reasoning over the 2-hop paths, the model does not actually use the intermediate
nodes, perhaps in order to keep the path more general [13, 56].

A.2 Alternative Formulation of Coarse Saliency Explanations

SALKG-Coarse uses coarse explanations, which state whether G or None (i.e., no G) should be
used for the given task instance. By default, SALKG-Coarse uses our proposed ensemble-based
coarse explanations (Sec. 3.1). In this case, the coarse explanations decide between G and None at
the prediction level. That is, the coarse explanations correspond to saliency weights which perform
attention over FKG’s and FNo-KG’s predictions.

Graph Embedding Based Explanations In Sec. 6.3, we also considered applying coarse expla-
nations at the graph embedding level. In this case, using G corresponds to using graph embedding
g, while using None corresponds to using some baseline embedding b that does not contain any
information from G. b could be a zero vector, random vector, etc. Our experiments in Sec. 6.3 —
with b as a zero vector and Grad/Occl as saliency methods — show that this approach does not
yield good empirical results. We believe the issue is that b does not contain any None-specific
information. Recall that the ensemble-based SALKG’s prediction is a weighted sum of FKG’s and
FNo-KG’s predictions, which means we interpolate between FKG’s and FNo-KG’s predictions. Here,
FNo-KG’s prediction actually contains meaningful information about FNo-KG. On the other hand,
it does not make sense to interpolate between g and b, since b does not have any meaningful in-
formation. We also considered learning b when training the KG model, but this would require a
complicated multitask learning setup where the KG and No-KG models are jointly trained using g
and b, respectively.

A.3 Implementation Details for Grad-Based Fine Saliency Explanations

In Sec. 3.2, we discussed the gradient×input (Grad) [10] method for computing raw fine saliency
scores ϕ. For multi-choice QA, assume we are given text statement xi = q ⊕ ai (formed from
question q and answer choice ai), KG Gi, unit uij , and uij’s embedding uij ∈ Rd in Gi. Also, let
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Depending on the type of graph encoder used, a unit may or may not be given to the model as a single
embedding. While node-based graph encoders take node embeddings as input, path-based graph
encoders do not take path embeddings as input. Instead path-based graph encoders take node and
relation embeddings as input, then form path embeddings from these node and relation embeddings.

As a result, for Grad, the computation of ϕ is slightly different between node-based and path-based
graph encoders. For node-based encoders, unit embedding uij is just a node embedding. Thus, a
node’s ϕ score is computed directly using Eq. 3. For path-based encoders, given a path, we first use
Eq. 3 to compute a separate ϕ score for each node embedding and relation embedding in the path.
Then, we compute the path’s ϕ score as the sum of the ϕ scores of its constituent nodes and relations.

A.4 Evaluation Protocol

We present a more detailed description of the evaluation protocol used to obtain the results in Sec.
6. First, define non-explanation models (No-KG, KG, and No-KG + KG) as models that are not
regularized with any kind of explanation, and define explanation models (RANDOM, HEURISTIC,
SALKG) as models that are regularized with some kind of explanation. Second, each non-explanation
model’s performance is reported as the average over three seeds, which we denote as the non-
explanation seeds. Also, recall that each explanation model is built from No-KG and/or KG models.
Third, for each of the three non-explanation seeds, we train the explanation model on three more seeds,
which we call the explanation seeds. After that, we compute the explanation model performance by
averaging over [three non-explanation seeds] × [three explanation seeds] = [nine total seeds].

We summarize the evaluation protocol below:

• Non-explanation seeds: 1, 2, 3
• Explanation seeds: A, B, C
• Non-explanation performance: average(1, 2, 3)
• Explanation performance: average(1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, 3C)

A.5 Dataset Details

Below are more detailed descriptions of the three datasets used for the experiments in Sec. 6. All
datasets and resources used in this paper are publicly available and free for any researcher to use.

CommonsenseQA (CSQA) [52] is a multi-choice QA dataset whose questions require commonsense
reasoning to solve. Questions and answer choices in CSQA are derived from ConceptNet [49]. The
official (OF) data split has 9741/1221/1140 questions for OFtrain/OFdev/OFtest. Since the labels
for OFtest are not publicly available, we use the in-house (IH) data split introduced in [31] and used
in many subsequent works [13, 56, 60]. The in-house data split has 8500/1221/1241 questions for
IHtrain/IHdev/IHtest, where the IHtrain and IHtest are obtained by partitioning OFtrain.

OpenbookQA (OBQA) [39] is a multi-choice QA dataset which aims to simulate open-book science
exams. OBQA has 4957/500/500 elementary-school-level science questions for train/dev/test, but
also provides a supplementary “open book” resource containing 1326 core science facts. To solve
questions from OBQA, the model needs to reason over both information from the open book and
commonsense knowledge from the KG (i.e., ConceptNet).

CODAH [6] is a multi-choice QA dataset which augments the SWAG [63] sentence completion
dataset with more difficult, adversarially-created questions. Similar to SWAG, CODAH’s questions
are designed to require commonsense reasoning to solve. CODAH contains 2801 questions, and its
official split specifies five folds, which balance the distribution of question categories per fold. Thus,
by default, performance is evaluated by averaging over the five folds. However, due to computational
constraints, we only evaluate on the first fold and compare to the baselines presented in Sec. 4.2 and
Sec. 6, rather than to previously published methods.
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CSQA Test Accuracy (%) OBQA Test Accuracy (%)
Top-k% MHGRN PathGen MHGRN PathGen
2 72.66 (±1.52) 69.86 (±1.11) 66.47 (±1.27) 61.33 (±2.69)
5 72.58 (±0.74) 71.64 (±3.17) 69.13 (±0.81) 64.80 (±1.40)
10 73.65 (±0.21) 71.39 (±1.54) 65.07 (±1.70) 51.60 (±1.13)
30 71.98 (±0.47) 69.76 (±0.44) 63.47 (±1.14) 61.87 (±4.61)
50 72.93 (±0.84) 71.04 (±0.05) 63.27 (±3.00) 63.60 (±1.71)
70 72.04 (±1.05) 70.13 (±0.66) 65.80 (±1.91) 64.40 (±0.40)

Table 9: SALKG-Fine Performance for Different top-k% Thresholds. We report performance for
RoBERTa+MHGRN and RoBERTa+PathGen on CSQA and OBQA. Best model is shown in bold.

A.6 Threshold Tuning for Creating Explanations

Tuning T Threshold for Coarse Explanations Recall that coarse explanations are binarized via
threshold T (Sec. 3.1). To set T , we manually tune T to maximize ORACLE-Coarse’s dev accuracy.
This can be done efficiently, since ORACLE-Coarse does not require any training. We use a sweep of
T = [0.01, 0.02, 0.03, 0.04, 0.05] and find that T = 0.01 yields best performance overall.

Tuning top-k% Threshold for Fine Explanations Recall that fine explanations are binarized via
threshold k, used to set the top-k% of units as positive (Sec. 3.2). To set k, we manually tune k to
maximize SALKG-Coarse’s dev accuracy. Table 9 shows the performance of RoBERTa+MHGRN
and RoBERTa+PathGen on CSQA and OBQA, across different values of k. Due to computational
constraints, we report the average performance across [best non-explanation seed] × [three expla-
nation seeds] = [three total seeds], as opposed to the default [three non-explanation seed] × [three
explanation seeds] = [nine total seeds] (Sec. A.4). We use a sweep of k = [5, 10, 30, 50] and find that
k = 5 yields best performance overall, although there is not a clear trend that smaller k is better. In
this paper, we used k = 10 for all experiments, so it may be promising to further explore tuning k in
the future.

A.7 Additional Details about ORACLE Models

We provide more details about ORACLE-Coarse and ORACLE-Fine. Given the coarse saliency
explanations, ORACLE-Coarse simply involves choosing the “correct” prediction — between FKG’s
and FNo-KG’s predictions — for each answer choice. Given that FKG’s and FNo-KG’s predictions are
simply loaded from disk, this process runs very quickly, since it does not require additional training.
On the other hand, ORACLE-Fine involves training the KG-augmented model while applying the fine
saliency explanations as a binary mask to the graph encoder’s attention weights.

A.8 Additional SALKG Results on CODAH

In this section, we present additional SALKG results on CODAH. These additional results consist
of RoBERTa+RN, BERT+MHGRN, BERT+PathGen, and BERT+RN, all using threshold top-10%.
Also, across all settings, we report both Grad and Occl results for SALKG-Fine and SALKG-Hybrid.
Due to computational constraints, we report the average performance across [best non-explanation
seed]× [three explanation seeds] = [three total seeds], as opposed to the default [three non-explanation
seed] × [three explanation seeds] = [nine total seeds] (Sec. A.4). These results are shown in Table
10, along with the RoBERTa+MHGRN and RoBERTa+PathGen results from Table 6.

First, we see that SALKG-Hybrid (either Grad or Occl) performs the best on all settings ex-
cept RoBERTa+PathGen. For RoBERTa+PathGen, RANDOM-Coarse and RANDOM-Hybrid per-
form the best, although some SALKG models perform almost as well. RANDOM’s strong per-
formance is likely due to us reporting performance for the best non-explanation seed, rather
than averaging over three non-explanation seeds. Second, for SALKG-Fine, Occl beats Grad
on all settings except RoBERTa+PathGen. Third, for SALKG-Hybrid, Occl beats Grad on
BERT+MHGRN, BERT+PathGen, and BERT+RN, while Grad beats Occl on RoBERTa+MHGRN
and RoBERTa+PathGen.
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CODAH Test Accuracy (%)
MHGRN PathGen RN

Model BERT RoBERTa BERT RoBERTa BERT RoBERTa

No-KG 60.96 (±1.27) 83.96 (±0.79) 60.96 (±1.27) 83.96 (±0.79) 60.96 (±1.27) 83.96 (±0.79)
KG 58.68 (±1.63) 84.02 (±1.27) 58.80 (±2.01) 84.02 (±1.62) 55.92 (±1.04) 82.64 (±0.85)
No-KG + KG 60.60 (±1.30) 84.08 (±1.46) 60.42 (±1.14) 84.69 (±1.48) 58.62 (±1.53) 84.08 (±0.55)

RANDOM-Coarse 60.78 (±0.38) 84.62 (±0.55) 61.74 (±0.28) 86.07 (±0.89) 57.84 (±0.83) 84.14 (±0.65)
RANDOM-Fine 58.50 (±0.91) 84.02 (±0.89) 54.47 (±1.55) 75.74 (±4.71) 54.53 (±1.40) 76.10 (±4.16)
RANDOM-Hybrid 62.16 (±0.00) 84.80 (±0.10) 61.74 (±0.55) 84.68 (±0.18) 62.40 (±0.10) 84.14 (±0.65)

HEURISTIC-Coarse 58.38 (±0.00) 85.11 (±0.10) 61.08 (±0.00) 85.59 (±0.00) 59.70 (±0.10) 83.60 (±0.00)
HEURISTIC-Fine 60.18 (±1.36) 83.72 (±0.92) 55.98 (±0.28) 82.64 (±2.61) 54.71 (±3.07) 81.80 (±2.77)
HEURISTIC-Hybrid 62.16 (±0.00) 84.80 (±0.10) 61.98 (±0.31) 85.23 (±0.00) 62.28 (±0.10) 85.35 (±0.10)

SALKG-Coarse 61.02 (±0.10) 85.41 (±0.18) 61.20 (±0.28) 85.95 (±0.18) 61.74 (±0.21) 84.98 (±0.42)
SALKG-Fine (Occl Top-10%) 60.00 (±1.26) 84.08 (±1.14) 57.72 (±1.09) 83.36 (±0.81) 59.16 (±2.15) 83.78 (±1.41)
SALKG-Fine (Grad Top-10%) 59.16 (±0.38) 84.20 (±1.17) 57.36 (±0.75) 83.00 (±1.51) 55.86 (±0.79) 83.66 (±0.89)
SALKG-Hybrid (Occl Top-10%) 62.28 (±0.10) 85.71 (±0.10) 62.04 (±0.45) 84.44 (±0.63) 62.58 (±0.10) 85.11 (±0.28)
SALKG-Hybrid (Grad Top-10%) 60.48 (±0.21) 88.17 (±0.10) 61.02 (±0.10) 85.17 (±0.28) 61.38 (±0.68) 85.11 (±0.55)

Table 10: SALKG Performance on CODAH for Additional Settings. Building upon the CODAH results
in Table 6 (RoBERTa+MHGRN and RoBERTa+PathGen), we additionally report results for RoBERTa+RN,
BERT+MHGRN, BERT+PathGen, and BERT+RN, all using threshold top-10%. We also report both Grad and
Occl results for SALKG-Fine and SALKG-Hybrid. Best model is shown in bold.

A.9 Additional SALKG Results for Grad vs. Occl

In Tables 11-12, we compare Grad vs. Occl on CSQA and OBQA, respectively. Due to computational
constraints, we report the average test accuracy across [best non-explanation seed] × [three expla-
nation seeds] = [three total seeds], as opposed to the default [three non-explanation seed] × [three
explanation seeds] = [nine total seeds] (Sec. A.4). For SALKG-Fine and SALKG-Hybrid on CSQA,
we find that Occl beats Grad on all settings, except SALKG-Fine on RoBERTa+RN. However, for
SALKG-Fine on OBQA, Grad beats Occl on RoBERTa+PathGen, BERT+RN, and RoBERTa+RN,
while Occl beats Grad on BERT+MHGRN, RoBERTa+MHGRN, and BERT+PathGen. Meanwhile,
for SALKG-Hybrid on OBQA, Occl beats Grad on all settings except BERT+PathGen. Thus, we see
that Occl generally outperforms Grad, although Grad can beat Occl on certain settings.

A.10 Comparison to Published OBQA Baselines

To further demonstrate that SALKG models perform competitively, we also compare SALKG to the
many KG-augmented model baseline results published in [13, 56, 60], for OBQA. The baselines
we consider are RN, RN + Link Prediction, RGCN, GconAttn, MHGRN, and PathGen. For the
non-SALKG versions of MHGRN, PathGen, and RN, we quote the published results. Since these
published results average over four seeds (instead of three), we report SALKG results over four seeds
in Table 13. For OBQA, we find that vanilla PathGen (quoted from published results) performs the
best, while SALKG-Hybrid (MHGRN) and SALKG-Hybrid (PathGen) are almost as good. These
OBQA results indicate that our reproduction of vanilla PathGen may not have been optimally tuned,
thus limiting the performance of the SALKG models built upon PathGen. We plan to investigate this
issue in future work.

CSQA Test Accuracy (%)
MHGRN PathGen RN

Model BERT RoBERTa BERT RoBERTa BERT RoBERTa

SALKG-Fine (Grad) 55.44 (±1.22) 72.95 (±1.44) 57.10 (±0.81) 70.10 (±0.28) 56.14 (±1.97) 72.12 (±0.14)
SALKG-Fine (Occl) 56.78 (±2.14) 73.65 (±0.21) 57.64 (±2.12) 71.39 (±1.54) 56.86 (±0.41) 71.58 (±1.10)

SALKG-Hybrid (Grad) 59.07 (±0.56) 72.79 (±0.20) 57.53 (±0.43) 71.39 (±0.14) 57.29 (±0.29) 71.98 (± 0.28)
SALKG-Hybrid (Occl) 59.12 (±0.28) 73.41 (±0.16) 60.35 (±0.32) 73.11 (±1.00) 58.80 (±0.19) 74.64 (±0.09)

Table 11: CSQA Performance Comparison for SALKG Grad vs. Occl Models. Best model between Grad
and Occl is shown in bold.
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OBQA Test Accuracy (%)
MHGRN PathGen RN

Model BERT RoBERTa BERT RoBERTa BERT RoBERTa

SALKG-Fine (Grad) 53.40 (±0.69) 58.80 (±8.66) 55.33 (±0.31) 67.87 (±1.81) 56.53 (±0.31) 68.87 (±1.67)
SALKG-Fine (Occl) 53.93 (±1.01) 65.07 (±1.70) 55.40 (±0.53) 51.60 (±1.13) 55.67 (±0.90) 62.33 (±0.90)

SALKG-Hybrid (Grad) 53.80 (±0.20) 69.47 (±0.31) 55.67 (±0.64) 69.93 (±0.61) 53.20 (±0.72) 69.40 (±0.20)
SALKG-Hybrid (Occl) 56.20 (±0.20) 70.73 (±0.12) 55.33 (±0.23) 70.07 (±0.12) 53.93 (±0.42) 70.80 (±0.00)

Table 12: OBQA Performance Comparison for SALKG Grad vs. Occl Models. Best model between Grad
and Occl is shown in bold.

Model (RoBERTa) OBQA Test Accuracy (%)
RN [46] 65.20 (±1.18)
RN + Link Prediction [56] 66.30 (±0.48)
RGCN [47] 62.45 (±1.57)
GconAttn [57] 64.75 (±1.48)
MHGRN [13] 66.85 (±1.19)
PathGen [56] 71.20 (±0.96)

SALKG-Coarse (MHGRN) 69.85 (±0.30)
SALKG-Fine (MHGRN) 64.65 (±1.62)
SALKG-Hybrid (MHGRN) 70.75 (±0.10)
SALKG-Coarse (PathGen) 69.70 (±0.93)
SALKG-Fine (PathGen) 54.30 (±5.84)
SALKG-Hybrid (PathGen) 70.00 (±0.16)

Table 13: Comparison of SALKG to Published OBQA Results. Best model is shown in bold.

Figure 4: Low-Resource Learning. CSQA test accuracy for No-KG, KG, and SALKG-Coarse, when using
varying amounts of training data.

A.11 Low-Resource Learning

In Fig. 4, we show CSQA performance for different models in low-resource settings. Specifically,
we experiment with low-resource learning by training the model on 10%, 30%, 50%, or 70% of the
training data. For reference, we also include CSQA performance when using 100% of the training data.
Here, we consider No-KG (RoBERTa), KG (MHGRN), and SALKG-Coarse (RoBERTa+MHGRN).
Across all settings, we find that SALKG-Coarse outperforms both No-KG and KG, suggesting that
regularizing the model with coarse explanations can provide a helpful inductive bias for generalizing
from limited training data.

A.12 Analyzing the Impact of Coarse Explanations

SALKG-Coarse is based on the insight that KG information may help the model on some instances
but hurt on others. Thus, even if KG outperforms No-KG on average, No-KG may still correctly
predict some instances that KG got wrong. SALKG-Coarse takes advantage of such complementary
predictions between No-KG and KG, in order to achieve performance higher than max(No-KG,KG).
As shown by RoBERTa+PathGen and RoBERTa+RN on OBQA (Table 6), SALKG-Coarse can still
beat max(No-KG,KG,No-KG + KG) even when No-KG outperforms KG.
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Question Set Question Percentage (%)
No-KG Correct 55.44
KG Correct 56.65
Only No-KG Correct 9.43
Only KG Correct 10.64
Both Correct 46.01
Both Incorrect 33.92
At Least One Incorrect 66.08

SALKG-Coarse Correct 56.65
ORACLE-Coarse Correct 68.57

Table 14: Impact of Coarse Explanations. Using BERT+PathGen on CSQA, we present a performance
breakdown for various question sets, in order to analyze why SALKG-Coarse is able to beat No-KG and KG.

In Table 14, we analyze the performance of BERT (i.e., No-KG), PathGen (i.e., KG), SALKG-Coarse
(BERT+PathGen), and ORACLE-Coarse (BERT+PathGen) on various sets of questions in CSQA.
Due to computational constraints, each model’s performance here is reported for one seed (instead of
using the protocol described in Sec. A.4), so these results are not directly comparable to those in Table
5. Through this performance breakdown, we can isolate the potential improvement contributed by
each base model to SALKG-Coarse. We begin by looking at the questions for which SALKG-Coarse
has no influence. These are the 46.01% of questions correctly answered by both models and the
33.92% of questions incorrectly answered by both models. Since SALKG-Coarse is trained to choose
between the two models’ predictions, SALKG-Coarse’s output is fixed if both models make the same
prediction. This leaves 20.07% of questions that were correctly answered by exactly one of the two
models: 9.43% were from No-KG, while the other 10.64% were from KG. This 20.07% of constitutes
the complementary predictions leveraged by SALKG-Coarse.

Based on this question-level analysis, we would estimate the ORACLE-Coarse accuracy to be 66.08%,
the percentage of questions that at least one model answered correctly. However, as stated in Sec.
3.1, coarse saliency targets are created at the answer choice level (not question level), which offers
us more flexibility to choose between No-KG and KG. As a result, ORACLE-Coarse’s accuracy is
actually 68.57%. This leaves SALKG-Coarse (56.65%) significant room for improvement, perhaps
through better model architecture and training.

A.13 Comparing Salient and Non-Salient KG Units

This paper explores learning from explanations of KG units’ saliency (i.e., usefulness). Overall, our
focus is on how using salient KG units can yield improve model performance. In this subsection, we
also analyze whether salient and non-salient KG units, as determined by our coarse/fine explanation
methods, can differ in other ways that are not directly related to performance (Table 15). For both
coarse and fine explanations, we use the BERT+MHGRN model on CSQA, where MHGRN is a
node-based graph encoder (Sec. 4.2). Recall that Q nodes and A nodes are nodes (i.e., concepts)
mentioned in the given question and answer choice, respectively (Sec. 6.1).

For coarse explanations, we use the ensemble-based explanations introduced in Sec. 3.1. We compare
salient and non-salient KGs with respect to the number of nodes in the KG (# nodes), percentage of
Q nodes in the KG (% Q nodes), percentage of A nodes in the KG (% A nodes), clustering coefficient
(cluster coeff.), and average node degree (degree). These results are shown in Table 15a. We see that
these metrics are not very discriminative, as salient and non-salient KGs perform similarly on all of
these metrics.

For fine explanations, we use the Grad-based explanations described in Sec. 3.2 and Sec. A.3. We
compare salient and non-salient nodes with respect to the percentage of Q nodes among salient/non-
salient nodes in the KG (% Q nodes), percentage of A nodes among salient/non-salient nodes in
the KG (% A nodes), and node degree (degree). These results are shown in Table 15b. Here, we
see that %Q nodes and %A nodes are actually quite discriminative metrics between salient and
non-salient nodes. On average, the percentage of Q nodes among salient nodes (16.84%) is 56.07%
greater than the percentage of Q nodes among non-salient nodes (10.79%). Similarly, on average, the
percentage of A nodes among salient nodes (10.00%) is 65.02% greater than the percentage of Q
nodes among non-salient nodes (6.06%). However, compared to %Q nodes and %A nodes, degree is
not as discriminative. This indicates that the difference between salient and non-salient nodes may be
more semantic than structural.
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Metric Salient Non-Salient
# nodes 125.88 120.57
% Q nodes 9.09 9.17
% A nodes 2.94 3.12
cluster coeff. 4.26E-1 4.25E-1
degree 9.89 9.78

(a) Salient vs. Non-Salient KGs.

Metric Salient Non-Salient
% Q nodes 16.84 10.79
% A nodes 10.00 6.06
degree 15.41 13.11

(b) Salient vs. Non-Salient Nodes.

Table 15: Salient vs. Non-Salient KG Units. Using BERT+MHGRN on CSQA, we compare salient and
non-salient KG units. In (a), we compare salient and non-salient KGs, as determined by coarse explanations. In
(b), we compare salient and non-salient nodes, as determined by fine explanations.

CSQA Test Accuracy (%)
MHGRN PathGen RN

Model BERT RoBERTa BERT RoBERTa BERT RoBERTa

KG (Relation) 52.89 (±0.73) 67.41 (±0.84) 52.35 (±0.60) 70.08 (±0.38) 54.15 (±0.40) 68.95 (±1.58)
SALKG-Coarse (Relation) 55.86 (±0.48) 72.53 (±0.50) 56.07 (±0.44) 71.55 (±0.85) 56.93 (±0.51) 72.43 (±0.96)
SALKG-Fine (Relation) 52.58 (±0.70) 68.84 (±0.67) 53.32 (±0.61) 71.23 (±1.21) 53.94 (±0.63) 69.80 (±0.64)
SALKG-Hybrid (Relation) 51.28 (±0.70) 69.84 (±0.57) 53.33 (±0.55) 70.34 (±1.03) 52.41 (±1.11) 68.77 (±0.80)

KG (Node) 53.63 (±0.70) 67.35 (±0.41) 55.60 (±0.16) 70.51 (±1.69) 54.15 (±2.27) 70.48 (±1.71)
SALKG-Coarse (Node) 55.75 (±0.60) 71.83 (±0.60) 55.43 (±0.55) 71.36 (±0.81) 56.14 (±0.73) 71.20 (±0.72)
SALKG-Fine (Node) 53.60 (±0.83) 66.81 (±1.09) 53.13 (±0.99) 70.80 (±1.55) 54.02 (±0.84) 71.08 (±1.02)
SALKG-Hybrid (Node) 51.14 (±1.03) 69.58 (±0.77) 50.80 (±0.83) 69.85 (±0.72) 53.24 (±0.72) 69.57 (±1.14)

KG 57.48 (±0.89) 73.14 (±0.78) 56.54 (±0.73) 72.58 (±0.57) 56.46 (±1.22) 71.37 (±1.20)
SALKG-Coarse 57.98 (±0.90) 73.64 (±1.05) 57.75 (±0.77) 73.07 (±0.25) 57.50 (±1.25) 73.11 (±1.13)
SALKG-Fine 54.36 (±2.34) 70.00 (±0.81) 54.39 (±2.03) 72.12 (±0.91) 54.30 (±1.41) 71.64 (±1.51)
SALKG-Hybrid 58.70 (±0.65) 73.37 (±0.12) 59.87 (±0.42) 72.67 (±0.65) 58.78 (±0.14) 74.13 (±0.71)

Table 16: SALKG Performance Comparison on CSQA with Perturbed KGs. Best performance in bold.

A.14 Robustness to KG Perturbation

Table 16 shows the CSQA performance of KG and SALKG models subjected to different forms
of KG perturbation. Relation perturbation (Relation) permutes the relation labels of all edges in
the KG, while node perturbation (Node) permutes the node labels of all nodes in the KG. These
perturbation methods are designed to alter the semantics of the KG. For relation perturbation and node
perturbation, SALKG-Coarse (Node) performs best on almost all settings, with KG (Node) barely
beating SALKG-Coarse for node perturbation on BERT+PathGen. However, with KG perturbation,
SALKG-Hybrid does not perform as well, sometimes even worse than KG and SALKG-Fine. This
may be because SALKG-Hybrid relies most heavily on fine explanations, making it especially
sensitive to KG perturbation.

We also compare these KG-perturbed models to models without any KG perturbation. As expected,
across all settings, the KG-perturbed models outperform the non-KG-perturbed models. Interestingly,
we find that SALKG-Coarse is most robust to KG perturbation. For BERT+RN and RoBERTa+RN,
SALKG-Coarse (Relation) is less than 1% worse than SALKG-Coarse. This makes sense, since
SALKG-Coarse relies least on the KG. For a given instance, SALKG-Coarse has the option to
completely ignore KG information when making its prediction. When the KG is perturbed, it would
be advantageous for SALKG-Coarse to focus only on the text input.

A.15 Statistical Significance of Main Results

In this section, we verify the statistical significance of our results in Sec. 6.2. For each setting in
Tables 5-6 (except RoBERTa+PathGen on CODAH), we perform the two-sided unpaired T-test with

CSQA p-values
MHGRN PathGen RN

Model BERT RoBERTa BERT RoBERTa BERT RoBERTa

Best SALKG Model vs. Best Non-SALKG Model 0.1235 0.4238 0.0701 0.2690 0.1336 0.0441

Table 17: SALKG T-Test Results on CSQA. For each setting in Table 5, we perform the T-test between the
best SALKG model and the best non-SALKG model.
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OBQA p-values CODAH p-values
Model (RoBERTa) MHGRN PathGen RN MHGRN PathGen
Best SALKG Model vs. Best Non-SALKG Model 0.2909 0.8890 0.0005 0.1223 0.2823

Table 18: SALKG T-Test Results on OBQA and CODAH. For each setting in Table 6, we perform the T-test
between the best SALKG model and the best non-SALKG model.
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Figure 5: Examples of coarse/fine saliency explanations. Illustration of examples presented in Sec. 6.4.
Blue denotes given answer choice, while red denotes target answer.
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Figure 6: More examples of coarse/fine saliency explanations. Illustration of examples presented in Sec.
A.16. Blue denotes given answer choice, while red denotes target answer.

unequal variance between the best SALKG model and the best non-SALKG model. The p-values are
shown in Tables 17-18.

If we use threshold α = 0.1 (i.e., p < 0.1), then we find that SalKG yields statistically significant
improvements on CSQA BERT+PathGen, CSQA RN+RoBERTa, and OBQA RN+RoBERTa. If
we use threshold α = 0.05 (i.e., p < 0.05), then we find that SalKG yields statistically significant
improvements on CSQA RN+RoBERTa and OBQA RN+RoBERTa. In particular, the improvement
on OBQA RN+RoBERTa is very statistically significant, with p = 0.0005. Our T-test results show
that SalKG can produce significant performance gains on a number of model-dataset settings, while
yielding competitive performance in other settings.

A.16 Case Studies: Qualitative Analysis of KG Saliency Explanations

In this section, we build upon Sec. 6.4 and illustrate more examples of coarse/fine explanations
created from BERT+PathGen on CSQA, with 1-hop or 2-hop paths as fine units. Notice that 2-hop
paths consist of two nodes and two relations, with the intermediate node replaced with a placeholder
node x, following [13]. By constructing 2-hop paths this way, the model is able to learn from more
general 2-hop paths.

First, for coarse explanations, we provide more examples of positive (i.e., useful) and negative KGs.
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• For the positive KG example, the question is What would you put in a teakettle?, the answer
choice is water, and the target answer is water. Its paths are: (1) teakettle –[is a kind
of]–> x <–[is at location]– water , (2) put –[is related to]–> x –[is used for]–> water , and (3)
teakettle –[is a kind of]–> x –[is used for]–> water .

• For the negative KG example, the question is A poet may need to go where to achieve
learning as an adult?, the answer choice is book store, and the target answer is university.
Its paths are: (1) adult <–[is related to]– x –[is related to]–> store , (2) learning <–[causes]–
x <–[is related to]– book , and (3) learning –[is related to]–> x –[is at location of]–> book .

Second, we provide more examples of fine explanations. Here, the question is What do you feel for a
someone when you comfort friend?, the answer choice is feeling bad, and target answer is care. The
positive path is: comfort <–[is the antonym of]– x –[is the antonym of]–> feel . The negative path is:
comfort –[is at location of]–> x –[is related to]–> feeling .

The examples from Sec. 6.4 are shown in Fig. 5. The examples introduced in this subsection (Sec.
A.16) are shown in Fig. 6. Again, in the coarse/fine explanations, we can roughly see that the positive
KGs/paths tend to be useful for predicting the correct answer, and vice versa. However, note that the
model’s judgment of KG/path usefulness may not necessarily align with human judgment [45].

A.17 User Studies: Quantitative Analysis of KG Saliency Explanations

To better understand the role and limitations of KG saliency explanations, we quantitatively analyze
KG saliency explanations in the context of two user studies. In both user studies, the goal is to
measure KG saliency explanations’ plausibility, i.e., how closely the explanations align with human
judgment.

Note that explanation plausibility is orthogonal to our paper’s main claims, since we argue that KG
saliency explanations can be used as additional supervision for improving performance, not that the
explanations are plausible. Nonetheless, these user studies may still provide some useful insights
about KG saliency explanations.

A.17.1 User Study 1: Coarse Saliency Explanations

The first user study measures how well the coarse (graph-level) explanations align with human
judgment of usefulness. Given a RoBERTa+PathGen model, we begin by uniformly sampling 25
high-saliency (positive) KGs and 25 low-saliency (negative) KGs from the CSQA training set. Recall
that whether a KG is high-saliency or low-saliency was determined by coarse explanations (Sec. 3.1)
generated with respect to the given model.

Graph Type Usefulness Score
High-Saliency Graph 0.929 ± 0.734
Low-Saliency Graph 0.935 ± 0.764

Table 19: Human Evaluation of Coarse
Saliency Explanations. Human-annotated useful-
ness scores for high- (positive) and low- (negative)
saliency graphs.

Note that each KG corresponds to one answer choice
of a question, so each question in CSQA has up to five
corresponding KGs. To ensure that none of the KGs
in our sample come from the same question, we ended
up pruning two high-saliency and two low-saliency
KGs, yielding a final sample of 23 high-saliency and
23 low-saliency KGs.

Since a KG can contain hundreds of paths, it is not
feasible to ask humans to evaluate the entire KG’s usefulness. Thus, as a very rough representation of
the KG, we uniformly sampled three paths from the KG. Then, for each KG, we asked ten human
annotators to score each of the three paths’ usefulness for predicting the same answer choice predicted
by the RoBERTa+PathGen model. To score the paths, all annotators were also given the question,
correct answer, and model’s predicted answer. The paths were scored on the following 0-2 scale:

• 0 = definitely not useful (i.e., this path is either irrelevant or would cause someone to NOT
select the model’s predicted answer)

• 1 = possibly useful (i.e., this path provides some support for selecting the model’s predicted
answer)

• 2 = definitely useful (i.e., this path provides strong support for selecting the model’s predicted
answer)
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Path Type Usefulness Score (All Preds) Usefulness Score (Correct Preds) Usefulness Score (Incorrect Preds)
High-Saliency Path 1.091 ± 0.805 1.298 ± 0.782 0.884 ± 0.776
Med-Saliency Path 1.222 ± 0.769 1.320 ± 0.729 1.124 ± 0.798
Low-Saliency Path 1.060 ± 0.733 1.182 ± 0.730 0.938 ± 0.717

Table 20: Human Evaluation of Fine Saliency Explanations. Human-annotated usefulness scores for high-,
median-, and low-saliency paths. We display the usefulness scores for paths from all predictions, correct
predictions, and incorrect predictions.

Finally, each KG’s score is computed as the mean of its three constituent path scores. Below, we
show the mean and standard deviation scores for high-saliency and low-saliency graphs. We find
that the two graph types have similar mean usefulness scores, while also having relatively large
standard deviations. This suggests that coarse saliency explanations do not align strongly with human
judgment. One key limitation of this study is that the three sampled paths may not be representative
of the entire KG. In the future, we plan to redesign the user study to provide annotators a more
comprehensive representation of the KG to evaluate.

A.17.2 User Study 2: Fine Saliency Explanations

The second user study measures how well the fine (path-level) explanations align with human
judgment of usefulness. Given a RoBERTa+PathGen model trained on CSQA, we begin by uniformly
sampling 25 correctly answered questions and 25 incorrectly answered questions from the CSQA
training set. For each question, we take the model’s predicted answer choice and the KG corresponding
to the predicted answer choice, then select: (1) the path with the highest fine saliency score, (2)
the path with median fine saliency score, and (3) the path with the lowest saliency score. To get
finer-grained saliency signal in this study, we consider the raw fine saliency scores, instead of the
binarized fine explanations actually used to regularize the model. Recall that a path’s fine saliency
score (Sec. 3.2) is calculated with respect to the given model.

Next, we asked ten human annotators to score each path’s usefulness for predicting the same answer
choice predicted by the RoBERTa+PathGen model. Like before, to score the paths, all annotators
were also given the question, correct answer, and model’s predicted answer. Again, the paths were
scored on the following 0-2 scale:

• 0 = definitely not useful (i.e., this path is either irrelevant or would cause someone to NOT
select the model’s predicted answer)

• 1 = possibly useful (i.e., this path provides some support for selecting the model’s predicted
answer)

• 2 = definitely useful (i.e., this path provides strong support for selecting the model’s predicted
answer)

Below, we show the mean scores for high-saliency, median-saliency, and low-saliency paths. We
display these scores for paths from all predictions, correct predictions, and incorrect predictions.
Overall, we find that the three path types have similar mean usefulness scores, although the mean
score for median-saliency paths is somewhat higher than the other two path types’. Still, the standard
deviations for all scores are relatively large, so this trend may not be meaningful. These results
suggest that fine saliency explanations do not strongly align with human judgment. Additionally, we
find that the path usefulness scores for correct predictions tend to be higher than those from incorrect
predictions. This makes sense, since, intuitively, a model is more likely to predict the correct answer
if it is using more useful knowledge as context.

A.17.3 Inter-Annotator Agreement

Here, we measure inter-annotator agreement for both user studies, using Fleiss’ kappa. For the user
study of coarse explanations, the kappa score is 0.2089, which is on the borderline of slight agreement
and fair agreement. For the user study of fine explanations, the kappa score is 0.1296, which indicates
slight agreement.

These low kappa scores show that even humans can hardly agree on whether the coarse/fine explana-
tions are useful. Therefore, it may not always be beneficial to measure explanation quality in terms of
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alignment with human judgment. Moreover, this shows that weak alignment with human judgment
does not necessarily imply poor explanation quality.

A.17.4 Analysis User Study Fleiss’ Kappa
Coarse Explanations 0.2089
Fine Explanations 0.1296

Table 21: Inter-Annotator Agreement for Ex-
planation User Studies. Using Fleiss’ kappa, we
measure the inter-annotator agreement for the hu-
man evaluation of coarse and fine saliency expla-
nations. In both settings, the inter-annotator agree-
ment is relatively low.

In our user studies, we did not find strong evidence
that coarse/fine saliency explanations align well with
human judgment. However, we also found that hu-
man annotators had very low agreement about the
usefulness of the explanations, which suggests that
alignment with human judgment may not be the best
measure of explanation quality.

In light of this, we emphasize that the user study re-
sults do not contradict our paper’s conclusions, as our work does not claim that the generated saliency
explanations are plausible. Rather, we merely claim that using KG-based saliency explanations as
additional supervision to regularize KG-augmented models can yield higher performance.

Our work appeals to the view that an explanation’s quality should be measured by how well it distills
knowledge for improving performance on some task [43]. Furthermore, the results of our user studies
are actually in line with the conclusions from [45], which found that KG-augmented models can
effectively leverage KG information to improve performance, but in a manner that may not make
sense to humans.

A.18 Training Hyperparameters

Since we consider a very large number of models and settings in our experiments, we only describe
the core hyperparameters here. Let bsz denote batch size, let lrtext denote text encoder learning rate,
let lrgraph denote graph encoder learning rate, and let lrtask denote task predictor learning rate. Across
all models (both baselines and SALKG), we generally used the following hyperparameter sweeps:
bsz = [8, 16, 32, 64], lrtext = [1e−5, 2e−5, 3e−5, 5e−5], lrgraph = [1e−4, 2e−4, 3e−4, 5e−4], and
lrtask = [1e−4, 2e−4, 3e−4, 5e−4]. For CSQA and OBQA, we set the maximum number of epochs
to 100. For CODAH, we set the maximum number of epochs to 30. For all three datasets, we used
early stopping with a patience of 5 epochs. For more details about hyperparameters, please refer to
our code repository.

A.19 Computational Costs and Resources

Since the SALKG pipeline (as well as ORACLE, RANDOM, and HEURISTIC) involves training models
across multiple stages, its computational costs are considerably greater than those from just training a
No-KG or KG model individually. Specifically, the pipeline involves: (1) training the No-KG and
KG models; (2) creating coarse/fine explanations from the No-KG and KG models; (3) training the
SALKG-Coarse model; (4) training the SALKG-Fine model; and (5) training the SALKG-Hybrid
model. In particular, using the Occl method to create fine explanations can be especially costly since
it requires n+ 1 KG model forward passes per KG, where n is the number of units in the given KG.
Also, if we tune the T or k thresholds comprehensively, then the total training time further increases.
For reference, each of our experiments was run on one NVIDIA Quadro RTX 8000 GPU.

Nonetheless, since we are the first to propose regularizing KG-augmented models with saliency
explanations, it is expected that not all components of our method will already be fully optimized.
That is, the goal of our work is simply to introduce a new paradigm for training KG-augmented models
and demonstrate its potential by showing that it can yield improved performance. Certainly, there
are various parts of the SalKG pipeline whose efficiency can be improved. For example, we could
explore faster explanation generation via some KG-specific heuristic/approximation, training SalKG-
Hybrid with coarse/fine explanations in a single step (instead of Steps 3-5 above), or generating
explanations that can cover multiple instances at a time. Such potential improvements could be
interesting directions for future work.
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A.20 Related Work (Extended)

Text-Based Explanations Many works have been proposed for explaining the predictions of
language models, especially PLMs. Although some of these works focus on abstractive (free-text)
explanations [44, 50, 64], most aim to provide extractive explanations which highlight salient tokens
in the model’s text input. Such extractive explanations typically use either gradient-based [51, 29, 10],
attention-based [40, 53, 14, 25], and occlusion-based [12, 42, 22, 30] feature attribution methods.
How feature attribution methods should be chosen remains an open question and the subject of much
recent debate [2, 59, 48, 20]. While SALKG also uses feature attribution methods (e.g., G×I) to
create extractive explanations, our study is limited to explanations regarding KG-augmented models’
graph inputs.

Graph-Based Explanations There are also methods proposing extractive explanations for graph
encoders, especially GNNs. Such explanations are designed to point out components in the graph
input that contribute most to the model’s prediction. Some GNNs use attention for pooling, which
naturally highlights nodes with higher attention weights [27, 26]. More sophisticated approaches use
post-hoc optimization to identify salient nodes [19, 62] or subgraphs [62].

Unlike individual PLMs and graph encoders, KG-augmented models take both text and graph inputs.
The KG-augmented model’s graph encoder usually computes graph embeddings via attention pooling
of nodes/paths, and the attention weights can be used to explain which nodes/paths in the input KG
are salient [31, 13, 34, 56, 60]. These KG explanations can be interpreted as identifying knowledge
in the KG that is complementary to the knowledge encoded in the PLM. However, there is little work
on how such KG explanations should be used. SALKG considers graph-based extractive explanations
of KG-augmented models, but focuses more on how explanations are used rather than created.

Learning From Model Explanations To improve the model’s learning, explanations can be used
in a diverse range of ways, including as extra supervision or regularization [43, 17, 41, 1], pruned
inputs [21, 3, 28], additional inputs [16, 8], and intermediate variables [58, 66, 44]. The most
similar work to ours is [43], which proposed training a student model to mimic a teacher model’s
predictions by regularizing the student model’s attention via text explanations created from the teacher
model. However, [43] aims to evaluate explanations, while our goal is to improve performance via
explanations. Still, methods for learning from explanations have largely focused on domains like text
and images, as opposed to graphs. To the best of our knowledge, SALKG is the first work to train
KG-augmented models using KG explanations as supervision.

A.21 Societal Impact

Our proposed SALKG approach for learning from KG explanations can be applied to any KG-
augmented model and can be adapted from any off-the-shelf saliency method. This enables KG-
augmented models to improve generalization ability and learn more efficiently from data, thus
yielding better performance while requiring less labeled data. However, in the present version of
SALKG, this generalization ability and data efficiency comes with increased computational costs, as
described in Sec. A.19. In the future, we plan to explore methods for improving generalization and
data efficiency while minimizing computational costs.
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