
Appendix

A Locality Sensitive Hashing

In this paper, we define H as a LSH function family. For every h ∈ H and h : RD → {0, 1}, we
show that:

Definition 1 (LSH Family). We say a familyH is (S, cS, P1, P2)-sensitive if it satisfies: given any
x, y ∈ RD, for any h that uniformly sample fromH, we have:

• if Sim(x, y) ≥ S then Pr(h(x) = h(y)) ≥ P1

• if Sim(x, y) ≤ cS then Pr(h(x) = h(y)) ≤ P2

Here, we denote Sim : RD × RD → R as a similarity function. P1, P2 are two probabilities with
value between 0 and 1 and P1 > P2. In practice, we would use K × L LSH functions to build L
hash tables. Each table has K independent LSH functions. In the query phase, given a query vector,
we first generate L K-bit hash values using the LSH functions. Then, we lookup the items that has
the same hash values with the query in at least one table. For details about LSH, we refer the readers
to [12, 51, 48].

In practice, a function h in the LSH familyH for similarity Sim must satisfies the following condi-
tion:

Pr(h(x) = h(y)) = f(Sim(x, y)), (5)

where function f is monotonically increasing.

Algorithm and Implementation Details Given a right LSH function h, its collision probability is
cp(x, y)=Pr(h(x)=h(y)). For both regression and classification, we use SimHash [64]. We first

normalize the data. Then collision probability of SimHash is cp(x, y)=1−
cos−1(x·y

||x||2||y||2
)

π . This
collision probability is monotonic in the inner product. Details of Simhash are shown in [12, 51, 48].
For LSH based AIPS, once we set the parameters (K,L), the constant c in Problem 2 is determined.
Furthermore, we centered the data stored in the LSH to make the query more efficient.

B Detailed Derivation

In this section, we present the derivation from GTA objective to an adaptive inner product sampling
problem as discussed in 3.2. We introduce formula for both the regression and classification.

B.1 Regression

B.1.1 Loss and Gradient

The GTA objective is:

x, y =argmin
x,y

(6)

η2
∥∥∥∥∂`(〈wt, x〉, y)∂wt

∥∥∥∥2
2

− 2η
〈
wt − w∗, ∂`(〈w

t, x〉, y)
∂wt

〉
For the linear regression model with MSE loss, we have

∂`(〈wt, x〉, y)
∂wt

= 2(wTx− y)x = 2(−y +
n∑
1

wixi)x (7)

15

Thus, the right term can be decomposed as:

x, y = argmin
x,y

wt1w
t
1

wt1w
t
2

...
wtdw

t
d

−2wt1
...

−2wtd
1

−wt1(wt1 − w∗1)
−wt1(wt2 − w∗2)

...
−wtd(wtd − w∗d)

wt1 − w∗1
...

wtd − w∗d

T

η‖x‖2x1x1
η‖x‖2x1x2

...
η‖x‖2xdxd
η‖x‖2x1y

...
η‖x‖2xdy
η‖x‖2y2
x1x1
x1x2

...
xdxd
x1y

...
xny

(8)

After normalizing ||x||2 = 1, we transform the GTA optimization problem of IMT as an adaptive
inner product sampling problem with k = 1, which can also be interpreted as a maximum inner
product problem x, y = argmax f(x, y)>g(w∗, w), where f and g are:

f(x, y) =

x1x1
x1x2

...
xdxd
x1y

...
xdy
y2

g(w∗, w) = −

(η − 1)wt1w
t
1 + wt1w

∗
1

(η − 1)wt1w
t
2 + wt1w

∗
2

...
(η − 1)wtdw

t
d + wtdw

∗
d

(1− 2η)wt1 − w∗1
...

(1− 2η)wtd − w∗d
η

(9)

In practice, building f and g requires the computation for wtiw
t
j for all i, j. To accelerate the com-

putation, we can only compute wtiw
t
i and multiply it by d times, where d is the dimension of x and

wt. In this way, we still get good empirical results as shown in section 6.

B.2 Classification

For the classification task with the logistic regression model, we modify the formula of logistic
regression in teaching objectives to make it convenient for derivation. Then, we reformulate the
optimization problem in IMT by an adaptive inner product sampling problem.

B.2.1 Loss and Gradient

The sigmoid function:

σ(s) =
es

1 + es
=

1

1 + e−s
(10)

Thus,

P (y|x) = σ(yθTx) (11)

Recall that the probability of getting the y1, ..., ym from the corresponding x1, ..., xm:

16

P (y1, ...ym|x1...xm) =

m∏
i=1

P (yi|xi) (12)

We modify the loss as a maximum likelihood loss, specifically, we want to maximize the likelihood,

max

m∏
i=1

P (yi|xi)↔ max ln(

m∏
i=1

P (yi|xi))

= max

m∑
i=1

lnP (yi|xi)

↔ min(− 1

m

m∑
i=1

lnP (yi|xi))

=
1

m

m∑
i=1

ln
1

P (yi|xi)

=
1

m

m∑
i=1

ln
1

σ(yiwTxi)

= min
1

m

m∑
i=1

ln(1 + e−yiw
T xi)

(13)

Thus

∂`(〈wt, x〉, y)
∂wt

= − xy

1 + exp(−wTt xy)
(14)

∥∥∥∥∂`(〈wt, x〉, y)∂wt

∥∥∥∥
2

=
1

1 + exp(−wTt xy)
(15)

B.2.2 Formulation

The GTA objective is:

x, y =argmin
x,y

η2
∥∥∥∥∂`(〈wt, x〉, y)∂wt

∥∥∥∥2
2

(16)

− 2η
〈
wt − w∗, ∂`(〈w

t, x〉, y)
∂wt

〉
(17)

we have
∂`(〈wt, x〉, y)

∂wt
= − xy

1 + exp(−wt Txy)∥∥∥∥∂`(〈wt, x〉, y)∂wt

∥∥∥∥
2

=
1

1 + exp(−wt Txy)

Therefore,

x, y = argmin
x,y

η2
∥∥∥∥∂`(〈wt, x〉, y)∂wt

∥∥∥∥2
2

− 2η
〈
wt − w∗, ∂`(〈w

t, x〉, y)
∂wt

〉
= argmin

x,y

η

(1 + exp(−wt Txy))2
+

2(wt − w∗)Txy
1 + exp(−wt Txy)

(18)

17

let z = xy, we can approximate the solution of the problem above by finding

x, y = arg max
z, (x,y)∈z

(w∗ − wt)T z (19)

Here, we reformulate the formula by finding the maximum inner product between g(w∗, w) =
w∗ − wt and f(x, y) = z = xy, which is an adaptive inner product sampling scheme. Empirically,
it achieves promising results as shown in Figure 6 and 7 in section 6.

C Proofs

C.1 Theorem 2

In iteration t, the omniscient teacher chose one teaching example by solving the following optimiza-
tion problem

min
x∈X ,y∈Y

η2‖∇wt`
(〈
wt, x

〉
, y
)
‖2 − 2η

〈
wt − w∗,∇wt`

(〈
wt, x

〉
, y
)〉
.

which can be reduces to the following optimization problem:

x, y = arg max
(x,y)∈S

f(x, y)>g(w∗, wt).

Suppose for a (S0, cS0, p1, p2)-sensitive hashing function familyH where we have

S0 = max
i
f(x̂, ŷ)>g(w∗, wi),

and
x̂ = γ

(
wt − w∗

)
and ŷ ∈ Y,

then we have that for any (x′, y′) ∈ S, if f(x′, y′)>g(w∗, wt) ≥ S0

Pr
(
h(f(x′, y′)) = h(g(w∗, wt))

)
≥ p1, (20)

where h is some hash function. This means that with probability at least p1, a example (xs, ys)
sampled by this hash function satisfies the following (we assume there must exist some (x, y) such
that f(x, y)>g(w∗, wt) ≥ S0):

f(xs, ys)
>g(w∗, wt) ≥ max

i
f(x̂, ŷ)>g(w∗, wi) ≥ f(x̂, ŷ)>g(w∗, wt). (21)

By transforming Eq. 21 into the GTA, we have that

min
x∈X ,y∈Y

η2‖∇wt`
(〈
wt, x

〉
, y
)
‖2 − 2η

〈
wt − w∗,∇wt`

(〈
wt, x

〉
, y
)〉

≤ η2‖∇wt`
(〈
wt, xs

〉
, ys
)
‖2 − 2η

〈
wt − w∗,∇wt`

(〈
wt, xs

〉
, ys
)〉

≤
(
η2β2

(〈wt,x̂〉,ŷ)γ
2 − 2ηβ(〈wt,x̂〉,ŷ)γ

)
‖wt − w∗‖22,

(22)

where we denote β(〈w,x〉,y) as the gradient ∇〈w,x〉` (〈w, x〉 , y) with respect to `(·, ·). Plug Eq. (22)
into the following recursion:

∥∥wt+1 − w∗
∥∥2
2
=

∥∥∥∥wt − η ∂`(〈w, x〉 , y)∂w
− w∗

∥∥∥∥2
2

=
∥∥wt − w∗∥∥2

2
+ η2

∥∥∥∥∂`(〈wt, x〉 , y)∂wt

∥∥∥∥2
2

− 2η

〈
wt − w∗, ∂`(〈w

t, x〉 , y)
∂wt

〉
.

(23)

18

Then we have that∥∥wt+1 − w∗
∥∥2
2
= min
x∈X ,y∈Y

∥∥∥∥wt − η ∂`(〈w, x〉 , y)∂w
− w∗

∥∥∥∥2
2

=
∥∥wt − w∗∥∥2

2
+ min
x∈X ,y∈Y

η2
∥∥∥∥∂`(〈wt, x〉 , y)∂wt

∥∥∥∥2
2

− 2η

〈
wt − w∗, ∂`(〈w

t, x〉 , y)
∂wt

〉
≤
(
1 + η2β2

(〈wt,x̂〉,ŷ)γ
2 − 2ηβ(〈wt,x̂〉,ŷ)γ

)
‖wt − w∗‖22

=
(
1− ηβ(〈wt,γ(wt−w∗)〉,ŷ)γ

)2 ‖wt − w∗‖22.

(24)

First we let ν(γ) = minw,y γ∇〈w,γ(w−w∗)〉` (〈w, γ (w − w∗)〉 , y).

Then we know that 0 < ν(γ) ≤ γβ(〈w,γ(w−w∗)〉,ŷ) ≤ 1
η <∞ for any w, y,

Following the previous steps, we now have

0 ≤ 1− γηβ(〈w,γ(w−w∗)〉,ŷ) ≤ 1− ην(γ),

Next, we perform a simplification of ν(γ) to ν.

Next, using Eq. (24), we have:∥∥wt+1 − w∗
∥∥2
2
≤ (1− ην)2

∥∥wt − w∗∥∥2
2
,

Finally, we show that we could obtain the exponential convergence:∥∥wt − w∗∥∥
2
≤ (1− ην)t

∥∥w0 − w∗
∥∥
2
,

The student needs
(
log 1

1−ην

)−1
log ‖w

0−w∗‖
ε samples to approximate w∗ with at most ε in Eu-

clidean distance. It also indicates that with probability at least p1, the LST teacher can achieve
exponential teachability in the iteration t. In order to achieve exponential teachiability in T itera-
tions, the sufficient condition in Eq. (22) must be satisfied in all T iterations. The probability is at
least pT1 .

D Motivating Example Settings

In the toy example shown in Section 1, we introduce a teaching task that helps students identifying
COVID-19 CT images. We use the COVID-CT [53] dataset containing COVID-19 or regular CTs
that confirmed by the clinic. We random sample 50 positive examples and 50 negative samples.
Then, we use a pre-trained DenseNet [65] shown in [53] to generate 1024 dim features and the
confidence score for each image. After then, we regard the weights in the last layer of DenseNet as
w∗ shown in Section 3.2. Finally, we initialize a linear model with random weights and perform LST
and IMT by feeding a feature-score pair from a dataset image. We can observe LST’s superiority
over IMT in the time wise convergence.

E Locality Sensitive Teaching for Classification

We also present experiments of our LST on two classification datasets. The first classification dataset
is a synthetic dataset used in [5]. Specifically, we combine two Gaussian distribution centered in
(0.6,0.6) (label 1) and (-0.6,-0.6) (label -1) to form a dataset. This dataset is used for observing
the training behavior, and therefore, no test set is prepared. The second classification dataset is
the ALOI [66] dataset. We use its LIBSVM [61] version, which contains 108,000 samples labeled
in 1000 classes. Each sample has 128 attributes. Following [67], we trim the ALOI dataset as a
binary classification set by grouping classes 1,2 and 3,4,...1000. We use ALOI only for algorithm
level evaluation as it causes memory exhaustion on IoT devices. We randomly split 30% of samples

19

0 0.5 1 1.5 2 2.5 3

Iteration 10
4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

T
ra

in
 l
o

s
s

Train loss versus iteration

Stochastic SGD

LST

IMT

(a)

0 2 4 6 8 10

Train time (log)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

T
ra

in
 l
o
s
s

Train loss versus time

(b)

Figure 6: (a) Train loss versus iteration in synthetic dataset. (b) Train loss versus time in synthetic dataset. LST
outperforms IMT and Stocastic SGD in leading towards fast and better convergence.

0 50 100 150 200 250 300

Iteration

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

T
ra

in
 L

o
s
s

Train loss versus iteration

Stochastic SGD

LST

(a)

0 50 100 150 200 250 300

Iteration

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

T
e

s
t

lo
s
s

Test loss versus iteration

(b)

Figure 7: Train loss (a) or test loss (b) versus iteration in ALOI dataset. IMT is infeasible in this dataset for
the unaffordable time spent in selecting teaching examples. But our LST performs teaching via adaptive inner
product sampling.

in ALOI as test set while others form the train set. We first present the performance of the LST
algorithm in teaching classification models towards fast convergence. We perform logistic regression
with cross-entropy loss to compare the performance of LST, IMT, and stochastic SGD. In each step,
the three algorithms above feed a sample into the learner model. The learner model then performs
gradient descent to update the weights.

Synthetic dataset. In Figure 6, we plot the curves of train loss versus iteration and train loss versus
time of the learner models taught by LST, the IMT, and stochastic SGD. From (a), we observe
that compared to stochastic SGD both LST and the current IMT algorithm teach the learner model
to converge faster in iteration. The learner model taught by the current IMT and stochastic SGD
converges to the same loss level while LST’s learner convergences to a lower loss than them. From
(b), we observe that LST teaches the learner model 2000× faster than the IMT to achieve the same
loss during training. Also, similar to (a), LST’s learner model converges to a lower loss, indicating
better optimization performance.

These results provide a case to answer the first and second questions. 1. LST is more effective on
average for it avoids the local minimum and achieves a lower loss level in both train and test set. 2.
Compared with IMT, LST can achieve teaching effect with 2000× acceleration in teaching speed
during each iteration.

ALOI dataset. In the ALOI dataset, the IMT is infeasible due to the memory exhaustion in Nvidia
V100 GPU. Given the conditions that V100 has 32G memory, it is shown that the IMT algorithm
may be infeasible when training on this real classification dataset via a single GPU. However, our
LST still works in a fast convergence task. In Figure 7, we plot: (a) the train loss versus iteration,
(b) the test loss versus iteration, of the learner (logistic regression model) taught by three teaching
approaches. From (a) and (b), we observe that LST’s learner achieves lower train or test loss than
stochastic SGD in each iteration, indicating its teachability. This classification experiment answers
the third question partially. When the IMT is unscalable and infeasible in some real-world datasets
due to the large time and space complexity. LST still accomplishes the iterative teaching procedure
and outperforms stochastic SGD with lower train and test loss in each iteration.

20

0 500 1000 1500 2000

Iteration

0

0.1

0.2

0.3

0.4

T
ra

in
 l
o

s
s

Train loss versus iteration

K=2, L=300

K=9, L=30000

K=5, L=3000

Stochastic SGD

(a)

0 0.5 1 1.5 2 2.5 3

Train time

0

0.1

0.2

0.3

0.4

T
ra

in
 l
o
s
s

Train loss versus time

K=2, L=300

K=9, L=30000

K=5, L=3000

Stochastic SGD

(b)

Figure 8: (a) Train loss versus iteration, (b) train loss versus time (in seconds), of LST in space ga dataset with
different K and L.

F Parameter Study

In this section, we perform a study on two parameters of our LST. The number of random projections
K and the number of tables L. In Figure 8, we plot the training loss versus iteration and time in
space ga dataset. From (a), we observe that K = 2 and L = 300 is enough for LST to outperform
stochastic SGD in iteration-wise convergence. Also, as we increase the K and L, the performance
of LST becomes better. This effect is reasonable as more random projections may introduce a lower
approximation error. From (b), we observe that, with the appropriate K and L, LST converges with
less time than stochastic SGD. Meanwhile, lower K or L may lead to less time-wise efficiency than
stochastic SGD due to the performance drop in iteration-wise convergence.

The parameter study provides an answer to the two questions. First, appropriate K and L out-
performs stochastic SGD in iteration-wise and time-wise convergence. Second, different K and L
changes the performance of LST, but the optimal parameter remains stable and robust over different
teaching datasets.

G IoT Settings

For evaluation, NVIDIA TX2 [57], a device with a SoC consisting of a 256-core Pascal GPU and
6-cores CPU targeting IoT applications [68, 69] is used as the platform. Following the hardware
configuration in [69], we pre-set NVIDIA TX2 in the max-N mode to make full use of the computing
resource. Specifically, the measured energy and latency come from the output of sysfs [70] of the
embedded INA3221 [71] power rails monitor in NVIDIA TX2.

21

