
A Additional Material - Noiseless setting

In this section we present additional material associated to the noiseless setting. Section A.1 presents
refined sample complexity results when additional assumptions are placed on the graph G̃ or the design
matrices {Av}v∈V \{1}. Section A.2 presents details related to the distributed ADMM algorithm
presented within Section 2.3 of the main body.

A.1 Refined Theoretical Results for Total Variation Basis Pursuit

In this section we present refined results for Total Variation Basis Pursuit. Section A.1.1 consider the
case of a tree graph with different design matrices at each node. Section A.1.2 considers the case of a
tree graph with identical design matrices at non-root agents.

A.1.1 Total Variation Basis Pursuit with known Tree Graph

Let us now consider the case where G is a known tree graph. The sample complexity in this case is
summarised within the follow Theorem.
Theorem 3. Suppose G is a tree graph, the signals {x?v}v∈V are (G, s, s′)-sparse and matrices
satisfy Av = 1√

Nv
Ãv where {Ãv}v∈V have i.i.d. sub-Gaussian entries. Fix ε > 0. If

NRoot & max{s, n2s′}
(

log(d) + log(1/ε)
)

and

NNon-root & max
{
n,Deg(V \{1})2Diam(G)2

}
s′
(

log(d) + log(n/ε)
)

then with probability greater than 1−ε the solution {xTV BPv }v∈V withG = G̃ is unique and satisfies
xTV BPv = x?v for all v ∈ V .

Proof. See Appendix D.5.

The sample complexity listed within the second row of Table 2 is then arrived at by simply summing
up the above bound to arrive at NTotal Samples = O(s+ max{n2s′, nDeg(V \{1})2Diam(G)2}s′). We
then note that Theorem 1 within the main body of the work is a direct consequence of Theorem 3.
We formally presented these steps within the following proof.

Proof of Theorem 1. Let us consider a signal {x?v}v∈V that is (G, s, s′)−sparse with respect to a
general graph G. We then see that the signal is then (G̃, s,Diam(G)s′)-sparse when G̃ is a star
topology. Using Theorem 3 there after (swapping G for G̃ and s′ for Diam(G)s′) and noting that
both Diam(G̃) = 1 and the degree of the non-root agents is Deg(V \{1}) = 1 yields the result.

A.1.2 Tree Graph with Identical Matrices for Non-root Agents

Let us now consider when non-root agents have the same sensing matrices i.e Av = Aw for
v, w ∈ V \{1}. The result is then summarised within the follow Theorem 4.
Theorem 4. Suppose G is a tree graph, {x?v}v∈V is (G, s, s′)-sparse, Av = 1√

NNon-root
ANon-root for

v 6= 1 and A1 = 1√
N1
ARoot. Assume that ARoot, ANon-root each have i.i.d. sub-Gaussian entries. Fix

ε > 0. If

NRoot & max{s,Deg(1)2s′}
(

log(d) + log(1/ε)
)

and

NNon-root & Deg(1)2s′
(

log(d) + log(1/ε)
)

then with probability greater than 1 − ε the solution to TVBP with G̃ = G is unique and satisfies
xTV BPv = x?v for all v ∈ V .

Proof. See Appendix D.4.

The entry within the third row of Table 2 is then arrived at by summing up the above bound to arive
at NTotal Samples = O(s+ nDeg(1)2s′).
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A.2 Distributed ADMM Algorithm

In this section present the Distributed ADMM algorithm for solving the Total Variation Basis
Pursuit problem (1). We begin by reformulating the problem into an consensus optimisation form.
Specifically, with ∆e = xv − xw for e = {v, w} ∈ E, we consider

min
xv,v∈V

‖x1‖1 +
∑
e∈V
‖∆e‖1 subject to

Avxv = Yv for all v ∈ V and xv − xw = ∆e for all e = {v, w} ∈ E.
We then propose the Alternating Direction Method of Multipliers (ADMM) to solve the above. The
key step is consider the augmented Lagrangian from dualizing the consensus constraint which, with
‖x‖1 = ‖x1‖1 +

∑
e∈E ‖∆e‖1, is for ρ > 0

Lρ({xv}v∈V ,{∆e}e∈E , {γe}e∈E)=‖x‖1 +
∑

e={v,w}∈E

ρ

2
‖xv − xw −∆e‖2 + 〈γe, xv − xw −∆e〉.

The ADMM algorithm then proceeds to minimise Lρ with respect to {xv}v∈V , then {∆e}e∈E ,
followed by a ascent step in the dual variable {γe}e∈E . Full details of the ADMM updates have been
given in Appendix C. Each step can be computed in closed form, expect for the update for x1 which
requires solving a basis pursuit problem with an `2 term in the objective. This can be solved to a
high precision efficiently by utilising a simple dual method, see [35, Appendix B]. The additional
computational required by the root node in this case aligns with the framework we consider, since we
assume the root node also has an additional number of samples N1.

The theoretical convergence guarantees of ADMM have gained much attention lately due to the wide
applicability of ADMM to distributed optimisation problems [4, 18, 20]. While a full investigation
of the convergence guarantees of ADMM in this instance is outside the scope of this work, we note
for convex objectives with proximal gradient steps computed exactly, ADMM has been shown to
converge at worst case a polynomial rate of order 1/t [18]. A number of works have shown linear
convergence under additional assumptions which include full column rank on the constraints or
strong convexity, which are not satisfied in our case 1. Although, if one considers a proximal variant
of ADMM with an additional smoothing term, linear convergence can be shown in the absence of the
column rank constraint [20]. The convergence of ADMM can be sensitive hyperparameter choice ρ,
which has motivated a number of adaptive schemes, see for instance [19].

B Additional Material - Noisy Setting

In this section we present additional material associated to the noisy setting within the main body of
the manuscript. Section B.1 presents details for experiments on simulated data. Section B.2 details
for the experiments on real data.

B.1 Details for Total Variation Basis Pursuit Denoising - Simulated Data

We now provide some details related to the Simulated Data experiments in Section 3.1 the manuscript.
Group Lasso used best regularisation from between [10−6, 10−2]. Dirty model regularisation followed
[24] with (in their notation) 5 × 5 (log -scale) grid search for λg and λb with λg/λb ∈ [10−3, 10],
λb = c

√
7/200 and c ∈ [10−2, 10]. Dirty model was fit using MALSAR [56]. The group Lasso

variants used normalised matrices Av/
√
Nv and responses yv/

√
Nv. Total Variation Basis Pursuit

Denoising parameter was η =
√

200× n0.1. Each point and error bars from 5 replications.

B.2 Data Preparation and Experiment Parameters for AVIRIS Application

In this section we present details associated to the application of Total Variation Basis Pursuit
Denoising TVBPD (5) to the AVIRIS Cuprite dataset. We begin with Figure 5, which presents the
sector of the AVIRIS Cuprite dataset used, as well as the 80 x 80 pixel subset portion sub-sampled

1The constraint dualised by ADMM, xv − xw = ∆e for e = {v, w} ∈ E, can be denoted in terms the
signed incident matrix of the graph. This is a linear constraint, but the signed incident matrix does not have full
column rank.
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for our experiment. We note each pixel in the dataset is associated to 224 spectral bands between 400
and 2500 nm and, in short, the objective is to decompose the spectrum of each pixel into a sparse
linear combination known mineral spectra. The specific bandwidth presented in Figure 5 demonstrate
that this area maybe a region of interest. Following [22, 23], we construct a spectral library ALib
by randomly sampling 240 mineral from the USGS library splib07 2. After cleaning the AVIRIS
dataset and the library we are left with Nv = 184 spectral bands for each pixel v ∈ V , and thus,
Av = ALib ∈ R184×240 and yv ∈ R184. We now go on to describe more detail the experimental steps.
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Figure 5: Left: Sector f970619t01p02_r04_sc03.a.rfl of AVIRIS data set at bandwidth of
557.07 nm. Red square indicates 80 × 80 portion of the sector used as the data set. Right: Red
squared section zoomed in.

Cleaning AVIRIS Cuprite Dataset We followed [23] and removed the spectral bands 1-2, 105-
115, 150-170 and 223-224, which are due to water absorption and low signal to noise. This would
leave us with 188 spectral bands, although additional bands were removed due to large values within
the USGS Library, see next paragraph.

Sub-sampling USGS Library We took a random sample of 240 minerals from splib07 library,
that are specifically calibrated to the AVIRIS 1997 data set i.e. have been resampled at the appropriate
bandwidths. A number of the spectrum for the minerals were corrupted or had large reflectance
values for particular wavelengths e.g. greater than 1034. We therefore restricted ourselves to minerals
that had less than 10 corrupted wavelengths. After sub-sampling, any wavelengths with a corrupted
value (if it contained a value greater than 10) were removed. This left us with 184 spectral bands.

Algorithm Parameters To apply Basis Pursuit Denoising independently to each pixel, we used
the SPGL1 python package, which can be found at https://pypi.org/project/spgl1/. To
solve the Total Variation Basis Pursuit Denoising problem (5), we used the Alternating Direction
Methods of Multiplers (ADMM) algorithm for `1-problems in [54], specifically the inexact method
(2.16). We applied this algorithm to the normalised data i.e. dividing by the matrix and response
vector by the square root of the total number of samples (4 pixels × 184 spectral bands). We ran the
algorithm for 500 iterations with parameters (in the notation of [54]) τ = 0.1, β = 2, γ = 0.1 and
δ = 0.001. We note that directly applying the SPGL1 python package to the Total Variation Basis
Pursuit Denoising problem (5), resulted in instabilities when choosing η < 0.2. We chose η = 0.001
for both independent Basis Pursuit Denoising case and the Total Variation Basis Pursuit Denoising
(5), following the regularisation choice in [23]. Meanwhile, the group Lasso was fit using scikit-learn
with regularisation 0.001, and the SUNnSAL algorithm [2] with regularisation 0.001 was applied
using the python implementation which can be found at https://github.com/Laadr/SUNSAL.
We note when using SUNnSAL it is common to perform a computationally expensive pre-processing

2https://crustal.usgs.gov/speclab/QueryAll07a.php
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step involving a non-convex objective, see [22, 23]. This was not performed in this case, as all of the
other methods did not pre-process the data.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Pyrophyllite - Total Variation (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Hematite - Total Variation (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Andradite - Total Variation (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Polyhalite - Total Variation (0.001)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Pyrophyllite - Independent (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Hematite - Independent (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Andradite - Independent (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Polyhalite - Independent (0.001)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Pyrophyllite - Group Lasso (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Hematite - Group Lasso (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Andradite - Group Lasso (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Polyhalite - Group Lasso (0.001)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Pyrophyllite - SUnSAL (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Hematite - SUnSAL (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Andradite - SUnSAL (0.001)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Polyhalite - SUnSAL (0.001)

Figure 6: Coefficients associated to the mineral Pyrophyllite (Left), Hematite (Left-Middle), Andradite
(right-middle), and Polyhalite (Right). Methods considered are: Top: Total Variation Basis Pursuit
Denoising applied to 2x2 pixels simultaneously with η = 0.001; Middle-Top: Basis Pursuit Denoising
applied independently to each pixel with η = 0.001. Middle-Bottom: group Lasso (jointly penalised
all coefficients) applied to 2x2 pixels simultaneously with regularisation 0.001. Bottom: SUNSAL
with regularisation of 0.001. Yellow pixels indicate higher values.

C Distributed ADMM Updates for Total Variation Basis Pursuit

In this section we more precisely describe the Distributed ADMM algorithm for fitting the Total
Variation Basis Pursuit problem (11). We recall the consensus optimisation formulation of the Total
Variation Basis Pursuit problem is as follows

min
xv,v∈V

‖x1‖1 +
∑
e∈V
‖∆e‖1 subject to

Avxv = Yv for all v ∈ V
xv − xw = ∆e for all e = {v, w} ∈ E.
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where we consider the Augmented Lagrangian from dualizing the consensus constraint

Lρ({xv}v∈V , {∆e}e∈E , {γe}e∈E) = ‖x1‖1
+

∑
e={v,w}∈E

‖∆e‖1 +
ρ

2
‖xv − xw −∆e‖2 + 〈γe, xv − xw −∆e〉.

Now the ADMM algorithm initialized at
(
{x1

v}v∈V , {∆1
e}e∈E , {γ1

e}e∈E
)

then proceeds to update
the iterates for t ≥ 1 as

xt+1
v = arg min

xt
v

Lρ({xtv}v∈V , {∆t
e}e∈E , {γte}e∈E) subject to Avxv = Yv for v ∈ V (6)

∆t+1
e = arg min

∆t
v

Lρ({xt+1
v }v∈V , {∆t

e}e∈E , {γte}e∈E) for e ∈ E

γt+1
e = γte + ρ

(
xv − xw −∆e

)
for e ∈ E

We now set to show how each of the above updates can be implemented in a manner that respects the
network topology due to the Augmented Lagrangian Lρ decoupling across the network. These will
be precisely described within the following sections. For clarity each update will be given its own
subsection and the super script notation i.e. xtv will be suppressed.

C.1 Updating {xv}

The updates for {xv}v∈V take two different forms depending on whether v is associated to the root
node i.e. v = 1 or otherwise. We begin with the case of a root note.

C.1.1 Root Node x1

The update for x1 in the ADMM algorithm (6) requires solving

min
x1

‖x1‖1 +
∑

e=(i,j)∈E:i=1

ρ

2
‖x1 − xj −∆e‖22 + 〈γe, x1 − xj −∆e〉

+
∑

e=(i,j)∈E:j=1

ρ

2
‖xj − x1 −∆e‖22 + 〈γe, xj − x1 −∆e〉

subject to A1x1 = y1

where we note the two summations in the objective arise from the orientation of the edges within the
network. This is then equivalent to considering solve a problem of the form

min
x
‖x‖1 + ν>x+ c‖x‖22 subject to Ax = b (7)

with parameters A = A1, b = y1, c = Deg(1)ρ2 where Deg(1) is the degree of the root node 1 and
ν =

∑
e=(i,j)∈E:i=1 γe − ρ(xi + ∆e) +

∑
e=(i,j)∈E:j=1−γe − ρ(xj + ∆e).

To solve the problem (7) we adopt the approach used in [35, Appendix B] to an optimisation problem
of the same form. That is, we consider the dual problem

max
λ

λ>b+

p∑
i=1

inf
xi

(
|xi|+ ui(λ)xi + cx2

i

)
where the dual variable λ ∈ Rn and u(λ) = ν − A>λ. The gradient of the above problem is
then b − Ax(λ) where x(λ) = (x(λ)1, . . . , x(λ)p) is constructed from the unique minimiser of
|xi|+ ui(λ)xi + cx2

i for i = 1, . . . , p which is x(λ)i. This can then be written in closed form as

xi(λ) =


0 if − 1 ≤ ui(λ) ≤ 1

−(ui(λ) + 1)/2c if ui(λ) < −1

−(ui(λ)− 1)/2c if ui(λ) > 1

Given a solution λ? the solution to the original problem is then x(λ?). To solve the Dual problem
we use the Barzilai - Borwein algorithm [41] with warm restarts using the dual variable from the
previous iteration.
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C.1.2 Non-Root Node

In the case of xv which is not the root node i.e. v 6= 1, we require solving the optimisation problem

min
xv

∑
e=(i,j)∈E:i=v

ρ

2
‖xv − xj −∆e‖22 + 〈γe, xv − xj −∆e〉

+
∑

e=(i,j)∈E:j=v

ρ

2
‖xi − xv −∆e‖22 + 〈γe, xi − xv −∆e〉

subject to Avxv = yv

This minimisation can be written in the form
min
x
‖x‖22 + 〈a, x〉 subject to (8)

Ax = b

with parameters A = Av , b = yv and
a = 2

Deg(v)

((∑
e∈{i,j}:i=v −∆e−xj+ γe

ρ

)
+
(∑

e∈{i,j}:j=v ∆e−xi− γe
ρ

))
. Since ‖x‖22+〈a, x〉 =

‖x+ a
2‖

2
2 − 1

2‖a‖
2
2, This leads to the equivalent optimisation problem

min
u
‖u‖22 subject to

Au = b+A
a

2
.

This is exactly the least norm solution to a linear system, and is solved by u = A†(b + Aa
2 )

where A† is the Moore-Penrose pseudo-inverse. We then recover the solution to (8) by setting
x = A†(b+Aa

2 )− a
2 .

C.2 Updating {∆e}e∈V

For each edge e = (i, j) ∈ E the updates require solving

min
∆e

‖∆e‖1 +
ρ

2
‖xi − xj −∆e‖22 − 〈γe,∆e〉

which is a equivalent to

min
∆e

‖∆e‖1 +
ρ

2
‖∆e‖22 − 〈∆e, γe + zi − zj〉.

This is a shrinkage step and thus the minimiser can be written as

∆e =


0 if |γe + ρ(zi − zj)| < 1
1
ρ

(
γe + ρ(zi − zj)− 1

)
if γe + ρ(zi − zj) > 1

1
ρ

(
γe + ρ(zi − zj) + 1

)
if γe + ρ(zi − zj) < −1

D Proofs For Noiseless Case

In this section we present proofs for the results associated to Total Variation Basis Pursuit (TVBP)
(1). This section is then structured as follows. Section D.1 presents technical lemmas associated
to the Restricted Isometry Property of matrices. Section D.2 introduces the Basis Pursuit problem.
Section D.3 demonstrates how the Total Variation Basis Pursuit (TVBP) problem can be reformulated
into a Basis Pursuit problem. Section D.4 presents the proof of Theorem 4. Section D.5 presents the
proof of Theorem 3.

D.1 Technical Lemmas for the Restricted Isometry Property

Recall that a matrix A ∈ RN×d satisfies Restricted Isometry Property at level k if there exists a
constant δk ∈ [0, 1) such that for any k-sparse vector x ∈ Rp, ‖x‖0 ≤ k we have

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22
Now, Theorem 9.2 from [17] demonstrates that a sub-Gaussian matrix can satisfy the Restricted
Isometry Property in high probability provided the sample size is sufficiently large. This is presented
within the following theorem.
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Theorem 5. Let A ∈ RN×p be sub-Gaussian matrix with independent and identically distributed
entries. Then there exists a constant C > 0 (depending on sub-Gaussian parameters β and κ)
such that the Restricted Isometry Constant of A/

√
N satisfies δk ≤ δ with probability atleast 1− ε

provided

N ≥ Cδ−2
(
k log(ep/k) + log(ε/2)

)
.

We will also make use of the following assumption.
Proposition 1. Let u,v ∈ Rp be vectors such that ‖u‖0 ≤ s and ‖v‖0 ≤ k, and matrix A ∈ RN×p
satisfy Restricted Isometry Property up to s+ k with constant δs+k. If the support of the vectors is
disjoint Supp(v) ∩ Supp(u) = ∅ then

|〈Au, Av〉| ≤ δs+k‖u‖‖v‖2

We also make use of the following lemma which is can be found as Lemma 11 in the Supplementary
material of [30]. It will be useful to denote the `1 ball as B1(r) = {x ∈ Rd : ‖x‖1 ≤ r} and similarly
for `2 and `0 balls as B2(r),B0(r), respectively.
Lemma 1. For any integer s ≥ 1, we have

B1(
√
s) ∩ B2(1) ⊆ cl

{
conv

{
B0(s) ∩ B2

(
3
)}}

where cl and conv denote the topological closure and convex hull, respectively.

D.2 Basis Pursuit

For completeness we recall some fundamental properties of the Basis Pursuit problem. Consider a
sparse signal x?, sensing matrix A ∈ RN×d and response y = Ax?. The Basis Pursuit problem is
then defined as

‖x‖1 subject to (9)
Ax = y.

Denote the solution to the above as xBP. Suppose that x? is supported on the set S ⊂ {1, . . . , d}.
Then it is well know [17] that xBP is both unique and satisfies xBP = x? if and only if A satisfies the
restricted null space property with respect to S, that is,

2‖(x)S‖1 ≤ ‖x‖1 for any x ∈ Ker(A)\{0}. (10)

Following the proof sketch in the manuscript, we now proceed to reformulate the Total Variation
Pursuit Problem (1) into a Basis Pursuit problem (9).

D.3 Reformulating Total Variation Basis Pursuit into Basis Pursuit

We now describe the steps in reformulating the Total Variation Basis Pursuit Denoising prob-
lem (1) into a Basis Pursuit problem (9). We begin by introducing some notation. For node
v ∈ V , denote the set of edges making a path from node v to the root node 1 by π(v) =
{{v, w1}, {w1, w2}, . . . , {wkv−1, wkv}, {wkv , 1}} ⊆ E where kv ≥ 1 is the number of intermediate
edges. In the case kv = 0 there is only a single edge and so we write π(v) = {v, 1} ∈ E. Meanwhile,
for the root node itself v = 1 we simply have the singleton π(v) = π(1) = {1}, and thus, we
have the root node included v ∈ π(v) but no edges i.e. e /∈ π(v) for any e ∈ E. For each edge
e = {v, w} ∈ E the difference is denoted ∆e = xv−xw, and so the vector associated to any node xv
can be decomposed into the root node x1 plus the differences along the path xv = x1 +

∑
e∈π(v) ∆e.

Similarly, the signal associated to each node x?v can be decomposed into differences of signals
associated to the edges e = {v, w} ∈ E with ∆?

e = x?v − x?w.

With this notation we can then reformulate (1) in terms of x1 and {∆e}e∈E as follows

min
x1,{∆e}e∈E

‖x1‖1 +
∑

e=(v,w)∈E

‖∆e‖1 subject to (11)

Av

(
x1 +

∑
e∈π(v)

∆e

)
= yv ∀v ∈ V.
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Optimisation problem (11) is now in terms of a standard basis pursuit problem (2) with, if edges are
labeled with integers, the vector x= (x1,∆1, . . . ,∆|E|), true signal x? = (x?1,∆

?
1, . . . ,∆

?
|E|), and

a matrix A. To be precise, the matrix A can be defined in terms of blocks A = (H>1 , . . . ,H
>
n )>∈

R(
∑

v∈V Nv)×np with each block Hv ∈ RNv×np for v ∈ V . Each block then defined as Hv =
(Hv1, Hv2, . . . ,Hvn) with, for i= 1, . . . , n, the matrix Hvi =Av if node i is included on the path
going from node v to the root node 1 i.e. i∈π(v), and 0 otherwise.

The signal associated to the reformulated problem (11) remains sparse and is supported on a set S
with a particular structure due to encoding the sparsity of the differences {∆?

e}e∈E . Specifically, the
set S contains the entries from {1, . . . , p} aligned with S1 and, labeling the edges e ∈ E with the
integers i = 1, . . . , |E|, the elements from {1, . . . , p} associated to Se offset by i× p. Now that (1)
is in terms of a Basis Pursuit problem, its success relies on the matrix A satisfying the Restricted
Null Space Property (10) with respect to the sparsity set S. This can be rewritten in terms of x1 and
{∆e}e∈E as follows

‖(x1)S1
‖1 +

∑
e∈E
‖(∆e)Se

‖1 ≤
1

2

(
‖x1‖1 +

∑
e∈E
‖∆e‖1

)
(12)

for x1 +
∑
e∈π(v)

∆e ∈ Ker(Av)\{0} for v ∈ V.

From now on we will let S1 denote the largest s entries of x1, and for e ∈ E the set Se as the largest
s′ entries of ∆e. We that we begin with the proof of Theorem 4 in Section D.4, as the analysis of
matching non-root matrices Av = Aw for v, w 6= 1 is simpler. This will then be followed by the
proof of Theorem 3 in Section D.5.

D.4 Proof of Theorem 4

We now provide the proof of Theorem 4. We begin with the following lemma which follows a
standard shelling technique, see for instance [17].

Lemma 2. Suppose the matrix B ∈ RN×d satisfies Restricted Isometry Property up-to sparsity level
d ≥ k > 0 with constant δk ∈ [0, 1). If x ∈ Ker(B)\{0} then for any U ⊆ {1, . . . , d} such that
|U | = k we have

‖(x)U‖2 ≤
δ2k

1− δk
1√
k
‖x‖1

Proof of Lemma 2. Noting that BxU = −BxUc and using the restricted isometry property of B, we
can bound

(1− δk)‖(x)U‖22 ≤ ‖B(x)U‖22 = −〈B(x)U , B(x)Uc〉.

Now decompose U c into disjoint sets {Uj}j=1,2,... of size k so that UC = U1 ∪ U2 ∪ . . . . Structure
the sets so that U1 is the largest k entries of (x)Uc , U2 is the largest k entries of (x)(U∪U1)c

and so on. Note that for j = 2, . . . , that ‖(x)Bj
‖2 ≤

√
k‖(x)Bj

‖∞ ≤ 1√
k
‖(x)Bj−1

‖1. While
‖(x)B1‖2 ≤ 1√

k
‖xU‖1. Returning to the equation above this allows us to bound with Proposition 1,

(1− δk)‖(x)U‖22 ≤ δ2k‖(x)U‖2
∑
j≥1

‖(x)Bj
‖2

≤ δ2k√
k
‖(x)U‖2

(
‖(x)U‖1 +

∑
j≥1

‖(x)Bj−1‖1
)

=
δ2k√
k
‖(x)U‖2‖x‖1

Dividing both sides by (1− δk)‖(x)U‖2 yields the result.

We now proceed to the proof of Theorem 4.
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Proof of Theorem 4. Recall that it is sufficient to demonstrate that the restricted null space property
for the reformulated problem (12) is satisfied with high probability. In this case we then have
Av = 1√

NNon-root
ANon-Root for v ∈ V \{0}, and A1 = 1√

NRoot
ARoot. We then begin by assuming

that 1√
NNon-root

ANon-Root satisfies Restricted Isometry Property up-to sparsity level k′ with constant
δNon-root
k′ ∈ [0, 1) and 1√

NRoot
ARoot satisfies Restricted Isometry Property up-to sparsity level k with

constant δRoot
k ∈ [0, 1). Let us also suppose that k ≥ k′. We will then return to satisfying this

condition with high-probability at the end of the proof.

The proof proceeds by bounding ‖(x1)S1
‖1, ‖(∆)Se

‖1 by using that x = (x1,∆1, . . . ,∆|E|) ∈
Ker(A)\{0}. We split into three cases: the root note ‖(x1)S1‖1; the term ‖(∆)Se‖1 for edges
e = (v, w) not directly connected to the root v, w 6= 1; and the term ‖(∆)Se‖1 for edges e = (v, w)
joined to the root v = 1 or w = 1. Each is now considered in its own paragraph, with the combination
in a fourth paragraph.

Root Node Note that x1 ∈ Ker(ARoot)\{0} therefore from Lemma 2 and the inequality ‖(x1)S1
‖1 ≤√

s‖(x1)S1
‖2 we get the upper bound

‖(x1)S1‖1 ≤
δRoot
2s

1− δRoot
s

‖x1‖1,

as required.

Edges not connected to the root For any edge ẽ = (v, w) ∈ E not connected to the root node so
v, w 6= 1, note we have ∆ẽ ∈ Ker(ANon-root)\{0}. To see this, each vector is in the same null-space
x1 +

∑
e∈π(v) ∆e, x1 +

∑
e∈π(w) ∆e ∈ Ker(ANon-root)\{0} so their difference is also. That is if w

is the furthest from the root node we can write x1 +
∑
e∈π(w) ∆e = x1 +

∑
e∈π(v) ∆e + ∆ẽ and

therefore

∆ẽ =
(
x1 +

∑
e∈π(w)

∆e

)
−
(
x1 +

∑
e∈π(v)

∆e

)
∈ Ker(ANon-root).

An identical calculation can be done for the case of when v is furthest from the root node. Therefore
Lemma 2 yields the upper bound

‖(∆ẽ)Sẽ
‖1 ≤

δNon-root
2s′

1− δNon-root
s′

‖∆ẽ‖1,

as required.

Edges connected to the root For edges connecting the root node so ẽ = (v, w) ∈ E such that v = 1
or w = 1, begin by adding and subtracting (x1)Sẽ

to decompose

‖(∆ẽ)Sẽ
‖1 ≤ ‖(x1)Sẽ

‖1 + ‖(x1 + ∆ẽ)Sẽ
‖1.

Now if |Sẽ| ≤ k′ we have from Lemma 2 the inequality ‖(x1)Sẽ
‖1 ≤

√
k′‖xSẽ

‖2 ≤
δRoot
2k′

1−δRoot
k′
‖x1‖1

since x1 ∈ Ker(ARoot)\{0}. As well as from the fact that x1 + ∆ẽ ∈ Ker(ANon-root)\{0} the upper

bound ‖(x1 + ∆ẽ)Sẽ
‖1 ≤

δNon-root
2k′

1−δNon-root
k′

‖x1 + ∆ẽ‖1. Combining these bounds we get

‖(∆ẽ)Sẽ
‖1 ≤

δRoot
2k′

1− δRoot
k′
‖x1‖1 +

δNon-root
2k′

1− δNon-root
k′

‖x1 + ∆ẽ‖1

≤
( δRoot

2k′

1− δRootk′
+

δNon-root
2k′

1− δNon-root
k′

)
‖x1‖1 +

δNon-root
2k′

1− δNon-root
k′

‖∆ẽ‖1

Combining the upper bounds Let us now combine the upper bounds for ‖(x1)S1‖1 and ‖(∆ẽ)Se‖1
with e ∈ E. Summing them up and noting that there are Deg(1) edges connecting the root yields

‖(x1)S1‖1 +
∑
e∈E
‖(∆e)Se‖1 ≤

( δRoot
2k

1− δRootk

+ Deg(1)
δRoot
2k′

1− δRootk′
+ Deg(1)

δNon-root
2k′

1− δNon-root
k′

)
︸ ︷︷ ︸

Multiplicative Term

×
(
‖x1‖1 +

∑
e∈E
‖∆e‖1

)
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We then require Multiplicative Term ≤ 1/2 for the restricted Null space condition to be satisfied.
Now, since δRoot

2k ≥ δRoot
k and δNon-root

2k′ ≥ δNon-root
k′ , it is then sufficient for the Restricted Isometry

Constants to satisfy the upper bounds

δRoot
2s ≤

1

3

δRoot
2s′ ≤

1

2Deg(1)

δNon-root
2s′ ≤ 1

2Deg(1)

Leveraging Theorem 5 and taking a union bound, this is then satisfied with probability greater than
1− ε when

NRoot ≥ 18C
(

max{s,Deg(1)2s′} log(ed) + Deg(1)2 log(1/ε)
)
,

NNon-root ≥ 18CDeg(1)2
(
s′ log(ed) + log(1/ε)

)
.

This concludes the proof.

D.5 Proof of Theorem 3

We now present the proof of Theorem 3.

Proof of Theorem 3. Once again, recall it is sufficient to demonstrate the Restricted Null Space
Property (11) is satisfied in this case. Following the proof of theorem 4, let the restricted isometry
constant of A1 up-to sparsity level k be denoted δRoot

k ∈ [0, 1). Meanwhile, let δNon-root
k′ now denote

the maximum restricted isometry constant of up-to sparsity level k′ of the matrices associated to non-
root agents i.e. {Av}v∈\{1}. Furthermore, let ÃCombined ∈ R(n−1)NNon-root×d be constructed from the
row-wise concatenation of the non-root agent matrices {Av}v∈V \{1}. Similarly, let δCombined

k̃
∈ [0, 1)

denote the restricted isometry constant of ACombined := ÃCombined/
√
n− 1 up to sparsity level k̃.

Following the proof of Theorem 4 we leverage that x = (x1,∆1, . . . ,∆|E|) ∈ Ker(A)\{0} to
upper bound ‖(x1)S1‖1, ‖(∆e)‖1 for e ∈ E. In particular, we consider have three paragraphs:
one associated to bounding ‖(x1)S1

‖1; one for bounding ‖(∆e)‖1 for edges e = (v, w) ∈ E not
connected to the root v, w 6= 1; and one for bounding ‖(∆e)‖1 for edges e = (v, w) joined to the
root v = 1 or w = 1. The fourth paragraph will then combined these bounds.

Root Node Since x1 ∈ Ker(A1) we immediately have from Lemma 2 the upper bound for any
U ⊂ {1, . . . , d} such that |U | = k

‖(x1)U‖2 ≤
δRoot
2k

1− δRoot
k

1√
k
‖x1‖1. (13)

Setting U = S1 and recalling and following the proof of Theorem 4, this immediately bounds
‖(x)S1

‖1 ≤ δRoot
2s

1−δRoot
s
‖x1‖1.

Edges not connect to the root Consider any edge ẽ = (v, w) ∈ E not directly connected to the root
i.e. v, w 6= 1. Without loss in generality suppose w is the furthest from the root. This allows us to
rewrite in terms of the difference

∆ẽ =
( ∑
e∈π(w)

∆e

)
−
( ∑
e∈π(v)

∆e

)
.

Each of the vectors are in potentially different null-spaces, and therefore, we bound each separately.
Applying triangle inequality we then get

‖(∆ẽ)Sẽ
‖1 ≤

∥∥∥( ∑
e∈π(w)

∆e

)
Sẽ

∥∥∥
1

+
∥∥∥( ∑

e∈π(v)

∆e

)
Sẽ

∥∥∥
1

≤
∥∥∥( ∑

e∈π(w)

∆e

)
U1

∥∥∥
1

+
∥∥∥( ∑

e∈π(v)

∆e

)
U2

∥∥∥
1
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where U1, U2 are the largest s′ entries of
∑
e∈π(w) ∆e and

∑
e∈π(v) ∆e respectively. For the first

term we have x1 +
∑
e∈π(w) ∆e ∈ Ker(Aw) and therefore

(1− δNon-root
k′ )

∥∥∥( ∑
e∈π(w)

∆e

)
U1

∥∥∥2

2
≤
∥∥∥Aw( ∑

e∈π(w)

∆e

)
U1

∥∥∥2

2

= −
〈
Aw

( ∑
e∈π(w)

∆e

)
U1

, Aw

( ∑
e∈π(w)

∆e

)
Uc

1

+Awx1

〉
where we note that Aw(x1 +

∑
e∈π(w) ∆e) = 0 and therefore Aw

(∑
e∈π(w) ∆e

)
U1

=

−Aw
(∑

e∈π(w) ∆e

)
Uc

1

−Awx1. Following the shelling argument in the proof of Lemma 2 we can

upper bound∣∣∣〈Aw( ∑
e∈π(w)

∆e

)
U1

, Aw

( ∑
e∈π(w)

∆e

)
Uc

1

〉∣∣∣ ≤ δNon-root
2s′√
s′

∥∥∥( ∑
e∈π(w)

∆e

)
U1

∥∥∥
2

∥∥∥ ∑
e∈π(w)

∆e

∥∥∥
1

Upper bound the other inner product as∣∣∣〈Aw( ∑
e∈π(w)

∆e

)
U1

, Awx1

〉∣∣∣ ≤ ∥∥Aw( ∑
e∈π(w)

∆e

)
U1

∥∥
2
‖Awx1‖2

≤
√

1 + δNon-root
s′

∥∥( ∑
e∈π(w)

∆e

)
U1

∥∥
2
‖Awx1‖2

and dividing both sides by (1− δNon-root
s′ )

∥∥∥(∑e∈π(w) ∆e

)
U1

∥∥∥
2

then yields

∥∥∥( ∑
e∈π(w)

∆e

)
U1

∥∥∥
2
≤ δNon-root

2s′√
s′

∥∥∥ ∑
e∈π(w)

∆e

∥∥∥
1

+

√
1 + δNon-root

s′

1− δNon-root
s′

‖Awx1‖2

Repeating the steps above for the other node v and going to `1 norm from `2 norm and bringing
together the two bounds yields

‖(∆ẽ)Sẽ
‖1 ≤

δNon-root
2s′

1− δNon-root
s′

(∥∥∥ ∑
e∈π(w)

∆e

∥∥∥
1

+
∥∥∥ ∑
e∈π(v)

∆e

∥∥∥
1

)
(14)

+

√
s′
√

1 + δNon-root
s′

1− δNon-root
s′

(
‖Avx1‖2 + ‖Awx1‖2

)
Edges connecting to the root node Consider an edge connected to the root node, that is, ẽ =
(v, w) ∈ E such that v = 1 or w = 1. Without loss in generality, let us suppose that w = 1. We can
then bound using Restricted Isometry Property

(1− δs′)Non-root‖(∆ẽ)Sẽ
‖22 ≤

∥∥Av(∆ẽ)Sẽ
‖22

= −〈Av(∆ẽ)Sẽ
, Av(∆ẽ)Sc

ẽ
+Avx1〉

≤ δNon-root
2s′√
s′
‖(∆ẽ)Sẽ

‖2‖∆ẽ‖1 + ‖Av(∆ẽ)Sẽ
‖2‖Avx1‖2

≤ δNon-root
2s′√
s′
‖(∆ẽ)Sẽ

‖2‖∆ẽ‖1 +
√

1 + δNon-root
s′ ‖(∆ẽ)Sẽ

‖2‖Avx1‖2

where for the equality we note that x1 + ∆ẽ ∈ Ker(Av)\{0} and therefore Av(∆ẽ)Sẽ
=

−Av(∆ẽ)Sc
ẽ
− Avx1. Meanwhile for the second inequality used a similar argument to previously.

Dividing both sides by (1− δNon-root
s′ )‖(∆ẽ)Sẽ

‖2 and going to `1 norm we then get

‖(∆ẽ)Sẽ
‖1 ≤

δNon-root
2s′

1− δNon-root
s′

‖∆ẽ‖1 +

√
s′
√

1 + δNon-root
s′

1− δNon-root
s′

‖Avx1‖2 (15)
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Combining upper bounds Let us now combine the bounds on ‖(x)S1‖1 from (13), as well as the
bounds (14) and (15) for the edges e ∈ E. This yields

‖(x1)S1
‖1 +

∑
e∈E
‖(∆)Se

‖1

= ‖(x1)S1‖1 +
∑

e=(v,w)∈E:v,w 6=1

‖(∆e)Se‖1 +
∑

e=(v,w)∈E:v=1 or w=1

‖(∆e)Se‖1

≤ δRoot
2s

1− δRoot
s

‖x1‖1

+
δNon-root
2s′

1− δNon-root
s′

∑
e=(v,w)∈E:v,w 6=1

(∥∥∥ ∑
e∈π(w)

∆e

∥∥∥
1

+
∥∥∥ ∑
e∈π(v)

∆e

∥∥∥
1

)
︸ ︷︷ ︸

Term 1

δNon-root
2s′

1− δNon-root
s′

∑
e∈E:v=1 or w=1

‖∆e‖1 +
2
√
s′
√

1 + δNon-root
s′

1− δNon-root
s′

∑
v∈V \{1}

‖Avx1‖2︸ ︷︷ ︸
Term 2

.

Where we must now bound Term 1 and Term 2. To bound Term 1 we simply apply triangle
inequality to get

Term 1 ≤
∑

e=(v,w)∈E:v,w 6=1

2
∑

ẽ∈π(v)∪π(w)

‖∆ẽ‖1 ≤ 2Deg(V \{1})Diam(G)
∑
e∈E
‖∆e‖1

where π(v) ∪ π(w) denotes the union without duplicates. We then note that the sum∑
e=(v,w)∈E:v,w 6=1 2

∑
ẽ∈π(v)∪π(w) . . . can be seen as counting the number of times an edge is

used on a path from any non-root node to the root. The edges which appear on most paths to the
root are those directly connected to the root. The number of edges feeding into the edge directly
connected to the root is then upper bounded by the max degree of non-root nodes times the graph
diameter Deg(V \{1})Diam(G). To bound Term 2 we use Cauchy-Schwartz and recall the definition
of ACombined to get∑

v∈V \{v}

‖Avx1‖2 ≤
√
n− 1

√ ∑
v∈V \{v}

‖Avx1‖22 = (n− 1)‖ACombinedx1‖2

Using the fact that x1 ∈ Ker(A1)\{0} as well as the Restricted Isometry Property of ACombined, we
have show the following upper bound for ` ≥ 1

Term 2 ≤
6
√

(1 + δNon-root
s′ )(1 + δCombined

` )

(1− δNon-root
s′ )(1− δRoot

2` )

(n− 1)
√
s′√

`

)
‖x1‖1 (16)

The proof of (16) is then provided at the end. Bringing everything together and collecting constants
we get

‖(x1)S1‖1 +
∑
e∈E
‖(∆)Se‖1

≤ 3 max

{
δRoot
2s

1− δRoot
s

,
2Deg(V \{1})Diam(G)δNon-root

2s′

1− δNon-root
s′

,
6
√

(1 + δNon-root
s′ )(1 + δCombined

` )

(1− δNon-root
s′ )(1− δRoot

2` )

(n− 1)
√
s′√

`

)}
︸ ︷︷ ︸

Multiplicative Term

×
(
‖x1‖1 +

∑
e∈E
‖∆‖1

)
For the restricted nullspace property to be satisfied we must then ensure that Multiplicative Term ≤
1/2. This can then be ensured when setting ` = 1562(n − 1)2s′ when the Restricted Isometry
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constants satisfy

δRoot
2s ≤

1

4

δNon-root
2s′ ≤ 1

1 + 12D

δRoot
2` ≤ 1/2

δCombined
` ≤ 1

Using theorem 5, the conditions on δRoot
2s , δRoot

2` and δNon-root
2s′ are ensured with probability greater than

1− ε when

NRoot ≥ C × 32× 1562 max{n2s′, s}
(

log(ed) + log(1/ε)
)

NNon-root ≥ C × 132 × Deg(V \{1})2Diam(G)2s′
(

log(ed) + log(n/ε)
)

where δNon-root
2s′ is the maximum restricted Isometry constant across the matrices {Av}v∈V \{1}

and therefore, a union bound was taken. Meanwhile, for δCombined
` , recall that the entries of√

NNon-root(n− 1) × ACombined are independent and sub-Gaussian i.e. ÃCombined is the row-wise
concatenation of Av = Ãv/

√
NNon-root for v ∈ V \{1} where Ãv has independent and identical

sub-Gaussian entries. Therefore, following Theorem 5 the condition on δCombined
` is then satisfied

when

NNon-root(n− 1) ≥ C × 1562(n− 1)2s′
(

log(ed) + log(1/ε)
)

Dividing both sides by n− 1 and combining the conditions on NNon-root yields the result.

Let us now prove (16). Using (13) with U being the largest ` entries of x1 we have (since x1 ∈
Ker(A1)\{0})

‖x1‖2 ≤ ‖(x1)Uc‖2 + ‖(x1)U‖2 ≤
1√
`
‖x1‖1 +

δRoot
2`

1− δRoot
`

1√
`
‖x1‖1 =

(
1 +

δRoot
2`

1− δRoot
`

) 1√
`
‖x1‖1

where have bounded using the shelling argument U c = B1 ∪ B2 ∪ . . . as ‖(x)Uc‖2 ≤∑
j≥1 ‖(x)Bj‖2 ≤ 1√

`
‖x‖1. That is B1 is the largest ` entries of x1 in U c, B2 is the largest `

entries in (U ∪ B1)c and so on. We then have ‖(x)Bj−1‖2 ≤
√
`‖(x)Bj−1‖∞ ≤ 1√

`
‖(x)Bj‖1.

Therefore we can bound with c =
(
1 +

δRoot
2`

1−δRoot
`

)
‖ACombinedx1‖2 = ‖ACombined

x1

‖x1‖1
‖2‖x1‖1 ≤

(
max

x:‖x‖2≤ c√
`
,‖x‖1≤1

‖ACombinedx‖2
)
‖x1‖1

where if we fix x = x1

‖x1‖1 then it is clear ‖x‖1 = 1 and ‖x‖2 = ‖x1‖2
‖x1‖1 ≤

c√
`
. We now study the

maximum above. In particular, it can be rewritten since c ≥ 1

max
x:‖x‖2≤ c√

`
,‖x‖1≤1

‖ACombinedx‖2 =
c√
`

max
x:‖x‖2≤1,‖x‖1≤

√
`

c

‖ACombinedx‖2

≤ c√
`

max
x:‖x‖2≤1,‖x‖1≤

√
`
‖ACombinedx‖2

=
c√
`

max
x∈B2(1)∩B1(

√
`)
‖ACombinedx‖2

Using Lemma 1 we can then bound

max
x∈B2(1)∩B1(

√
`)
‖ACombinedx‖2 ≤ max

x∈B2(3)∩B0(`)
‖ACombinedx‖2

≤ 3
√

1 + δCombined
`
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where at the end used the Restricted Isometry Property of ACombined. Bringing everything together we
get the bound for Term 2 with c = 1 +

δRoot
2`

1−δRoot
`
≤ 1

1−δRoot
2`

Term 2 ≤
6
√

(1 + δNon-root
s′ )(1 + δCombined

` )

(1− δNon-root
s′ )(1− δRoot

2` )

(n− 1)
√
s′√

`

)
‖x1‖1

as required.

E Proofs for Noisy Case

In this section we provide the proofs for the noisy setting. Section E.1 begin by introducing the
problem of Basis Pursuit Denoising. Section E.2 presents the proof of Theorem 2. Section E.3
presents the proof for an intermediate lemma.

E.1 Basis Pursuit Denoising

Let us begin by introducing Basis Pursuit Denoising. That is suppose y = Ax? + ε for some noise
ε ∈ Rn. The Basis Pursuit Denoising problem [9] then considers replacing the equality with a bound
on the `2. Namely for η ≥ 0

min
x
‖x‖1 subject to ‖Ax− y‖2 ≤ η. (17)

Naturally, the equality constraint Ax = y in the noiseless setting has been swapped for an upper
bound on the discrepancy ‖Ax− y‖2. To investigate guarantees for the solution to (17), we consider
the Robust Null Space Property, see for instance [17]. A matrix A is said to satisfy the Robust Null
Space Property for a set S ⊆ {1, . . . , p} and parameters ρ, τ ≥ 0 if

‖xS‖1 ≤ ρ‖xSc‖1 + τ‖Ax‖2 for all x ∈ RN . (18)
Given condition (18), bounds on the `1 estimation error between a solution to the Denoising Basis
Pursuit problem (17) and the true underlying signal x? can be obtained. That is, for any solution to
(17), x ∈ Rp with y = Ax? + e where ‖e‖2 ≤ η, we have (see [17] with z = x?)

‖x− x?‖1 ≤
2(1 + ρ)

1− ρ
‖(x?)Sc‖1︸ ︷︷ ︸

Sparse Approximation

+
4τ

1− ρ
η︸ ︷︷ ︸

Noise

.

The first term above encodes that x? is not exactly s sparse, while the second term represents error
from the noise. We now discuss the values taken by η and τ in the case that A has i.i.d. sub-Gaussian
entries. Recall Theorem 5 that the scaled matrix A/

√
N in this case can satisfy a Restricted Isometry

Property, and thus, it is natural to choose η =
√
NηNoise for ηNoise ≥ 0 since the `2 bound on the

residuals in (17) becomes ‖Ax − y‖2/
√
N ≤ ηNoise. We can then pick ‖e‖2/

√
N ≤ ηNoise, which

is an upper bound on the standard deviation of the noise. The Robust Null Space Property then
holds in this case, see [17, Theorem 4.22], with τ ≈

√
s, leading to a `1 error bound of the order

‖x− x?‖1.‖(x?)Sc‖1+ηNoise
√
s (see [49]).

E.2 Proof of Theorem 2

We begin by recalling Section D.3 which reformulated the Total Variation Basis Pursuit problem (1)
into a Basis Pursuit problem (9). In particular, we note that Total Variation Basis Pursuit Denoising
(5) can be reformulated into Basis Pursuit Denoising (17) in a similar manner. Let us suppose the
root node signal x?1 and the {∆?

e}e∈E are approximately sparse and each agent v∈V holds noisy
samples yv≈Avx?v. Reformulating the Total Variation Basis Pursuit problem into a Basis Pursuit
problem (11) and bounding the `2 norm of the residuals, then yields the Total Variation Basis Pursuit
Denoising problem

min
x1,∆e∈E

‖x1‖1 +
∑
e∈E
‖∆e‖1 subject to (19)∑

v∈V
‖Av

(
x1 +

∑
e∈π(v)

∆e

)
− yv‖22 ≤ η2.
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Where η2 now upper bounds the squared `2 norm of the noise summed across all of the nodes
i.e.
∑
v∈V ‖Avx?v−yv‖22. This is now in the form of (17) with an augmented matrix A as in the

reformulated problem described in Section D.3.

Let us now recall that δNon-root
k denotes the largest Restricted Isometry Constant of the matrices

associated to the non-root agents {Av}v∈V \{1}. Similarly, δRoot
k denotes the Restricted Isometry

Constant associated to the root matrix A1. The following theorem then gives, values for ρ and τ for
which the augmented matrix A and sparsity set S (described in Section D.3) satisfies the Robust Null
Space Property (18).

Lemma 3. Consider the A matrix and sparsity set S as constructed in Section D.3. Then A satisfies
the Robust Null Space Property with ρ = ρ′/(1− ρ′) and τ = τ ′/(1− ρ′) where

ρ′ = 4
( nδNon-root

2s′

1− δNon-root
s′

∨ δRoot
2s

1− δRoot
s

)
and

τ ′ =

√
1 + δNon-root

s′

1− δNon-root
s′

∨
√

1 + δRoot
s

1− δRoot
s

(√
s+ Deg(G)

√
ns′
)
.

Note the parameter τ ′ scales (up to a network degree Deg(G) factor) with the sparsity of the differences.
Naturally we require ρ′ < 1/2, which can be ensured if each agent {Av}v∈V have i.i.d. sub-Gaussian
matrices. In particular, we require

δRoot
2s ≤

1

9
and δNon-root

2s′ ≤ 1

1 + 8n

Following Theorem 5 this can be ensured with probability greater than 1− ε when

NRoot ≥ 81C
(
2s log(ed/s) + log(n/ε)

)
NNon-root ≥ 81n2C

(
2s′ log(ed/s′) + log(n/ε)

)
Choosing η =

√∑
v∈V NvηNoise where ηNoise > 0 upper bounds the noise standard deviation across

all of the agents, the `1 estimation error of the solution to (5) is then of the order

‖x1 − x?1‖1 +
∑
e∈E
‖∆e −∆?

e‖1 . ‖(x?)Sc‖1︸ ︷︷ ︸
Approximate Sparsity

+ (
√
s+ Deg(G)

√
ns′)ηNoise︸ ︷︷ ︸

Noise

.

The error scales with the approximate sparsity of the true signal through ‖(x?)Sc‖1 and now the
noise term with the effective sparsity

√
s + Deg(G)

√
ns′. Picking x? to be supported on S, the

approximate sparsity term goes to zero, as required.

E.3 Proof of Lemma 3

We now set to show that the Robust Null Space Property (18) holds for some ρ, τ . We note it suffices
to show the following which is equivalent to the Robust Null Space Property

‖(x)S‖1 ≤ ρ′‖x‖1 + τ ′‖Ax‖2 for all x ∈ RN .

In particular, by adding ρ‖(x)S‖1 to both sides of the inequality for the Robust Null Space Property
(18) and dividing by 1 + ρ, we see that if the above holds then the Robust Null Space Property holds
with ρ = ρ′

1−ρ′ and τ = τ ′/(1− ρ′).

The proof naturally follows the noiseless case (proof for Theorem 3) although with an additional
error term owing the noise. To make the analysis clearer, the steps following the noiseless case from
the proof of Theorem 3, are simplified.

We begin by controlling the `1 norm of x1 +
∑
e∈π(v) ∆e = xv for v ∈ V restricted to subsets

U . Considering the subset U of size |U | ≤ s′, and in particular, the set U associated to the largest
s′ entries of xv. Following the shelling argument used within the proof of Lemma 2 decompose
U c = B1 ∪B2 ∪ . . . where B1 are the largest s′ entries of xv within U c, B2 are the s′ largest entries
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of xv in (U ∪B1)c and so on. We can then upper bound

(1− δNon-Root
s′ )‖(xv)U‖22 ≤ ‖Av(xv)U‖22

=
〈
Av(xv)U , Av

(
xv −

∑
j≥1

(xv)Bj

)〉
= 〈Av(xv)U , Avxv〉 −

∑
j≥1

〈Av(xv)U , Av(xv)Bj 〉

≤
√

1 + δNon-root
s′ ‖(xv)U‖2‖Avxv‖2 +

δNon-root
2s′√
s′
‖(xv)U‖2‖xv‖1

where we used the Restricted Isometry Property of Av to upper bound inner product
〈Av(xv)U , Avxv〉 ≤ ‖Av(xv)U‖2‖Avxv‖2 ≤

√
1 + δNon-root

s′ ‖(xv)U‖2‖‖Avxv‖2 and fol-
lowed the steps in the proof of Lemma 2 to upper bound

∑
j≥1〈Av(xv)U , Av(xv)Bj

〉 ≤
δNon-root
2s′ ‖(xv)U‖2

∑
j≥1 ‖(xv)Bj

‖1 ≤ 1√
s′
δNon-root
2s′ ‖(xv)U‖2‖xv‖1. Dividing both sides by (1 −

δNon-root
s′ )‖(xv)U‖2 we then get

‖(xv)U‖2 ≤
δNon-root
2s′

1− δs′
1√
s′
‖xv‖1 +

√
1 + δNon-root

s′

1− δNon-root
s′

‖Avxv‖2

Using that ‖(xv)U‖2 ≥ 1√
s′
‖(xv)U‖1 as well as simply upper bounding ‖xv‖1 = ‖x1 +∑

e∈π(v) ∆e‖1 ≤ ‖x1‖1 +
∑
e∈π(v) ‖∆e‖1 ≤ ‖x1‖1 +

∑
e∈E ‖∆e‖1 we have∥∥(x1 +

∑
e∈π(v)

∆e

)
U

∥∥
1
≤ δNon-root

2s′

1− δs′
(
‖x1‖1 +

∑
e∈E
‖∆e‖1

)
+

√
1 + δNon-root

s′

1− δNon-root
s′

√
s′‖Avxv‖2. (20)

For e = {v, w} ∈ E we now set to bound ‖(∆e)Se
‖1 where recall Se are the largest s′ elements of

∆e. Suppose w is closest to the root node. If not, swap the v, w in the following. By adding and
subtracting

(
x1 +

∑
ẽ∈π(w) ∆ẽ

)
Se

we then get

‖(∆e)Se
‖1 ≤

∥∥(x1 +
∑

ẽ∈π(w)

∆ẽ

)
Se

∥∥
1

+
∥∥(x1 +

∑
ẽ∈v

∆ẽ

)
Se

∥∥
1

≤ 2δNon-root
2s′

1− δs′
(
‖x1‖1 +

∑
e∈E
‖∆e‖1

)
+

√
1 + δNon-root

s′

1− δNon-root
s′

√
s′
(
‖Avxv‖2 + ‖Awxw‖2

)
where on the second inequality we applied (20) twice. Summing the above over all edges e ∈ E, we
note ‖Avxv‖2 for v ∈ V appears at most the max degree of the graph, as such we get∑
e∈E
‖(∆e)Se

‖1 ≤
2nδNon-root

2s′

1− δNon-root
s′

(
‖x1‖1 +

∑
e∈E
‖∆e‖1

)
+

√
1 + δNon-root

s′

1− δNon-root
s′

Deg(G)
√
s′
∑
v∈V
‖Avxv‖2

≤ 2nδNon-root
2s′

1− δNon-root
s′

(
‖x1‖1 +

∑
e∈E
‖∆e‖1

)
+

√
1 + δNon-root

s′

1− δs′
Deg(G)

√
ns′
√∑
v∈V
‖Avxv‖22

where on the final inequality we upper bounded
∑
v∈V ‖Avxv‖2 ≤

√
n
√∑

v∈V ‖Avxv‖22.

We now consider the bound for ‖(x1)U‖1 but for subsets U of size up to s. Following an identical set
of steps as for (20), but with s′ swapped with s and δs′ swapped with δ(1)

s , we get the upper bound

‖(x1)U‖1 ≤
δRoot
2s

1− δRoot
s

(
‖x1‖1 +

∑
e∈E
‖∆e‖1

)
+

√
1 + δRoot

s

1− δRoot
s

√
s‖A1x1‖2

≤ δRoot
2s

1− δRoot
s

(
‖x1‖1 +

∑
e∈E
‖∆e‖1

)
+

√
1 + δRoot

s

1− δRoot
s

√
s
∑
v∈V

√
‖Avxv‖22

where at the end we simply upper bounded ‖A1x1‖2 =
√
‖A1x1‖22 ≤

√∑
v∈V ‖Avxv‖22. Picking

U = S1, adding together the upper bound for
∑
e∈E ‖(∆e)Se

‖1 and ‖(x1)U‖1, and collecting terms
then yields the result.
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