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A Proofs

A.1 Proofs of Section 3

Proposition A.1. Let h : X → R such that E[|h(X)|] < ∞. Then, {y ∈ Y | E[|h(X)||Y = y] <
∞} is a full measure set with respect to PY .

Proof. Since X is a Borel space and Y is measurable, the existence of a PY -a.e. regular conditional
probability distribution is guaranteed by [45, Theorem 6.3]. Now suppose E[|h(X)|] <∞ and let
Yo = {y ∈ Y | E[|h(X)||Y = y] < ∞}. Since E[|h(X)|] = E [E[|h(X)| | Y ]], the conditional
expectation E[|h(X)| | Y ] must have finite expectation almost everywhere, i.e. PY (Yo) = 1.

Proposition 3.2. Suppose E[|m(X)|] < ∞ and E[‖kX‖k] < ∞ and let (X ′, Y ′) ∼ PXY . Then g
is a Gaussian process g ∼ GP(ν, q) a.s. , specified by

ν(y) = E[m(X)|Y = y] q(y, y′) = E[k(X,X ′)|Y = y, Y ′ = y′] (13)

∀y, y′ ∈ Y . Furthermore, q(y, y′) = 〈µX|Y=y, µX|Y=y′〉k a.s.

Proof of Proposition 3.2. We will assume for the sake of simplicity that m = 0 in the following
derivations and will return to the case of an uncentered GP at the end of the proof.

Show that g(y) is in a space of Gaussian random variables Let (Ω,F ,P) denote a probability
space and L2(Ω,P) the space of square integrable random variables endowed with standard inner
product. ∀x ∈ X , since f(x) is Gaussian, then f(x) ∈ L2(Ω,P). We can hence define S(f) as the
closure in L2(Ω,P) of the vector space spanned by f , i.e. S(f) := Span {f(x) : x ∈ X}.
Elements of S(f) write as limits of centered Gaussian random variables, hence when their covariance
sequence converge, they are normally distributed. Let T ∈ S(f)⊥, then we have E[Tf(x)] = 0. Let
y ∈ Y , we also have

E[Tg(y)] = E
[∫
X
Tf(x) dPX|Y=y

]
(14)

In order to switch orders of integration, we need to show that the double integral satisfies absolute
convergence. ∫

X
E[|Tf(x)|] dPX|Y=y(x) ≤

∫
X

√
E[T 2]E[f(x)2] dPX|Y=y(x) (15)

=
√

E[T 2]

∫
X
‖kx‖k dPX|Y=y(x) (16)

=
√

E[T 2]E[‖kX‖k|Y = y] (17)

Since T ∈ L2(Ω,P), E[T 2] < ∞. Plus, as we assume that E[‖kX‖k] < ∞, Proposition A.1 gives
that E[‖kX‖k|Y = y] <∞ a.s. We can thus apply Fubini’s theorem and obtain

E[Tg(y)] =

∫
X
E[Tf(x)] dPX|Y=y(x) = 0 a.s. (18)

As this holds for any T ∈ S(f)⊥, we conclude that g(y) ∈
(
S(f)⊥

)⊥
a.s. ⇒ g(y) ∈ S(f) a.s..

We cannot claim yet though that g(y) is Gaussian since we do not know whether it results from a
sequence of Gaussian variables with converging variance sequence. We now have to prove that g(y)
has a finite variance.

Show that g(y) has finite variance We proceed by computing the expression of the covariance
between g(y) and g(y′) which is more general and yields the variance.
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Let y, y′ ∈ Y , the covariance of g(y) and g(y′) is given by

q(y, y′) = E[g(y)g(y′)]− E[g(y)]E[g(y′)] (19)

= E
[∫
X

∫
X
f(x)f(x′) dPX|Y=y(x) dPX|Y=y′(x

′)

]
(20)

− E
[∫
X
f(x) dPX|Y=y(x)

]
E
[∫
X
f(x′) dPX|Y=y′(x

′)

]
(21)

Choosing T as a constant random variable in the above, we can show that∫
X E[|f(x)|] dPX|Y=y(x) < ∞ a.s. We can hence apply Fubini’s theorem to switch inte-

gration order in the mean terms (21) and obtain that E[g(y)] = 0 since f is centered.

To apply Fubini’s theorem to (20), we need to show that the triple integration absolutely converges.
Let x, x′ ∈ X , we know that E[|f(x)f(x′)|] ≤

√
E[f(x)2]E[f(x′)2] = ‖kx‖k‖kx′‖k. Using similar

arguments as above, we obtain∫
X

∫
X
E[|f(x)f(x′)|] dPX|Y=y(x) dPX|Y=y′(x

′) ≤ E[‖kX‖k|Y = y]E[‖kX‖k|Y = y′] <∞ a.s.

(22)

We can thus apply Fubini’s theorem which yields

q(y, y′) =

∫
X

∫
X
E[f(x)f(x′)] dPX|Y=y(x) dPX|Y=y′(x

′) (23)

=

∫
X

∫
X

Cov(f(x), f(x′))︸ ︷︷ ︸
k(x,x′)

dPX|Y=y(x) dPX|Y=y′(x
′) (24)

= E[k(X,X ′)|Y = y, Y ′ = y′] (25)

≤ E[‖kX‖k|Y = y]E[‖kX‖k|Y = y′] <∞ a.s. (26)

where (X ′, Y ′) denote random variables with same joint distribution than (X,Y ) as defined in the
proposition.

g(y) ∈ S(f) and has finite variance q(y, y) a.s., it is thus a centered Gaussian random variable
a.s. Furthermore, as this holds for any y ∈ Y , then any finite subset of {g(y) : y ∈ Y} follows
a multivariate normal distribution which shows that g is a centered Gaussian process on Y and its
covariance function is specified by q.

Uncentered case m 6= 0 We now return to an uncentered GP prior on f with assumption that
E[|m(X)|] <∞. By Proposition A.1, we get that E[|m(X)| |Y = y] <∞ a.s. for y ∈ Y .

Let ν : y 7→ E[m(X)|Y = y]. We can clearly rewrite g as the sum of ν and a centered GP on Y

g(y) = ν(y) +

∫
X

(f(x)−m(x)) dPX|Y=y(x), ∀y ∈ Y (27)

which is well-defined almost surely.

It hence comes E[g(y)] = E[ν(y)] + 0 = ν(y). Plus since ν(y) is a constant shift, the covariance is
not affected and has the same expression than for the centered GP. Since this holds for any y ∈ Y , we
conclude that g ∼ GP(ν, q) a.s.

Show that q(y, y′) = 〈µX|Y=y, µX|Y=y′〉k First, we know by Proposition A.1 that E[‖kX‖k|Y =
y] < ∞ PY -a.e. .By triangular inequality, we obtain ‖µX|Y=y‖k = ‖E[kX |Y = y]‖k ≤
E[‖kX‖k|Y = y] < ∞ PY -a.e. and hence µX|Y=y is well-defined up to a set of measure zero
with respect to PY .
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With notations from Proposition 3.2, we can proceed for any y, y′ ∈ Y as

q(y, y′) = E[k(X,X ′)|Y = y′, Y ′ = y′] (28)

=

∫
X

∫
X
k(x, x′) dPX|Y=y(x) dPX|Y=y′(x

′) (29)

=

∫
X

∫
X
〈kx, kx′〉k dPX|Y=y(x) dPX|Y=y′(x

′) (30)

=

〈∫
X
kx dPX|Y=y(x),

∫
X
kx′ dPX|Y=y′(x

′)

〉
k

a.s. (31)

= 〈µX|Y=y, µX|Y=y′〉k a.s. (32)

Proposition 3.3. Given aggregate observations z̃ with homoscedastic noise σ2, the deconditional
posterior of f is defined as the Gaussian process f |z̃ ∼ GP(md, kd) where

md(x) = m(x) + k>x CX|Y Ψỹ(Qỹỹ + σ2IM )−1(z̃− ν(ỹ)), (33)

kd(x, x′) = k(x, x′)− k>x CX|Y Ψỹ(Qỹỹ + σ2IM )−1Ψ>ỹC
>
X|Y kx′ . (34)

Proof of Proposition 3.3. Recall that[
f(x)

z̃

]
| y, ỹ ∼ N

([
m(x)
ν(ỹ)

]
,

[
Kxx Υ

Υ> Qỹỹ + σ2IM

])
. (35)

where Υ = Cov(f(x), z̃) = Φ>xCX|Y Ψỹ.

Applying Gaussian conditioning, we obtain that

f(x) | z̃,y, ỹ ∼ N (m(x) + Υ(Qỹỹ + σ2IM )−1(z̃− ν(ỹ)), (36)

Kxx −Υ(Qỹỹ + σ2IM )−1Υ>) (37)

Since the latter holds for any input x ∈ XN , by Kolmogorov extension theorem this implies that f
conditioned on the data z̃, ỹ is a draw from a GP. We denote it f |z̃ ∼ GP(md, kd) and it is specified
by

md(x) = m(x) + k>x CX|Y Ψỹ(Qỹỹ + σ2IM )−1(z̃− ν(ỹ)), (38)

kd(x, x′) = k(x, x′)− k>x CX|Y Ψỹ(Qỹỹ + σ2IM )−1Ψ>ỹC
>
X|Y kx′ . (39)

Note that we abuse notation

”k>x CX|Y Ψỹ” =
[
〈kx, CX|Y `ỹ1〉k . . . 〈kx, CX|Y `ỹM 〉k

]
(40)

=
[
〈kx, µX|Y=ỹ1

〉k . . . 〈kx, µX|Y=ỹM 〉k
]

(41)

= [Cov(f(x), g(ỹ1)) . . . Cov(f(x), g(ỹM ))] . (42)

A.2 Proofs of Section 4

Proposition 4.1 (Empirical DMO as vector-valued regressor). The minimiser of the empirical
reconstruction risk is the empirical DMO, i.e. D̂X|Y = arg minD∈HΓ

Êd(D)

Proof of Proposition 4.1. Let D ∈ HΓ, we recall the form of the regularised empirical objective

Êd(D) =
1

M

M∑
j=1

‖`ỹj −DĈX|Y `ỹj‖2` + ε‖D‖2Γ (43)
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By [46, Theorem 4.1], if D̂ ∈ arg min
D∈HΓ

Êd(D), then it is unique and has form

D̂ =

M∑
j=1

ΓĈX|Y `ỹj
cj (44)

where ΓĈX|Y `ỹj
: H` → HΓ is the vector-valued kernel Γ’s feature map indexed by ĈX|Y `ỹj , such

that for any h ∈ HΓ and g ∈ H`, we have 〈h,ΓĈX|Y `ỹj g〉Γ = 〈h(ĈX|Y `ỹj ), g〉`. (see [35] for a
detailed review of vector-valued RKHS). Furthermore, coefficients c1, . . . , cM ∈ H` are the unique
solutions to

M∑
i=1

(
Γ(ĈX|Y `ỹi , ĈX|Y `ỹj ) +Mεδij

)
ci = `ỹj (45)

Since
Γ(ĈX|Y `ỹi , ĈX|Y `ỹj ) = 〈ĈX|Y `ỹi , ĈX|Y `ỹj 〉k IdH` = q̂(ỹi, ỹj) IdH` (46)

where IdH` denotes the identity operator onH`. The above simplifies as

M∑
i=1

(q̂(ỹi, ỹj) +Mεδij) ci = `ỹj ∀1 ≤ j ≤M (47)

⇔
(
Q̂ỹỹ +MεIM

)
c> = Ψ>ỹ (48)

⇔ c = Ψỹ

(
Q̂ỹỹ +MεIM

)−1

(49)

where c = [c1 . . . cM ].

Since for any f ∈ Hk and g ∈ H`, our choice of kernel gives Γfg = g ⊗ f , plugging (47) into (44)
we obtain

D̂ =

M∑
j=1

ΓĈX|Y `ỹj
cj (50)

=

M∑
j=1

cj ⊗ ĈX|Y `ỹj (51)

= c
[
ĈX|Y Ψỹ

]>
(52)

=

[
Ψỹ

(
Q̂ỹỹ +MεIM

)−1
] [
ĈX|Y Ψỹ

]>
(53)

= Ψỹ

(
Q̂ỹỹ +MεIM

)−1

Ψ>ỹ Ĉ
>
X|Y (54)

= Ψỹ

(
Q̂ỹỹ +MεIM

)−1

Ψ>ỹ Ψy (Lyy +NλIN )
−1

Φx (55)

= Ψỹ

(
Q̂ỹỹ +MεIM

)−1

AΦx (56)

= D̂X|Y (57)

which concludes the proof.

Theorem 4.2 (Empirical DMO Convergence Rate). Denote DPY = arg minD∈HΓ
Ed(D). Assume

assumptions stated in Appendix D are satisfied. In particular, let (b, c) and (0, c′) be the parameters
of the restricted class of distribution for PY and PXY respectively and let ι ∈]0, 1] be the Hölder

continuity exponent inHΓ. Then, if we choose λ = N−
1

c′+1 , N = M
a(c′+1)

ι(c′−1) where a > 0, we have
the following result,

• If a ≤ b(c+1)
bc+1 , then Ed(D̂X|Y )− Ed(DPY ) = O(M

−ac
c+1 ) with ε = M

−a
c+1

18



• If a ≥ b(c+1)
bc+1 , then Ed(D̂X|Y )− Ed(DPY ) = O(M

−bc
bc+1 ) with ε = M

−b
bc+1

Proof of Theorem 4.2. In Appendix D, we present Theorem D.4 which is a detailed version of this
result with all assumptions explicitly stated. The proof of Theorem D.4 constitutes the proof of this
result.
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B Variational formulation of the deconditional posterior

Inference computational complexity is O(M3) for the posterior mean and O(N3 + M3) for the
posterior covariance. To scale to large datasets, we introduce in the following a variational formulation
as a scalable approximation to the deconditional posterior f(x)|z̃. Without loss of generality, we
assume in the following that f is centered, i.e. m = 0.

B.1 Variational formulation

We consider a set of d inducing locations w = [w1 . . . wd]
> ∈ X d and define inducing points

as the gaussian vector u := f(w) ∼ N (0,Kww), where Kww := k(w,w). We set d-dimensional
variational distribution q(u) = N (u|η,Σ) over inducing points and define q(f) :=

∫
p(f |u)q(u) du

as an approximation of the deconditional posterior p(f |z). The estimation of the deconditional
posterior can thus be approximated by optimising the variational distribution parameters η, Σ to
maximise the evidence lower bound (ELBO) objective given by

ELBO(q) = Eq(f)[log p(z̃|f)] + KL(q(u)‖p(u)). (58)

As both q and p are Gaussians, the Kullback-Leibler divergence admits closed-form. The expected
log likelihood term decomposes as

Eq(f)[log p(z|f)] = −M
2

log(2πσ2) +
1

2σ2

(
tr
(
A>Σ̄A

)
+
∥∥z̃−A>η̄∥∥2

2

)
(59)

where η̄ and Σ̄ are the parameters of the posterior variational distribution q(f) = N (f |η̄, Σ̄) given
by

η̄ = KxwK−1wwη Σ̄ = Kxx −Kxw

[
K−1ww −K−1wwΣK−1ww

]
Kwx (60)

Given this objective, we can optimise this lower bound with respect to variational parameters η,Σ,
noise σ2 and parameters of kernels k and `, with an option to parametrize these kernels using feature
maps given by deep neural network [47], using a stochastic gradient approach for example. We might
also want to learn the inducing locations w.

B.2 Details on evidence lower bound derivation

For completeness, we provide here the derivation of the evidence lower bound objective. Let us
remind its expression as stated in (58)

ELBO(q) = Eq(f)[log p(z̃|f)]−KL(q(u)‖p(u)) (61)

The second term here is the Kullback-Leibler divergence of two gaussian densities which has a known
and tractable closed-form expression.

KL(q(u)‖p(u)) =
1

2

[
tr
(
K−1

wwΣ
)

+ η>K−1
wwη − d+ log

det Kww

det Σ

]
(62)

The first term is the expected log likelihood and needs to be derived. Using properties of integrals of
gaussian densities, we can start by showing that q(f) also corresponds to a gaussian density which
comes

q(f) =

∫
p(f |u)q(u) du (63)

=

∫
N (f |KxwK−1wwu,Kxx −KxwK−1wwKwx)×N (u|η,Σ) du (64)

= N (f |η̄, Σ̄) (65)

where

η̄ = KxwK−1wwη (66)

Σ̄ = Kxx −Kxw

[
K−1ww −K−1wwΣK−1ww

]
Kwx (67)
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Let’s try now to obtain a closed-form expression of Eq(f)[log p(z̃|f)] on which we will be able to
perform a gradient-based optimization routine. Using Gaussian conditioning on (5), we obtain

p(z̃|f) = N (z̃|Υ>K−1
xx f , Qỹỹ + σ2IM −Υ>Kxx

−1Υ) (68)

We notice that Υ>K−1
xx = `(ỹ,y)(Lyy + λNIN )−1KxxK−1xx = `(ỹ,y)(Lyy + λNIN )−1 = A.

Hence we also have Υ>K−1
xxΥ = A>KxxA = Qỹỹ.

We can thus simplify (68) as
p(z̃|f) = N (z̃|A>f , σ2In) (69)

Then,

log p(z̃|f) = −M
2

log(2πσ2)− 1

2σ2

∥∥z̃−A>f
∥∥2

2
(70)

⇒ Eq(f)[log p(z̃|f)] = −M
2

log(2πσ2)− 1

2σ2
Eq(f)

[∥∥z̃−A>f
∥∥2

2

]
(71)

Using the trace trick to express the expectation with respect to the posterior variational parameters
η̄, Σ̄, we have

Eq(f)
[∥∥z̃−A>f

∥∥2

2

]
= Eq(f)

[
tr
((

z̃−A>f
)> (

z̃−A>f
))]

(72)

= Eq(f)
[
tr
((

z̃−A>f
) (

z̃−A>f
)>)]

(73)

= tr
(
Eq(f)

[(
z̃−A>f

) (
z̃−A>f

)>])
(74)

(75)

And

Eq(f)
[(

z̃−A>f
) (

z̃−A>f
)>]

= Cov(z̃−A>f) + Eq(f)
[
z̃−A>f

]
Eq(f)

[
z̃−A>f

]>
(76)

= A>Σ̄A +
(
z̃−A>η̄

) (
z̃−A>η̄

)>
(77)

Hence, it comes that

Eq(f)
[∥∥z̃−A>f

∥∥2

2

]
= tr

(
A>Σ̄A

)
+ tr

((
z̃−A>η̄

) (
z̃−A>η̄

)>)
(78)

= tr
(
A>Σ̄A

)
+
∥∥z̃−A>η̄

∥∥2

2
(79)

which can be efficiently computed as it only requires diagonal terms.

Wrapping up, we obtain that

ELBO(q) = −M
2

log(2πσ2)− 1

2σ2

(
tr
(
A>Σ̄A

)
+
∥∥z̃−A>η̄

∥∥2

2

)
−KL(q(u)‖p(u)) (80)
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C Details on Conditional Mean Shrinkage Operator

C.1 Deconditional posterior with Conditional Mean Shrinkage Operator

We recall from Proposition 3.3 that the deconditional posterior is a GP specifed by mean and
covariance functions

md(x) = m(x) + k>x CX|Y Ψỹ(Qỹỹ + σ2IM )−1(z̃− ν(ỹ)), (81)

kd(x, x′) = k(x, x′)− k>x CX|Y Ψỹ(Qỹỹ + σ2IM )−1Ψ>ỹC
>
X|Y kx′ (82)

for any x, x′ ∈ X , where we abuse notation for the cross-covariance term

”k>x CX|Y Ψỹ” =
[
〈kx, CX|Y `ỹ1〉k . . . 〈kx, CX|Y `ỹM 〉k

]
. (83)

The CMO appears in the cross-covariance term k>x CX|Y Ψỹ and in the CMP covariance matrix
Qỹỹ = Ψ>ỹC

>
X|Y CX|Y Ψỹ. To derive empirical versions using the Conditional Mean Shrinkage

Operator we replace it by SĈX|Y = M̂y(Lyy + λNIN )−1Ψ>y .

The empirical cross-covariance operator with shrinkage CMO estimate is given by

k>x
SĈX|Y Ψỹ = k>x M̂y(Lyy + λNIN )−1Ψ>y Ψỹ (84)

= k>x M̂y(Lyy + λNIN )−1Lyỹ (85)

= k>x M̂yA (86)

where we abuse notation

”k>x M̂y” :=
[
〈kx, µ̂X|Y=y1

〉k . . . 〈kx, µ̂X|Y=yN 〉k
]

(87)

=
[

1
n1

∑n1

i=1 k(x
(i)
1 , x) . . . 1

nN

∑nN
i=1 k(x

(i)
N , x)

]
. (88)

The empirical shrinkage CMP covariance matrix is given by

SQ̂ỹỹ := Ψ>ỹ
SĈ>X|Y

SĈX|Y Ψỹ (89)

= Ψ>ỹ Ψy(Lyy + λNIN )−1M̂>
y M̂y(Lyy + λNIN )−1Ψ>y Ψỹ (90)

= A>M̂>
y M̂yA (91)

where with similar notation abuse

”M̂>
y M̂y” =

[
〈µ̂X|Y=yi , µ̂X|Y=yj 〉k

]
1≤i,j≤N =

[
1

ninj

ni∑
l=1

nj∑
r=1

k(x
(l)
i , x

(r)
j )

]
1≤i,j≤N

(92)

Substituting the latters into (81) and (82), we obtain empirical estimates of the deconditional posterior
with shrinkage CMO estimator defined as

Sm̂d(x) := m(x) + k>x M̂yA(A>M̂>
y M̂yA + σ2IM )−1(z̃− µ̂(ỹ)), (93)

Sk̂d(x, x′) := k(x, x′)− k>x M̂yA(A>M̂>
y M̂yA + σ2IM )−1A>M̂>

y kx′ (94)

for any x, x′ ∈ X .

Note that as the number of bags increases, it is possible to derive a variational formulation similar to
the one proposed in Section B that leverages the shrinkage estimator to further speed up the overall
computation.
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C.2 Ablation Study

In this section we will present an ablation study on the shrinkage CMO estimator. The key is to
illustrate that the Shrinkage CMO performs on par with the standard CMO estimator but is much
faster to compute.

In the following, we will sample bag data of the form bD = {bxj , yj}Nj=1 and bxj = {x(i)
j }ni=1, i.e

there are N bags with n elements inside each. We first sample N bag labels yj ∼ N (0, 2) and for
each bag yj , we sample n observations x(i)

j |yj ∼ N (yj sin(yj), 0.5
2).

Recall in standard CME one would need to repeat the number of bag labels to match the cardinality
of x(i)

j , i.e estimating CME using data {x(i)
j , yj}N,nj=1,i=1.

Denote ĈX|Y as the standard CMO estimator and SĈX|Y as the shrinkage CMO estimator.
We will compare the RMSE between the two estimator when tested on a grid of test points
{x∗i , y∗i }N

∗

i=1, i.e comparing the RMSE of the values between µ̂X|Y=y∗i
(x∗i ) := 〈ĈX|Y `y∗i , kx∗i 〉k

and Sµ̂X|Y=y∗i
(x∗i ) := 〈SĈX|Y `y∗i , kx∗i 〉k for each i. We also report the time in seconds needed to

compute the estimator. The following results are ran on a CPU. Kernel hyperparameters are chosen
using the median heuristic. The regularisation for both estimator is set to 0.1.

Figure 4: 3 bags with 50 samples each. (left) Data, (middle) µ̂X|Y=y∗i
(x∗i ) Standard CME.

(right) Sµ̂X|Y=y∗i
(x∗i ) Shrinkage CME. We see both algorithms require very little time to train,

(∼ 0.01second) with a negligible difference in values as shown by the RMSE.

Figure 5: 50 bags with 3 samples each. (left) Data, (middle) µ̂X|Y=y∗i
(x∗i ) Standard CME. (right)

Sµ̂X|Y=y∗i
(x∗i ) Shrinkage CME. Again, we see both algorithms require very little time to train,

(∼ 0.03 second). However, there is an increase in RMSE for the shrinkage estimator because there
are much less samples for each bag, thus the empirical CME estimate µ̂X|Y=yj might not be accurate.
Nonetheless, it is still a small difference.

Figures 4 and 5 show how shrinkage CMO performed compared to the standard CMO in a small data
regime. Now when we increase the data size, we will start to see the major computational differences.
(See Figures 6 and 7)
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Figure 6: 50 bags with 500 samples each. (left) Data, (middle) µ̂X|Y=y∗i
(x∗i ) Standard CME. (right)

Sµ̂X|Y=y∗i
(x∗i ) Shrinkage CME. With a small RMSE of 0.03, the Shrinkage CME is approximately

600 times quicker than the standard version.

Figure 7: 500 bags with 50 samples each. (left) Data, (middle) µ̂X|Y=y∗i
(x∗i ) Standard CME.

(right) Sµ̂X|Y=y∗i
(x∗i ) Shrinkage CME. Again, with a small RMSE of 0.02, Shrinakge CME is

approximately 200 times quicker than the standard CME.
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D Details on Convergence Result

In this section, we provide insights about the convergence results stated in Section 4. These results
are largely based on the impactful work of Caponnetto and De Vito [36], Szabó et al. [24] and Singh
et al. [25] which we modify to fit our problem setup. Each assumption that we make is adapted from
a similar assumption made in those works, for which we provide intuition and a detailed justification.
We start by redefining the mathematical tools introduced in these works that are necessary to state
our result.

D.1 Definitions and PK(b, c) spaces

We start by providing a general definition of covariance operators over vector-valued RKHS, which
will allow us to specify a class of probability distributions for our convergence result.
Definition D.1 (Covariance operator). Let W a Polish space endowed with measure ρ, G a real
separable Hilbert space and K :W2 → L(G) an operator-valued kernel spanning a G-valued RKHS
HK .

The covariance operator of K is defined as the positive trace class operator given by

TK :=

∫
Z
KwK

∗
wdρ(w) ∈ L(HK) (95)

where L(HK) denotes the space of bounded linear operators overHk.
Definition D.2 (Power of self-adjoint Hilbert operator). Let T a compact self-adjoint Hilbert space
operator with spectral decomposition T =

∑∞
n=1 λnen ⊗ en on (en)n∈N basis of Ker(T )⊥. The rth

power of T is defined as T r =
∑∞
n=1 λ

r
nen ⊗ en.

Using the covariance operator, we now introduce a general class of priors that does not assume
parametric distributions, by adapting to our setup a definition originally introduced by Caponnetto
and De Vito [36]. This class captures the difficulty of a regression problem in terms of two simple
parameters, b and c [24].
Definition D.3 (PK(b, c) class). Let Eρ : GZ → [0,∞[ an expected risk function over ρ and
Eρ = arg min Eρ. Then given b > 1 and c ∈]1, 2], we say that ρ is a PK(b, c) class probability
measure w.r.t. Eρ if

1. Range assumption: ∃G ∈ HK such that Eρ = T
c−1

2

K ◦G with ‖G‖2K ≤ R for some R ≥ 0

2. Spectral assumption: the eigenvalues (λn)n∈N of TK satisfy α ≤ nbλn ≤ β , ∀n ∈ N for
some β ≥ α ≥ 0

The range assumption controls the functional smoothness of Eρ as larger c corresponds to increased

smoothness. Specifically, elements of Range(T
c−1

2

K ) admit Fourier coefficients (γn)n∈N such that∑∞
n=1 γ

2
nλ
−(c+1)
n <∞. In the limit c→ 1, we obtain Range(T 0

K) = Range(IdHK ) = HK . Since
ranked eigenvalues are positive and λn → 0, greater power of the covariance operator TK give rise to
faster decay of the Fourier coefficients and hence smoother operators.

The spectral assumptions can be read as a polynomial decay over the eigenvalues of TK . Thus, larger
b leads to enhanced decay λn = Θ(n−b) and concretely in a smaller effective input dimension.

D.2 Complete statement of the convergence result

The following result corresponds to a detailed version of Theorem 4.2 where all the assumptions are
explicitly stated. As such, its proof also constitutes the proof for Theorem 4.2.
Theorem D.4 (Empirical DMO Convergence Rate). Assume that

1. X and Y are Polish spaces, i.e. separable and completely metrizable topoligical spaces

2. k and ` are continuous, bounded, their canonical feature maps kx and `y are measurable
and k is characteristic
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3. H` is finite dimensional

4. arg min Ec ∈ HΓ and arg min Ed ∈ HΓ

5. The operator family {ΓµX|Y=y
}y∈Y is Hölder continuous with exponent ι ∈]0, 1]

6. PXY is a PΓ(0, c′) class probability measure w.r.t. Ec and PY is a PΓ(b, c) class probability
measure w.r.t. Ed

7. ∀g ∈ H`, ‖g‖` <∞ almost surely

Let DPY = arg min
D∈HΓ

Ed(D). Then, if we choose λ = N−
1

c′+1 and N = M
a(c′+1)

ι(c′−1) where a > 0, we

have

• If a ≤ b(c+1)
bc+1 , then Ed(D̂X|Y )− Ed(DPY ) = O(M

−ac
c+1 ) with ε = M

−a
c+1

• If a ≥ b(c+1)
bc+1 , then Ed(D̂X|Y )− Ed(DPY ) = O(M

−bc
bc+1 ) with ε = M

−b
bc+1

Proof of Theorem 4.2. The main objective here will be to rigorously verify that within our setup, the
conditions in Theorem 4 from [25] are met. We reformulate from our problem perspective each of
the assumptions stated by Singh et al. [25] and verify they are satisfied.

Assumption 1 Assume observation model Z̃ = f(X) + ε̃, with E[ε̃|Y ] = 0 and suppose PX|Y=y

is not constant in y.

In this work, the observation model considered is Z = E[f(X)|Y ] + ε and the objective is to recover
the underlying random variable f(X) which noisy conditional expectation is observed. The latter
presumes that we could bring Z to X’s resolution. We can model it by introducing “pre-aggregation”
observation model Z̃ = f(X) + ε̃ such that Z = E[Z̃|Y ] and ε̃ is a noise term at individual level
satisfying E[ε̃|Y ] = 0.

Assumption 2 X and Y are Polish spaces.

We also make this assumption.

Assumption 3 k and ` are continuous and bounded, their canonical feature maps are measurable
and k is characteristic.

We make the same assumptions. The separability of X and Y along with continuity assumptions on
kernels allow to propagate separability to their associated RKHSHk andH` and to the vector-valued
RKHSHΓ. Boundedness and continuity on kernels ensure the measurability of the CMO and hence
that measures on X and cY can be extended toHk andH`. The assumption on k being characteristic
ensures that conditional mean embeddings µX|Y=y uniquely embed conditional distributions PX|Y=y

and henceforth operators overH` are identified.

Assumption 4 arg min Ec ∈ HΓ.

This property stronger is than what the actual conditional mean operator needs to satisfy, but it is
necessary to make sure the problem is well-defined. We also make this assumption.

Assumption 5 PXY is a PΓ(0, c′) class probability measure, with c′ ∈]1, 2]

As explained by Singh et al. [25], this is further required to bound the approximation error which we
also make. Through the definition of the PΓ(0, c′) class, this hypothesis assumes the existence of
a probability measure overHk we denote PHk . SinceHk is Polish (proof below), the latter can be
constructed as an extension of PX over the Borel σ-algebra associated toHk [48, Lemma A.3.16].

Assumption 6 Hk is a Polish space

Since k is continuous and X is separable,Hk is a separable Hilbert space which makes it Polish.
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Assumption 7 The {ΓµX|Y=y
}y∈Y operator family is

• Uniformly bounded in Hilbert-Schmidt norm, i.e. ∃B > 0 such that ∀y ∈ Y ,
‖ΓµX|Y=y

‖2HS(H`,HΓ) ≤ B

• Hölder continuous in operator norm, i.e. ∃L > 0, ι ∈]0, 1] such that ∀y, y′ ∈ Y , ‖ΓµX|Y=y
−

ΓµX|Y=y′‖L(H`,HΓ) ≤ L‖µX|Y=y − µX|Y=y′‖ιk

where L(H`,HΓ) denotes the space of bounded linear operator betweenH` andHΓ.

Since we assume finite dimensionality ofH`, we make a stronger assumption than the boundedness
in Hilbert-Schmidt norm which we obtain as

‖ΓµX|Y=y
‖2HS(H`,HΓ) = tr

(
Γ(µX|Y=y, µX|Y=y)

)
(96)

= tr
(
〈µX|Y=y, µX|Y=y〉k IdH`

)
(97)

= q(y, y) tr (IdH`) <∞. (98)

Hölder continuity is a mild assumption commonly satisfied as stated in [24].

Assumption 8 arg min Ed ∈ HΓ andH` is a space of bounded functions almost surely

We assume that the true minimiser of Ed is in HΓ to have a well-defined problem. The second
assumption here is expressed in terms of probability measure PH` overH`. We do also assume that
there exists B > 0 such that ∀g ∈ H`, ‖g‖` < B PH`− almost surely.

Assumption 9 PY is a PΓ(b, c) class probability measure, with b > 1 and c ∈]1, 2]

This last hypothesis is not required per se to obtain a bound on the excess error of regularized estimate
D̂X|Y . However, it allows to simplify the bounds and state them in terms of parameters b and c which
characterize efficient input size and functional smoothness respectively.

Furthermore, a premise to this assumption is the existence of a probability measure overH` that we
denote PH` . Since ` is continuous and Y separable, it makesH` a separable and thus Polish. We can
then construct PH` by extension of PY [48, Lemma A.3.16]

This theorem underlines a trade-off between the computational and statistical efficiency w.r.t. the
datasets cardinalities N = |D1| and M = |D2| and the problem difficulty (b, c, c′).

For a ≤ b(c+1)
bc+1 , smaller a means less samples from D1 at fixed M and thus computational savings.

But it also hampers convergence, resulting in reduced statistical efficiency. At a = b(c+1)
bc+1 < 2,

convergence rate is a minimax computational-statistical efficiency optimal, i.e. convergence rate is
optimal with smallest possible M . We note that at this optimal, N > M and hence we require less
samples from D2. a ≥ b(c+1)

bc+1 does not improve the convergence rate but increases the size of D1 and
hence the computational cost it bears.

We also note that larger Hölder exponents ι, which translates in smoother kernels, leads to reduced
N . Similarly, since c′ 7→ c′+1

c−1 and c 7→ b(c+1)
bc+1 are strictly decreasing functions over ]1, 2], stronger

range assumptions regularity which means smoother operators reduces the number of sample needed
from D1 to achieve minimax optimality. Smoother problems do hence require fewer samples.

Larger spectral decay exponent b translate here in requiring more samples to reach minimax optimality
and undermines optimal convergence rate. Hence problems with smaller effective input dimension
are harder to solve and require more samples and iterations.
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E Additional Experimental Results

E.1 Swiss Roll Experiment

E.1.1 Statistical significance table

Table 3: p-values from a two-tailed Wilcoxon signed-rank test between all pairs of methods for the
test RMSE of the swiss-roll experiment with a direct and indirect matching setup. The null hypothesis
is that scores samples come from the same distribution. We only present the lower triangular matrix
of the table for clarity of reading.

Matching CMP BAGG-GP VARCMP VBAGG GPR S-CMP

Direct CMP - - - - - -
BAGG-GP 0.00006 - - - - -
VARCMP 0.00008 0.00006 - - - -

VBAGG 0.00006 0.00006 0.005723 - - -
GPR 0.00006 0.00006 0.00006 0.00006 - -

S-CMP 0.00006 0.00006 0.000477 0.014269 0.00006 -

Indirect CMP - - - - - -
BAGG-GP 0.011129 - - - - -
VARCMP 0.001944 0.015240 - - - -

VBAGG 0.000089 0.047858 0.000089 - - -
GPR 0.025094 0.047858 0.047858 0.851925 - -

S-CMP 0.000089 0.002821 0.000089 0.000140 0.052222 -

E.1.2 Compute and Resources Specifications

Computations for all experiments were carried out on an internal cluster. We used a single GeForce
GTX 1080 Ti GPU to speed up computations and conduct each experiment with multiple initialisation
seeds. We underline however that the experiment does not require GPU acceleration and can be
performed on CPU in a timely manner.
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E.2 CMP with high-resolution noise observation model

E.2.1 Deconditional posterior with high-resolution noise

Beyond observation noise on the aggregate observations z̃ as introduced in Section ??, it is natural
to also consider observing noise at the high-resolution level, i.e. noises placed on f level directly
in addition to the one g at aggregate level. Let ξ ∼ GP(0, δ) the zero-mean Gaussian process with
covariance function

δ :

∣∣∣∣∣∣
X × X −→ R

(x, x′) 7−→
{

1 if x = x′

0 else
. (99)

By incorporating this gaussian noise process in the integrand, we can replace the definition of the
CMP by

g(y) =

∫
X

(f(x) + ςξ(x)) dPX|Y=y , ∀y ∈ Y, (100)

where ς > 0 is the high-resolution noise standard deviation parameter. Essentially, this amounts to
consider a contaminated covariance for the HR observation process. This covariance is defined as

kς :

∣∣∣∣ X × X −→ R
(x, x′) 7−→ k(x, x′) + ς2δ(x, x′)

. (101)

Provided the same regularity assumptions as in Proposition 3.2, the covariance of the CMP becomes
q(y, y′) = E[kς(X,X ′)|Y = y, Y ′ = y′] — the mean and cross-covariance terms are not affected.
Similarly be written in terms of conditional mean embeddings, but using as an integrand for the
CMEs the canonical feature maps induced by kς , i.e. µςX|Y=y := E[kς(X, ·)|Y = y] for any y ∈ Y .
Critically, this is reflected in the expression of the empirical CMP covariance which writes

q̂(y, y′) = `(y,y)(Lyy +NλIN )−1(Kxx + ς2IN )(Lyy +NλIN )−1`(y, y′) (102)

thus, yielding matrix form

Q̂ỹỹ := q̂(ỹ, ỹ) (103)

= Lỹy(Lyy +NλIN )−1(Kxx + ς2IN )(Lyy +NλIN )−1Lyỹ (104)

= A>(Kxx + ς2IN )A. (105)

which can readily be used in (8) and (9) to compute the deconditional posterior.

This high-resolution noise term introduces an additional regularization to the model that helps
preventing degeneracy of the deconditional posterior covariance. Indeed, we have

k̂d(x,x) = Kxx −KxxA(Q̂ỹỹ + σ2IM )−1A>Kxx (106)

= Kxx −KxxA(A>(Kxx + ς2IN )A + σ2IM )−1A>Kxx (107)

= Kxx −Kxx(AA>(Kxx + ς2IN ) + σ2IM )−1(AA>Kxx). (108)

where on the last line we have used the Woodburry identity. We can see that when σ = ς = 0, (108)
degenerates to 0. The aggregate observation model noise σ provides a first layer of regularization
at low-resolution. The high-resolution noise ς supplements it, making for a more stable numerical
compuation for the empirical covariance matrix.

E.2.2 Variational deconditional posterior with high-resolution noise

The high-resolution noise observation process can also be incorporated into the variational derivation
to obtain a slightly different ELBO objective. We have

p(z̃|f) = N (z̃|Υ>K−1
xx f , Qỹỹ + σ2IM −Υ>Kxx

−1Υ) (109)

= N (z̃|Af , A>(Kxx + ς2IN )A + σ2IM −A>KxxA) (110)

= N (z̃|Af , ς2A>A + σ2IM ) (111)
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The expected loglikelihood with respect to the variational posterior hence writes

Eq(f)[p(z̃|f)] =− M

2
log(2π)− 1

2
log det(ς2A>A + σ2IM ) (112)

− 1

2
Eq(f)

[
(z̃−A>f)>(ς2A>A + σ2IM )−1(z̃−A>f)

]
(113)

With a derivation similar to the one proposed in Appendix B, the expected loglikelihood can be
expressed in terms of the posterior variational parameters as

Eq(f)[p(z̃|f)] =− M

2
log(2π)− 1

2
log det(ς2A>A + σ2IM ) (114)

− 1

2
(z̃−A>η̄)>(ς2A>A + σ2IM )−1(z̃−A>η̄) (115)

− 1

2
tr
(
(ς2A>A + σ2IM )−1A>Σ̄A

)
(116)

In particular, the last term can be rearranged into tr
(
Σ̄

1/2
A(ς2A>A + σ2IM )−1A>Σ̄

1/2
)

which
can efficiently be computed as an inverse quadratic form [38].
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E.3 Mediated downscaling of atmospheric temperature

E.3.1 Map visualization of atmospheric fields dataset

Figure 8: Map visualization of the dataset used in the mediated downscaling experiment (for one
random seed); Top: Bags of high-resolution albedo αHR and total cloud cover TCCHR pixels which
are observed in D1 — each “coarse pixel” delineates a bag of HR pixels; Middle: Low-resolution
pressure field PLR which is observed everywhere and plays the role of mediating variable; Bottom:
Low-resolution temperature field TLR pixels which are observed inD2 and that we want to downscale;
grey pixels are unobserved; the grey layer on HR covariates maps (top) is the exact complementary
of the grey layer on the observed TLR map (bottom).
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E.3.2 Downscaling prediction maps

Figure 9: Predicted downscaled atmospheric temperature field with VARGPR; Top-Left: Posterior
mean; Top-Right: 95% confidence region size, i.e. 2 standard deviation of the posterior; Bottom-
Left: Squared difference with unobserved groundtruth THR; Bottom-Right: Difference between
unobserved groundtruth THR and the posterior mean.

Figure 10: Predicted downscaled atmospheric temperature field with VBAGG; Top-Left: Posterior
mean; Top-Right: 95% confidence region size, i.e. 2 standard deviation of the posterior; Bottom-
Left: Squared difference with unobserved groundtruth THR; Bottom-Right: Difference between
unobserved groundtruth THR and the posterior mean.
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Figure 11: Predicted downscaled atmospheric temperature field with VARCMP; Top-Left: Posterior
mean; Top-Right: 95% confidence region size, i.e. 2 standard deviation of the posterior; Bottom-
Left: Squared difference with unobserved groundtruth THR; Bottom-Right: Difference between
unobserved groundtruth THR and the posterior mean.

E.3.3 Statistical significance table

Table 4: p-values from a two-tailed Wilcoxon signed-rank test between all pairs of methods for the
evaluation scores on the mediated statistical downscaling experiment. The null hypothesis is that
scores samples come from the same distribution. As before, we only present the lower-traingular
table for clarity of reading.

Metric VARCMP VBAGG VARGPR

VARCMP - - -
RMSE VBAGG 0.005062 - -

VARGPR 0.006910 0.046853 -

VARCMP - - -
MAE VBAGG 0.005062 - -

VARGPR 0.059336 0.006910 -

VARCMP - - -
CORR VBAGG 0.005062 - -

VARGPR 0.016605 0.028417 -

VARCMP - - -
SSIM VBAGG 0.005062 - -

VARGPR 0.959354 0.005062 -

E.3.4 Compute and Resources Specifications

Computations for all experiments were carried out on an internal cluster. We used a single GeForce
GTX 1080 Ti GPU to speed up computations and conduct each experiment with multiple initialisation
seeds.
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